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ABSTRACT

Motivation: Progress in protein biology depends on the reliability of re-

sults from a handful of computational techniques, structural alignments

being one. Recent reviews have highlighted substantial inconsistencies

and differences between alignment results generated by the ever-grow-

ing stock of structural alignment programs. The lack of consensus on how

the quality of structural alignments must be assessed has been identified

as the main cause for the observed differences. Current methods assess

structural alignment quality by constructing a scoring function that at-

tempts to balance conflicting criteria, mainly alignment coverage and fi-

delity of structures under superposition. This traditional approach to

measuring alignment quality, the subject of considerable literature, has

failed to solve the problem. Further development along the same lines is

unlikely to rectify the current deficiencies in the field.

Results: This paper proposes a new statistical framework to assess

structural alignment quality and significance based on lossless informa-

tion compression. This is a radical departure from the traditional ap-

proach of formulating scoring functions. It links the structural alignment

problem to the general class of statistical inductive inference problems,

solved using the information-theoretic criterion of minimum message

length. Based on this, we developed an efficient and reliable measure of

structural alignment quality, I-value. The performance of I-value is

demonstrated in comparison with a number of popular scoring func-

tions, on a large collection of competing alignments. Our analysis

shows that I-value provides a rigorous and reliable quantification of

structural alignment quality, addressing a major gap in the field.
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1 INTRODUCTION

A protein structural alignment is an assignment of residue–resi-

due correspondences between the amino acids of two or more

proteins, based on their 3D structure. Protein structural align-

ments support basic and applied research in molecular biology.

For example, they reveal how protein families evolve, identify

patterns of conservation in amino acid sequences that fold into

similar structures, facilitate comparative modelling of structures

from sequence and guide experimental solutions to structures

using crystallographic molecular replacement (Konagurthu

et al., 2006).
The last four decades have seen the development of many

methods aimed at generating biologically meaningful structural

alignments. While the number of new methods is estimated to be

doubling roughly every five years (Hasegawa and Holm, 2009),

several comparative studies have observed many inconsistencies

and paradoxes when comparing the alignments generated by

existing methods. Noteworthy among these studies are those

by Michael Levitt (Kolodny et al., 2005), Liisa Holm

(Hasegawa and Holm, 2009) and Manfred Sippl (Sippl and

Wiederstein, 2008; Slater et al., 2013) and colleagues.

A common theme emerging from all these studies is the need

for a systematic framework to asses the quality of structural

alignments. While a handful of quantitatively rigorous statistical

models for structure comparison have been proposed for this,

there is no consensus regarding their usefulness.
This is in stark contrast to the state-of-the-art in the closely

related problem of aligning protein sequences, where many rigor-

ous statistical models have been proposed to quantitatively assess

sequence alignment quality (Allison et al., 1992; Altschul, 1991;

Karlin and Altschul, 1990). This has, in turn, helped standardize

the task of measuring sequence alignment quality and, thus, the

task of generating meaningful sequence alignments.
In this work, we begin by examining the foundations of how

structural alignments are currently assessed. Guided by good

biological insights, current structural aligners use a scoring func-

tion to quantify the structural alignment quality. This has trad-

itionally been achieved by combining the contributions of a small

number of important criteria into an easy-to-compute scoring

function. [For a comprehensive list of commonly used scoring

functions, see Hasegawa and Holm (2009)].

Overwhelmingly, the two key criteria that various current

measures use are coverage and fidelity. Typically, coverage meas-

ures the number of correspondences (or equivalences) in an

alignment and, in some cases, also considers the number of

gaps. Fidelity, measures how similarly positioned the aligned

residues are. This is commonly (but not always) based on the

root-mean-square deviation (RMSD) computed after the best

rigid-body transformation of corresponding residues is found.
To search for the best structural alignment, the goal of the

aligners is to simultaneously maximize coverage and fidelity.

However, these two objectives are in direct conflict with each

other. We observe that most of the current proliferation of struc-

tural alignment scoring functions arise from attempts to reconcile

this conflict, that is, existing scoring functions differ mainly in

how they combine these two criteria. As the reviews show, exist-

ing scoring functions do not generate consistent results, even

when aligning structures that have only moderately diverged in

evolution (Hasegawa and Holm, 2009; Kolodny et al., 2005;

Slater et al., 2013).*To whom correspondence should be addressed.
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Because this traditional approach of formulating a scoring
function has been explored extensively over the last four decades,
further development along the same lines is unlikely to provide

any major breakthrough. Therefore, this field will stand to bene-
fit by departing from the traditional approaches and exploring
radically new ones. This paper is a step in this direction.

Structural alignment as an inductive inference problem. The
goal of inductive inference is to propose a theory (or hypothesis)
that is able to best explain the observed data. Structural align-

ment can thus be seen an instance of the general class of inference
problems. In this context, an alignment (i.e. residue–residue cor-
respondence) is a hypothesis that attempts to explain the residue–

residue relationships between two protein structures, whose
observed data is the (x, y, z) coordinates of the structures.
In general, any hypothesis has a certain (descriptive) complex-

ity. A complex hypothesis with more free parameters can predict
(or fit, explain) a greater variety of observed data than a simpler
hypothesis. Therefore, in order to choose the best hypothesis for

any inference problem, one is confronted with a trade-off
between hypothesis complexity and its fit with the observations.
For structural alignments, this trade-off is related to the con-

flict between coverage and fidelity. Coverage (in various forms

handled in the current scoring functions) is a crude approxima-
tion of the (alignment) hypothesis complexity. Similarly, the fi-

delity (or goodness of fit with the observed data) of a structural
alignment is approximated using RMSD of superposition or
using some distance measure. These rudimentary approxima-

tions cause the existing scoring functions to introduce several
tunable parameters in an attempt to balance the contributions
between coverage and fidelity of structural alignments. This has

been a major source of the inconsistencies observed in
alignments.
The field of statistical learning and inference provides rigorous

approaches to address this trade-off systematically. In the early

1960s, several landmark papers proposed links between inductive
inference and information theory (Kolmogorov, 1965;
Solomonoff, 1960; Wallace and Boulton, 1968). The Minimum

Message Length (MML) principle (Wallace and Boulton, 1968)
provided the first practical information-theoretic criterion for
hypothesis selection based on observations. It is used here to

rigorously assess structural alignment quality and reliably differ-
entiate between competing alignments.
Structural alignment quality and lossless information compres-

sion. The pioneering work of Claude E. Shannon (Shannon,
1948) provides the means to quantify information: the length
of the shortest code required to transmit, losslessly, an observed

event. This can be understood as the length of the shortest mes-
sage needed to communicate the event losslessly between an im-
aginary sender (Alice) and receiver (Bob).

In this context, the structural alignment problem can be
rationalized as a communication process between Alice and
Bob, where Alice has access to the (x, y, z) coordinates of two

protein structures and she wants to encode and transmit this
information to Bob losslessly. Two possible scenarios then
arise: (i) If the two are unrelated to each other structurally,

Alice cannot do better than to encode and transmit the informa-
tion of the two structures independently, one after another. That
is, knowledge of one structure (called reference, or S) does not

provide information about the other (called target, or T) and,

thus, knowledge of S cannot be used to compress T. This form of

independent transmission is termed here as the null model mes-

sage. (ii) On the other hand, if the two structures are structurally

related (i.e. there is a meaningful alignment between the two),

knowledge of S reveals information about T. The more similar

the structures, the more information one reveals about the other.

Alice can use this similarity to compress and transmit the infor-

mation of the target structure using the information of the ref-

erence. For Bob to decode the information of the target losslessly

(i.e. to the precision with which Alice sees it), he will require the

structural information of the reference structure plus the infor-

mation of its proposed relationship (i.e. the structural alignment)

with the target. This will allow Alice to encode the target more

concisely than stating the target structure using a null model. We

call this form of transmission, the alignment model message (to

contrast it with the null model message, where the structures are

transmitted independently).
We note that this information-theoretic framework for struc-

tural alignment is intuitive. If the proposed alignment relation-

ship is a poor one, then the encoded alignment model message

will be inefficient (i.e. long). Alternatively, if the alignment rela-

tionship is a good one, then the transmission of the target be-

comes efficient (i.e. short). Therefore, the total message length of

the lossless transmission of coordinate information (using an

alignment hypothesis) forms an excellent measure to assess struc-

tural alignment quality. It follows that the best alignment is the

one with the shortest total message length of lossless transmission.
While we have intuitively rationalized this framework as a

communication process, this message paradigm is also backed

by mathematical rigour. Formally, let A denote some alignment

between structural coordinates S and T. Using the product rule

of probability over three events A, S and T we have:

PðA&S&TÞ=PðAÞ � PðSjAÞ � PðTjS&AÞ

=PðAÞ � PðSÞ � PðTjS&AÞ
ð1Þ

where PðA&S&TÞ gives the joint probability of alignment A for

structures S and T, PðAÞ the prior probability of the alignment,

PðTjS&AÞ the likelihood of T given S and A. Note, PðSjAÞ is

P(S) because S and A are assumed to be independent.

Shannon’s mathematical theory of communication (Shannon,

1948) gives the relationship between the shortest message length

I(E) to communicate losslessly any observation E, and its prob-

ability P(E) as IðEÞ=� log ðPðEÞÞ. Technically, I(E) denotes the

Shannon information content of E.
Restating equation 1 in terms of information content, we

obtain:

IðA&S&TÞ=IðAÞ+IðSÞ+IðTjS&AÞ ð2Þ

where transmitting the information of the reference structure S

takes I(S) bits, transmitting the alignment information takes IðAÞ

bits and transmitting the information of the target structure T

using A and S takes IðTjS&AÞ bits.

Our message length measure has the following three key prop-

erties, which are not achieved by previous scoring functions:

(1) The difference between the lengths of the messages needed

to transmit the structures S and T using any two align-

ments, gives their log-odds posterior ratio.
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IðA1 &S&TÞ � IðA2 &S&TÞ=log
PðA2 &S&TÞ

PðA1 &S&TÞ

� �

=log
PðS&TÞPðA2jS&TÞ

PðS&TÞPðA1jS&TÞ

� �
=log

PðA2jS&TÞ

PðA1jS&TÞ

� � ð3Þ

As a result, any two competing alignment hypotheses A1

and A2 can now be compared based on their message

lengths. Therefore, the best alignment hypothesis A� is
the one that results in the shortest message length value
of IðA�&S&T).

(2) Our measure permits a natural null hypothesis test where

the statistical significance of any proposed alignment hy-
pothesis can be estimated. Any alignment hypothesis A

whose message length IðA&S&TÞ is worse (longer) than
that of the null model message, IðS&TÞ=IðSÞ+IðTÞ, must
be rejected.

(3) This measure provides an objective, formal trade-off be-

tween the complexity of the alignment (IðAÞ) and the fi-
delity of the structures given the proposed alignment
(IðTjS&AÞ). Unlike previous attempts, these terms are

not ad hoc approximations, as they represent rigorous es-
timations of Shannon information content based on loss-
less encoding and compression.

2 METHODS

2.1 Computation of the null model message length

The null model message corresponds to the transmission of protein co-

ordinates without an alignment hypothesis. (In this work, we consider

only the C� coordinates.) We have previously defined [for a completely

different problem (Konagurthu et al., 2012)] a null model encoding of

coordinates along a protein chain. We will briefly summarize this ap-

proach, as elements of this encoding are used and developed further in

our current work.

The null model encoding relies on the observation that the distance

between successive C� atoms in a protein chain is highly constrained to

3:8� 0:2 (s.d.) Å. For a chain of coordinates fp1; p2; . . . ; png, any coord-

inate pi+1 can be transmitted given the previous pi, by first transmitting

the distance ri between pi and pi+1 using a normal distribution Nðr;�; �Þ

stated to �=0:001 Å accuracy, with �=3:8 Å and �=� 0:2 Å. (�=0:001

reflects the precision of statement of coordinate data, which is three places

after the decimal point as reported in the protein data bank.). We repre-

sent the length of this encoding as IðriÞ. With this information trans-

mitted, Bob now knows that pi+1 lies on a sphere of radius ri centred

at pi, but does not yet know where exactly on the sphere it is. Assuming

that pi+1 is distributed uniformly over the surface of the sphere, trans-

mitter Alice can discretize the sphere’s surface into cells, each of area �2.

Using this discretization, pi+1 can be transmitted as cell number ci+1.

The numbering convention of the discretization is in the shared

codebook. With the knowledge of pi, ri and ci, Bob can

reconstruct pi+1 to the stated accuracy. Stating the cell number takes

IðciÞ=� log 2
�2

4�r2
i

� �
=log 2ð4�r

2
i Þ � 2log 2� bits.

When sending a chain of C� coordinates fp1; p2; . . . ; png over a null

model message, we assume that p1 is the origin and, hence, does not need

to be transmitted as part of the message. Even if p1 is not assumed to be

the origin, its encoding will add a fixed one-time cost to the message

length. Thus, to transmit the chain of points p1; p2; . . . ; pn over the null

model, Alice needs to send to Bob the number n of C� atoms in the chain,

followed by incrementally transmitting (using the method above) p2 given

p1, p3 given p2 and so on, until all coordinates are transmitted. Alice can

transmit the number n over a integer distribution. Wallace and Patrick

(1993) gave an efficient code (IintegerðnÞ) for transmitting any positive in-

teger n40.

Therefore, the total message length required to send all the coord-

inates over the null model message takes Inullðp1; . . . ; pnÞ=IintegerðnÞ+Xn�1

i=1
IðriÞ+IðciÞð Þ bits.

Using the above, the coordinates of structures S=fS1;S2; . . . ;SjSjg

and T=fT1;T2; . . . ;TjTjg are sent as independent chains of coordinates

over the null model, taking InullðS&TÞ=InullðSÞ+InullðTÞ bits.

2.2 Computation of the alignment model message length

Equation 2 gives the amount of information required to transmit the

coordinates of structures S and T using the alignment hypothesis A.

To estimate this, the explanation message involves transmitting: the

coordinates of S, the residue–residue correspondences proposed by

the alignment in A and, finally, the coordinates of T using the informa-

tion of S and A.

2.2.1 Transmitting the coordinates of S This is achieved by sending

the coordinates of S=fS1;S2; . . . ;SjSjg over the null model. Therefore,

IðSÞ=InullðS1;S2; . . . ;SjSjÞ bits.

2.2.2 Transmitting the correspondences inA Any alignment can be

described as a string switching between three states: match (‘m’), insertion

(‘i’) and deletion (‘d’) states. This alignment string can be transmitted

losslessly using a first-order Markov model.

To transmit an alignment over a 3-state Markov chain, we use an

approach similar to the adaptive encoding method used by Wallace and

Boulton (1969) over a multinomial (n-state) distribution. The adaptive

encoding here requires maintaining nine running counters, one for each

possible transition probability, all initialized to 1. Traversing the align-

ment string left to right, for every observed transition, Alice estimates its

probability by dividing the current value of the corresponding transition

counter by the sum of all counters from previous to any state. After the

probability is estimated, Alice encodes the current alignment state using

this probability and then increments the corresponding counter by 1. The

code length to encode each state is the negative logarithm of its estimated

probability. Summing each transition over the entire alignment gives the

code length, IðAÞ.

2.2.3 Transmitting the coordinates of T given S and A With

the information of S and A known to Bob, Alice can now use that in-

formation to encode the coordinate information of T. Intuitively, our

encoding is based on the fact that when scanning A from left to right,

Alice views T as runs of coordinates that alternate between blocks of

insertions and matches with respect to S and the stated alignment.

Note that all deletion blocks (with respect to S) in T are ignored as

they contain no information to be transmitted about T. More formally,

let A yield fI1; . . . ; Img insertion blocks, where any Ik represents a con-

secutive stretch of coordinates that are inserted in T (with respect to S).

Each insertion block is transmitted as a null message taking

IinsðTjS&AÞ=
Xm

k=1
InullðIkÞbits:

What remains to be sent to Bob are the coordinates in T aligned to

corresponding coordinates in S, that is, the matches. Let fSi1 ;Si2 ; . . . ;Sin g

and fTj1 ;Tj2 ; . . . ;Tjn g where 1 � i15 . . . in � jSj and

1 � j15 . . . jn � jTj, denote the ordered set of corresponding coordinates

in S and T, respectively. Bob already knows S and the alignment. From

the alignment information he can infer the indexes of the aligned residue–

residue correspondences: (i1, j1), (i2, j2), . . . ; (in, jn) between S and T.

Thus, Alice can use the following procedure to transmit the aligned co-

ordinates in T. To start the procedure, the first three matched coordinates

of fTj1 ;Tj2 ;Tj3 g are sent over the null model message taking: IstartupðTjS
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&AÞ=InullðTj1 ;Tj2 ;Tj3 Þbits: Alice then incrementally sends the remaining

aligned coordinates of T as follows. To transmit the current aligned co-

ordinate Tjk+1
, Alice considers only the set of (previous plus current)

aligned coordinates fTj1 ; Tj2 ; . . . ; Tjk ; Tjk+1
g. This set is orthogonally

transformed to the set fTj1 ; Tj2 ; . . . ; Tjk ; Tjk+1
g, such that it minimizes

the least-square error between fSi1 ; . . . ; Sik g and fTj1 ; . . . ; Tjk g. Using

this setup, Alice can transmit Tjk+1
over a directional distribution on a

sphere. This is achieved by first transmitting the radius rk=jjTjk+1
� Tjk jj

over a normal distribution with the same procedure described for formu-

lating a null model message. This allows Alice to state Tjk+1
as a point on

a sphere with radius rk centred at Tjk . However, we do not state it over a

uniform distribution (which would make it a null model description), as

the knowledge of correspondence of Tjk+1
with Sik+1

gives clues about its

position on the sphere (provided the assigned correspondence is a ‘good’

one). Because Bob already knows the corresponding point Sik+1
, after

transmitting rk, Alice can use a directional probability distribution to

state Tjk+1
more concisely. In directional statistics, the von Mises–

Fisher distribution gives the probability density function (PDF) on the

surface of any sphere in p-dimensions. In three dimensions, the PDF on

the surface of a unit sphere is (Fisher, 1953; Mardia and Jupp, 1999):

Vðx̂; �̂; �Þ= �
2�ðe��e��Þ e

��̂ �x̂

Using this distribution to transmit Tjk+1
, we compute x̂k+1 as the

direction cosines of the vector Tjk+1
� Tjk , and �̂k+1 as the direction

cosines of the vector Sik+1
� Tjk . The probability of stating Tjk+1

to the

required precision (that is, �=0:001 Å precision on each component)

using von Mises–Fisher distribution over the surface of a 3D sphere of

unit radius is then given by: Pðx̂Þ=�02 �
2�ðe��e�kÞ

e��̂ �x̂ where �02= �2

r2
i

, ac-

counting for the scaling of the sphere of radius ri to a unit sphere.

Transmission of each Tjk+1
requires the concentration parameter �. We

use the maximum-likelihood estimator based on the available superpos-

ition [see Mardia and Jupp (1999)]. Therefore, the code length to state x

using von Mises–Fisher is: Ivmfðx̂Þ=� log ðPðx̂ÞÞ bits:

Each Tjk+1
is transmitted iteratively over this procedure, which we term

adaptive superposition. Thus, the message length required to transmit the

matched points in T with respect to their corresponding point in S is

ImatchðTjS&AÞ=IstartupðTjS&AÞ+
Xn

i=4
Ivmfðx̂iÞ bits. Combining the

message lengths of transmitting coordinates in the insertion and matched

blocks gives IðTjS&AÞ=IinsðTjS&AÞ+ImatchðTjS&AÞ bits: An illustra-

tion of this procedure is shown in Figure 1.

2.3 Measure of alignment quality

IðA&S&TÞ is used as the measure of alignment quality. We call this

measure I-value, indicating a value measuring the information content

in the structural coordinates of S and T, given the structural alignment A

as a model of compression. The smaller the I-value, the better the align-

ment. It follows that for competing alignments A1 and A2, if the I-value

of A1 is smaller than that of A2 by, for example, 15 bits, then A1 is

215 times more likely than A2 (see property 1 of this measure shown

in Equation 3). Further, any alignment A for which IðS&T&AÞ4
InullðS&TÞ=InullðSÞ+InullðTÞ can be rejected (see property 2 of this meas-

ure under ‘Structural alignment quality and lossless information

compression’).

Handling shifts and rotations. So far we estimated the I-value under the

rigid model of structural alignment. This model can be generalised to

handle plastic deformations commonly observed in protein evolution,

such as hinge rotations and shifts. Handling these deformations requires

a modification in the way IðTjS&AÞ is estimated under a flexible model of

transmission.

Without loss of generality, assume that T contains a certain number of

shifts and rotations, with respect to S, associated with its residues. In

computing IðTjS&AÞ, alignment A is partitioned at the residues in T

about which the shifts and rotations are defined. For example, consider

below an alignment containing a hinge rotation about residue 10 of T

(marked by *). Then, the alignment can be partitioned into two separate

parts as follows:

Let these partial alignments be denoted as AðT1; . . . ;T10Þ and

AðT10; . . . ;T15Þ, identifying the start and end residue indexes in T

about which the partition is defined. Then IðTjS&AÞ is computed as

IðTjS&AðT1; . . . ;T10ÞÞ+IðTjS&AðT10; . . . ;T15ÞÞ using the procedure

described earlier. More generally, if there are k residues in T about

which shifts/rotations are defined, the full alignment A is parti-

tioned into k+1 partial alignments: AðT1; . . . ;Ti1 Þ; AðTi1 ; . . . ;Ti2 Þ, . . . ;

AðTik ; . . . ;TjTjÞ, where i15i25 . . .5ik5jTj. Given these partitions,

IðTjS&AÞ can be computed as IðTjS&AðT1; . . . ;Ti1 ÞÞ + � � �+IðTjS&

Aðik; . . . ; jTjÞÞ: This immediately poses another inference question:

Given an alignment A of S and T, how many shifted/rotated residues

does it contain? We note that adding a shift/hinge has an overhead

which must pay for itself with a better fit if it is to be accepted.

Inference of shifted/rotated residues: A dynamic programming algo-

rithm is used to optimally partition A minimizing IðTjS&AÞ.

The algorithm first constructs a matrix M of size jTj � jTj such that

each cell M(i, j) (1 � i5j � jTj) stores the value IðTjS&Aði; . . . ; jÞÞ. The

best partition of A is then computed using the following dynamic pro-

gramming recurrence relationship:

Pð1; . . . ; jÞ=min
j�1

i=1

Mð1; jÞ;

Pð1; . . . ; iÞ+Mði; jÞ 81 � j � jTj

(
ð4Þ

where any Pð1; . . . ; iÞ gives the optimal partitioning up to the ith residue

in T, 1 � i � jTj. At the end of this procedure the value Pð1; . . . ; jTjÞ

gives the component message length IðTjS&AÞ of Equation 2, in a way

that handles shift and hinge rotations.

2.4 The time complexity of computing I-value

Using the rigid model of transmission (i.e.without handling the hinge-

rotations and shift), the computation of IðA&S&TÞ is linear in the size of

Fig. 1. An idealized example of the adaptive superpositionused to send the

matched residues in T (in blue) incrementally given the knowledge of S (in

black). Both structures have 8 points and are assumed here to be in one-to-

one correspondence. Assume that Bob already knows the first 3 points of

T. Alice sends the fourth point in T by superposing all previously matched

points between the two structures. (Green crosshairs shows the rotational

centre of superposition.) This orients the fourth point (in red) in T [or,

more generally, Tjk+1
, whose deviation from its corresponding Sik+1

can be

encoded over a von Mises–Fisher spherical distribution (see main text)]
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the alignment, as the computation of I(S), IðAÞ and IðTjS&AÞ are all

linear. While the linearity of the first two is clear, that of IðTjS&AÞ is not,

as it requires repeated adaptive superpositions. However, we have

recently proved sufficient statistics for the orthogonal superposition prob-

lem that allows each updated superposition to be computed as a constant-

time update over the previous ones (Konagurthu et al., 2014), making the

computation of IðTjS&AÞ, and I-value under rigid superposition, linear.

On the other hand, using the flexible model which allows for hinge rota-

tions and shifts, the computation of IðA&S&TÞ is quadratic, as it is

dictated by the complexity of the dynamic program given by Equation 4.

3 RESULTS AND DISCUSSION

We have compared the quality of our I-value measure (using the

flexible model described in sections 2.3) with popular scoring

functions DALI, TM-Score, MI, SI, STRUCTAL, LGA_S3,

GDT_TS, SAS and GSAS, using a large data set of alignments

produced by the popular structural alignment methods DALI,

TM-Align, LGA, CE and FATCAT. [Refer to Hasegawa and

Holm (2009) for references of these scores/aligners.] Due to lack

of space, we restrict our results herein to those obtained when

comparing the DALI Score, TM-Score, and I-value measures,

using TM-Align and DALI as the structural alignment gener-

ators. We refer to our online supplementary material for the

remaining results.
Our first experiment tests the ability of the scoring functions to

differentiate between pairs of structural domains that vary along

the hierarchical groups defined by SCOP (Lo Conte et al.,

2000)—Class, Fold, Superfamily and Family. To do this, we

randomly selected a set of 500 ‘pivot’ domains from SCOP

and, for each of these pivots, we randomly selected five other

domains whose relationship with the pivot varies progressively:

(i) Same-Family, (ii) Same-Superfamily (but not Family), (iii)

Same-Fold (but not Superfamily and Family), (iv) Same-Class

(but different below this level) and (v) Decoy (or different-Class).

This results in a collection of 500� 5 SCOP domains. We then

aligned each pivot with each of its five counterparts, generating a

total of 2500 alignments per alignment program. Finally, we as-

sessed all these alignments using the selected scoring functions.
Figure 2 shows (some of) the box-whisker plots resulting from

these comparisons. (As mentioned earlier, more results are given

in Supplementary Table S1 of the online supplementary mater-

ial.) Rows in this table denote the alignment method (DALI/

TM-Align) used to generate the 2500 alignments in our collec-

tion. Columns denote the scoring function (DALI, TM-Score, I-

value) used to compute the alignment score. Each cell in the table

is a box-whisker plot that displays the numerical scores (as quar-

tile marks) produced by each [alignment method, scoring func-

tion] pair, over the five groups of (500) alignments each. Note

that for I-value, we show the compression gained (in bits) over

the null model message length, that is, the (Null–I-value) message

lengths. Thus, the greater the compression, the better the align-

ment. (In contrast, when using raw I-values rather than compres-

sion with respect to Null, the smaller the I-value the better the

alignment.)

A cursory inspection of these box-whisker plots indicates that,

for the given alignments (which might not be the best/optimal

ones), all scoring functions consistently differentiate between

the SCOP groups to some extent. However, none of the scoring

functions can be said to separate the SCOP groups cleanly nor to

be clearly better than the others. This reflects partly the fuzzy

classification boundaries of SCOP, and partly the quality of the

(sub-optimal) alignments of domain pairs generated by popular

alignment methods. For example, for TM-Score it has been

claimed that the numerical score of50.5 corresponds to align-

ments not being in the same fold. However, we observe from the

box-whisker plots in the second column of the table (the Fold

group), that43 quartiles of the alignments have a TM-score of

50.5. Inspecting the box-whisker plots at the same-Fold group,

Fig. 2. Table comparing the value of the DALI, TM-Score and I-value scoring functions (Columns) over 5 SCOP groups (see main text) containing 500

alignments each, generated by (rows) DALI and TM-Align programs. Note that the Y-axis uses different scales, as the range of values differ between

scoring functions. Therefore, the absolute heights of the boxes cannot be compared between the box-whisker plots. However, their performance can be

compared by the relative overlaps of the various quartile levels for each group with respect to others within the same box-whisker plot
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shows that a very large majority of alignments produced by

DALI and TM-Align and scored using I-value are seen to be

statistically significant (i.e. with Null–I-value message length40),

with DALI alignments being more reliable than those generated

by TM-Align, judging by the compression gain at the level of

their respective medians. Interestingly, I-value seems to provide

the smallest of variations when comparing the results obtained

for the alignments generated by DALI to those generated by

TM-Align.
Upon closer inspection, the results of our experiment indicate

a significant degree of disagreement between the respective

scores: only in 28% of the 2500 pivot-versus-counterpart align-

ments, all three scores agree on whether the alignment produced

by DALI or by TM-Align is the best. This disagreement
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Fig. 3. Sieving of the two ambiguous alignments reported by Zu-Kang and Sippl (1996) for the pair 1RCF and 3CHY. The X-axis gives the RMSD of

each sieved alignment, while the Y-axis gives the scoring function used: (a) DALI, (b) TM-Score and (c) I-value. The labels in the figures correspond to

the NEquiv values during sieving. For the TM-Score plot (b), the horizontal dotted line is the threshold for fold-level relationship. For the I-value plot

(c), the horizontal line corresponds to the NULL model message length. The sieved alignments below this line are statistically significant

Table 1. Comparison between DALI score, TM-Score and I-value on ambiguous alignments reported by Zu-Kang and Sippl (1996)

Structures Residues Alignment A1 Alignment A2

S v. T jSj jTj DALI Score TM-Score IðA1;S;TÞ Dali Score TM-Score IðA2;S;TÞ

2TMVP v. 256BA 154 106 262.8 0.4871 9611.2 bits 242.6 0.4744 9614.0 bits

1TNFA v. 1BMV1 152 185 265.1 0.3815 12577.1 bits 307.3 0.3947 12463.7 bits

1UBQ v. 1FRD 76 98 161.9 0.4790 6384.8 bits 146.1 0.4518 6409.8 bits

2RSLC v. 3CHY 119 128 182.6 0.3773 9159.8 bits 206.1 0.3768 9143.5 bits

3CHY v. 1RCF 128 169 377.5 0.4960 10983.0 bits 336.4 0.4855 10961.8 bits

Note: For DALI and TM-score, the higher the score the better the alignment. For I-value, the smaller the value (or message length), the better is the alignment. Bold numbers

in each row indicate the better of the two competing alignments under each of the scoring measures.
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highlights the need for a generally accepted, rigorous alignment
score. Supplementary Table S2 in the online supplementary ma-
terial shows the full list of disagreeing pairs.
Our second experiment uses the set of ambiguous alignments

described by Zu-Kang and Sippl (1996), as case studies for the
various scoring functions ability to differentiate between very clo-
sely competing alignments. These alignments are indistinguish-

able in RMSD and number of equivalences (NEquiv). Table 1
compares the three scoring functions across five pairs of ambigu-
ous structural alignments. For each scoring function, the better

score of the two alignments for each pair is highlighted in bold.We
again observe disagreement in two out of the five pairs between
the scoring functions in their ability to decide which of the two

alignments is the best. We emphasize that this discrimination is
crucial for any scoring function to be useful as the basis of a search
method looking for the optimal alignment.
Let us illustrate the problems in using some of these scoring func-

tions for an optimal alignment searchmethod, using the case study of
pair 3CHY v. 1RCF. To do so we ‘sieve’ each of the two ambiguous
alignments using the following procedure, similar to the one

described in Irving et al. (2001), to generate a number of competing
alignments at varying levels of NEquiv and RMSD: (i) Compute the
[NEquiv, RMSD] and corresponding DALI, TM-Score and I-value

of the current alignment. (ii) Delete the worst-fitting aligned pair that
appears at the end of a ‘matched block’ in the alignment, and force
the deleted pair of residues to be unaligned. (iii) Repeat from Step 1
until the RMSD falls below a threshold value.

Studying the three sieving plots corresponding to DALI, TM-
Score and I-value in Figure 3, it is immediately clear that TM-
Score (Fig. 3b) does not produce any clear optima for this set of

competing alignments to choose from. In fact, TM-Score mono-
tonically increases towards the TM-scores of the unsieved align-
ments. On the other hand, I-value and the DALI score produce

clear, though conflicting optima. I-value points to an optima for
the sieved Alignment 1 at [NEquiv,RMSD] of [101,3.7 Å],
whereas DALI points at [94, 3.17 Å]. (Superpositions based on

these two alignments can be found in the online supplementary
material.) This reflects the standard dilemma human experts and
scoring functions face in choosing between two conflicting ob-
jectives. However, I-value objectively discriminates between the

two competing alignments in terms of the lossless compression
achieved. We emphasize that compression takes into account all
aspects of the trade-off—descriptive complexity of the alignment

hypothesis versus the quality of fit of the alignment to the struc-
tural data—that manifests in the structural alignment problem.
Finally, as a proof of concept, we have also developed a quad-

ratic-time dynamic programming heuristic to search for the op-
timum I-value alignment. Currently this alignment heuristic is
restricted to the rigid (and not flexible) model of computing
the component message length IðTjS;AÞ. Details of the heuristic

search are beyond the scope of the current article, given the page
limitations. Our implementation of this alignment heuristic based
on I-value is available for use from our website.

4 CONCLUSIONS

The importance of finding biologically meaningful structural
alignments has led to the intensive development of methods for

generating alignments and evaluating their quality. However,
these methods produce conflicting results and none has been

generally accepted as clearly superior.
Here we have described a measure of alignment quality,

I-value, that uses the information content of messages that loss-

lessly compress the C� atoms of a pair of protein structures,
given a proposed alignment. A lower I-value signifies a superior

alignment. The method contains no adjustable parameters, as it is

built on a formal Bayesian principle of minimum message length
inference.

Examination of competing alignments over many pairs of pro-

tein structures demonstrates that I-value can accurately distin-
guish between competing structural alignments in cases in which

other methods either cannot significantly distinguish the quality

of these possibilities, or do not agree in the selection of a best
one.
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