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Shapes of Interacting RNA Complexes

BENJAMIN M.M. FU and CHRISTIAN M. REIDYS

ABSTRACT

Shapes of interacting RNA complexes are studied using a filtration via their topological
genus. A shape of an RNA complex is obtained by (iteratively) collapsing stacks and elim-
inating hairpin loops. This shape projection preserves the topological core of the RNA
complex, and for fixed topological genus there are only finitely many such shapes. Our main
result is a new bijection that relates the shapes of RNA complexes with shapes of RNA
structures. This allows for computing the shape polynomial of RNA complexes via the shape
polynomial of RNA structures. We furthermore present a linear time uniform sampling
algorithm for shapes of RNA complexes of fixed topological genus.

Key words: bijection, interacting RNA complexes, shape polynomials, topological genus, uni-

form generation

1. INTRODUCTION

In this article we study shapes of RNA complexes, which constitute one of the fundamental mech-

anisms of cellular regulation. We find such interactions in a variety of contexts, such as small RNAs

binding a larger (m)RNA target, including the regulation of translation in both prokaryotes (Narberhaus and

Vogel, 2007) and eukaryotes (McManus and Sharp, 2002; Banerjee and Slack, 2002; the targeting of

chemical modifications (Bachellerie et al., 2002); insertion editing (Benne, 1989); and transcriptional control

(Kugel and Goodrich, 2007). RNA–RNA interactions are far more complex than simple sense–antisense

interactions. This is observed for a vast variety of RNA classes including miRNAs, siRNAs, snRNAs,

gRNAs, and snoRNAs.

An RNA molecule is a linearly oriented sequence of four types of nucleotides, namely, A, U, C, and G.

This sequence is endowed with a well-defined orientation from the 50- to the 30-end and referred to as the

backbone. Each nucleotide can form a base pair by interacting with at most one other nucleotide by

establishing hydrogen bonds. Here we restrict ourselves to Watson-Crick base pairs GC and AU as well as

the wobble base pairs GU. In the following, base triples as well as other types of more complex interactions

are neglected.

RNA structures can be presented as diagrams by drawing the backbone horizontally and all base pairs as

arcs in the upper half-plane (Fig. 1). This set of arcs provides our coarse-grained RNA structure, ignoring

any spatial embedding or geometry of the molecule beyond its base pairs.

As a result, specific classes of base pairs translate into distinct structure categories, the most promi-

nent of which being secondary structures (Kleitman, 1970; Nussinov et al., 1978; Waterman, 1978a,b).
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Represented as diagrams, secondary structures have only non-crossing base pairs (arcs). Beyond RNA

secondary structures, we find RNA pseudoknot structures. These exhibit cross serial interactions (Rivas and

Eddy, 1999). Once such cross-serial interactions are considered, the question of a meaningful filtration

arises, since the folding of unconstrained pseudoknot structures is NP-hard (Lyngsø and Pedersen, 2000).

It turns out that topological genus is one such meaningful observable. The genus of pseudoknotted, single

stranded RNA has been studied in Vernizzi and Orland (2005), Vernizzi et al. (2005), Bon et al. (2008), and

Andersen et al. (2011), and there are several alternative filtrations of cross-serial interactions (Orland and

Zee, 2002; Reidys et al., 2010, 2011).

The objects studied here are derived from RNA complexes, which are diagrams over two backbones.

Distinguishing internal and external arcs, the former being arcs within one backbone and the latter con-

necting the backbones, RNA complexes can be represented by drawing the two backbones on top of each

other (Fig. 2).

We shall study shapes of RNA complexes, which are obtained by recursively removing all arcs of length

one and collapsing all parallel arcs (Fig. 3).

Shapes are tailored to preserve the topological information of the molecule. The particular topologization

is obtained via the notion of fat graphs, which date back to Heffter (1891). The classification and expansion

of pseudoknotted RNA structures in terms of topological genus of a fat graph or double line graph were first

proposed by Orland and Zee (2002) and Bon et al. (2008). In the context of RNA secondary structures, fat

graphs were employed even earlier in Penner and Waterman (1993) and Penner (2004). The results of

Orland and Zee (2002) are based on the matrix models and are conceptually independent. Genus, as well as

other topological invariants of fat graphs, were introduced and studied as descriptors of proteins in Penner

et al. (2010).

The approach undertaken here is combinatorial and follows Andersen et al. (2012). Starting with the

diagram representation, we inflate each edge, including backbone edges, into ribbons. As each ribbon has

two sides, and by specifying a counter-clockwise rotation around each vertex, we obtain so-called boundary

cycles with a unique orientation. It is clear that we have thus constructed a surface, and its topological

genus provides the desired filtration. Naturally, there are many such ribbon graphs that produce the same

topological surface (by gluing the two ‘‘complementary’’ sides of each ribbon); this is how we obtain the

desired equivalence (complexity) classes of structures.

It is easy to see that transforming an interaction structure into its shape preserves topological genus, and

in Lemma 3.1, we shall see that for fixed genus g there exist only finitely many such shapes of RNA

complexes. This means that for a fixed genus, there are only finitely many topologically distinct config-

urations, and important information is captured in the generating polynomial. In Theorem 4.5, we shall

compute this polynomial and relate its coefficients to shapes of RNA structures by means of bijections

relating one and two backbone shapes.
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FIG. 2. Diagram representation of an RNA complex.
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FIG. 1. (A) An RNA secondary structure and (B) its diagram representation.
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In Huang and Reidys (2014), a linear time algorithm for uniformly generating shapes of RNA structures

of fixed topological genus was given. By means of the bijection of Theorem 4.2 relating one and two

backbone shapes, we can use this algorithm to generate, uniformly, shapes of RNA complexes.

The article is organized as follows: In Section 2, we introduce diagrams and the basic framework in

which we formulate our results. We discuss fat graphs and the topological filtration, namely, as drawing

these diagrams on orientable surfaces of higher topological genus. In Section 3, we develop the concept of

shapes and establish basic properties. We recall some key results on shapes of RNA structures, in particular

the two-term recursion for computing their coefficients. In Section 4, we analyze shapes of RNA complexes

and relate them to shapes of RNA structures. Several constructions show how to derive one from the other

by specific ‘‘shape-surgery.’’ Here we also present the uniform generation algorithm of shapes of RNA

complexes of fixed topological genus. In Section 5, we discuss specific RNA complexes, which all have a

fixed shape, and in Section 6, we integrate and discuss our results.

2. SOME BASIC FACTS

Definition 2.1. A diagram is a labeled graph over the vertex set [n] = f1‚ 2‚ . . . ‚ ng represented by

drawing the vertices 1‚ 2‚ . . . ‚ n on a horizontal line in the natural order and the arcs (i, j), where i < j, in

the upper half-plane. The backbone of a diagram is the sequence of consecutive integers (1‚ . . . ‚ n)
together with the edges {{i, i + 1} j 1 £ i £ n - 1}. A diagram over b backbones is a diagram together with

a partition of [n] into b backbones (Fig. 4).

We shall distinguish backbone edges {i, i + 1} from arcs (i, i + 1), which we refer to as 1-arcs. Two

arcs (i, j), (r, s), where i < r, are crossing if i < r < j < s holds. Parallel arcs of the form f(i‚ j)‚
(i + 1‚ j - 1)‚ � � � ‚ (i + ‘- 1‚ j - ‘ + 1)g are called a stack, and ‘ is called the length of the stack. A stack on [i, j]

of length k naturally induces (k - 1) pairs of intervals of the form ([i + l, i + l + 1], [j - l - 1, j - l]), where

0 £ l £ k - 2. Any of these 2(k - 1) intervals is referred to as a P-interval. An interval [i, i + 1] is called a

gap if there exists a pair of subsequent backbones B1 and B2 such that i(i + 1) is the rightmost(leftmost)

vertex of B1(B2). The vertex i is referred to as cut vertex. Any interval other than a gap or P-interval is called a

r-interval. Clearly, a diagram over [n] contains (n - 1) intervals of length 1, and we distinguish three types:

gap intervals, P-intervals, and r-intervals (Fig. 5).

Vertices and arcs of a diagram correspond to nucleotides and base pairs, respectively. For a diagram over

b backbones, the leftmost vertex of each backbone denotes the 50 end of the RNA sequence, while the

rightmost vertex denotes the 30 end. The particular case b = 2 is referred to as RNA interaction structures or

RNA complexes. RNA complexes are oftentimes represented alternatively by drawing the two backbones

on top of each other, (Fig. 6).

shape

A B

FIG. 3. From a 2-backbone diagram to its shape. The dashed arcs represent the rainbows (plants) of the shape.

FIG. 4. A two-backbone diagram with 24 vertices and 12 arcs.
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We will add an additional ‘‘rainbow-arc’’ over each respective backbone and refer to these diagrams as

planted diagrams (Fig. 7).

A fat graph is a graph enriched by a cyclic ordering of the incident half-edges at each vertex and consists

of the following data: a set of half-edges, H; cycles of half-edges as vertices; and pairs of half-edges as

edges. The idea of half-edges stems from the observation that untwisted ribbons have two sides and are

traversed in complementary directions. It is then a matter of convention to denote the terminal half of these

sides as half-edge.

The specific drawing of a diagram G in the plane determines a cyclic ordering on the half edges of the

underlying graph incident on each vertex, thus defining a corresponding fat graph G. The collection of

cyclic orderings is called fattening, one such ordering on the half-edges incident on each vertex (Fig. 8).

A fat graph G can be embedded in a compact orientable surface F(G), such that its complement is a

disjoint union of simply connected domains (called the faces or boundary components) and considered up

to oriented homeomorphism. We can define the genus g of the fat graph by the genus of the surface.

Clearly, F(G) contains G as a deformation retract, and each G represents a cell-complex (Massey, 1967)

over F(G) (Fig. 9).

A diagram G hence determines a unique surface F(G). Equivalence of simplicial and singular homology

implies that Euler characteristic v and genus g of F(G) are independent of the choice of the cell-complex G

and given by v = v - e + r and g = 1 - 1
2
v, where v, e, r are the number of discs, ribbons, and boundary

components in G, respectively.

Without affecting topological type of the surface, one may collapse each backbone to a single vertex with

the induced fattening called the polygonal model of the RNA (Fig. 10).

This backbone collapse preserves orientation, Euler characteristic, and genus. It is reversible by inflating

each vertex to form a backbone. Using the collapsed fat graph representation, we see that for a connected

diagram over b backbones, the genus g of the surface is determined by the number n of arcs and the number

r of boundary components, namely, 2 - 2g - r = v - e = b - n.

Boundary components are in the following, oftentimes referred to as loops. We distinguish the following

loop-types:

� hairpin loops, which are boundary components of length one,
� interior loops, which are boundary components of length two,
� multi-loops, which are boundary components of length 2 ‡ 3.

1 2 3 4 5 6 7 8 9 10 11 12

{ { {{{ { { { {{{

P PPP G

stack

FIG. 5. Stacks and intervals: gap intervals, r-intervals, and P-intervals labeled by G, r, and P, respectively. There are

four stacks: {(1, 9), (2, 8)}, {(3, 12), (4, 11)}, {(5, 6)}, and {(7, 10)}.
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FIG. 6. (A) An RNA com-

plex presented by drawing the

two backbones on top of each

other. (B) The corresponding

diagram over two backbones.

652 FU AND REIDYS



We furthermore distinguish within multiloops pseudoknot loops, which are multiloops containing some

crossing arcs in the diagram representation. In interaction structures, we shall distinguish a-loops and

b-loops, and a stacks and b stacks, depending on whether or not they contain only arcs whose endpoints are

on one backbone.

3. SHAPES

A diagram is called a preshape if it contains neither 1-arcs [the arcs have the form (i, i + 1)] nor stacks

(parallel arcs), and isolated vertices (the vertices not paired). A preshape without a rainbow is called pure.

A shape is then obtained from a pure preshape by adding a rainbow for every backbone (Fig. 11). We can

obtain the shape of a planted diagram by iterating the following two steps: First collapse each stack into an

arc; secondly remove all the 1-arcs and isolated vertices. Iteration generates an unique diagram without

stacks, 1-arcs, and isolated vertices (Fig. 12).

For fixed genus g, there exist only finitely many shapes over one backbone (two backbones) (Andersen

et al., 2012; Reidys et al., 2011).

Lemma 3.1. Given a one-backbone shape of genus g with n edges, we have 2g + 1 £ n £ 6g - 1.

Therefore, for fixed genus g, there exist only finitely many shapes.

Proof. First note that if there is more than one boundary component, then there must be an arc with

different boundary components on its two sides, and removing this arc decreases r by exactly one while

preserving g since the number of arcs is given by n = 2g + r - 1. Furthermore, if there are vl boundary

components of length l in the polygonal model, then 2n =
P

l lvl since each side of each arc is traversed

once by the boundary (including the plant). For a shape, v1 = 1, because the plant gives the only boundary

component of length 1; v2 = 0 by the definition of shapes. It therefore follows that 2n =
P

l lvlq3(r - 1) + 1,

so 2n = 4g + 2r - 2 ‡ 3r - 2, that is, 4g ‡ r. Thus, we have n = (2g + 4g - 1) = 6g - 1, that is, any shape

can contain at most 6g - 1 arcs. The lower bound 2g + 1 follows directly from n = 2g + r - 1 since r ‡ 2.

For fixed genus g, the number of arcs in the shape is at most 6g - 1, and the second assertion

follows. -

Lemma 3.1 implies that the generating function for one-backbone shapes of genus g is a polynomial. For

example, for the shapes over one backbone with genus 1 to 3, we have

S1(z) = z3 + 2z4 + z5‚

S2(z) = 21z5 + 189z6 + 651z7 + 1134z8 + 1071z9 + 525z10 + 105z11‚

S3(z) = 1485z7 + 26928z8 + 198451z9 + 808478z10 + 2054305z11 + 3442340z12

+ 3883363z13 + 2928926z14 + 1419418z15 + 400400z16 + 50050z17

R S1 1 R S1 1 R S2 2

a b
FIG. 7. (a) A planted one-backbone diagram with the plant arc

(R1, S1); (b) a planted two-backbone diagram with the plant arc

{(R1, S1), (R2, S2)}.

FIG. 8. The fattening.
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Explicit formulas for the coefficients of the shape polynomial of arbitrary fixed genus have been given in

Huang and Reidys (2014). There the Poincar�e dual of shapes, a unicellular map, was constructed, and a

construction of Chapuy (2011) is refined to slice such a map into a tree with certain labeled vertices. The

latter represent the blueprint to rebuild the original unicellular map and the shape, respectively.

Theorem 3.2. (Huang and Reidys, 2014) The shape polynomial of genus g is given by

Sg(z) =
Xg

t = 1

j(g)
t z2g + t - 1(1 + z)2g + t - 1‚ (1)

where j(g)
t = a

(g)
t - 1Cat(2g + t) and

a(g)
t =

X
0 = g0 < g1 < ���< gr = g

0 = t0 = t1�t2�����tr = r - t

Yr

i = 1

1

2gi

2g + t - (2gi - 1 + (i - 1)) + ti

2(gi - gi - 1) + 1

� �
: (2)

Huang and Reidys (2014) furthermore derives from the underlying bijections a uniform generation

algorithm, UniformShape, for shapes of a fixed genus g, which has linear time complexity.

Li and Reidys (personal communication, 2014) study the sequence (j(g)
t )g

t = 1 (Table 1), which emerged

originally in the computation of the virtual Euler characteristic of a curve (Harer and Zagier, 1986). Li and

Reidys (personal communication, 2014) shows that (j(g)
t )g

t = 1 is log-concave and hence unimodal and derives

j(g)
t =

(2(2g + t - 1))!

22g(2g + t - 1)!
P

c‘g

Q
i mi!(2i + 1)mi

:

Furthermore,

Proposition 3.3. (Li and Reidys, personal communication, 2014) j(g)
t satisfies

(2g + t)j(g)
t = ð2(2g + t) - 3)(2(2g + t) - 5Þ (2g + t - 2)j(g - 1)

t + 2(2(2g + t) - 7)j(g - 1)
t - 1

� �
‚

where j(1)
1 = 1‚ j(g)

t = 0, if t < 1 or t > g.

The above recursion has also been derived by Chekhov (1997) using matrix models.

4. SHAPES OVER TWO BACKBONES

In this section, we study shapes over two backbones. Our main observation is that shapes over two

backbones correspond to particular shapes over one backbone with topological genus increased by one.

FIG. 10. Inflation of a two-backbone diagram and collapse of its two backbones to two vertices.
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FIG. 9. A fatgraph and its embedding.
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We denote a shape over one backbone by (B, a), where

B := [R1‚ 1‚ 2‚ � � � 2n‚ S1]

is the sequence of vertices along the backbone and a is a fixed-point free involution, which contains (R1, S1)

as one cycle (rainbow); a-cycles represent edges, and (R1, S1) is the plant.

We shall now distinguish two types of shapes. A shape is an A-shape if the vertex following a(1) is

paired with the last vertex before S1 and a B-shape otherwise (Fig. 13). Let the set of A- and B-shapes

having n edges and genus g be denoted by Ag(n) and Bg(n), respectively. Furthermore, let Ag =
S

n Ag(n)
and Bg =

S
n Bg(n)‚ Sg(n) = Ag(n)

S
Bg(n).

Lemma 4.1. We have a bijection:

h : Ag(n + 2)�!Bg(n + 1)‚

that is, there exists a pairing (x, h(x)) associated to each A-shape and its unique B-shape. In particular,

Sg = Ag[_ Bg

and jSgj=2 = jAgj.

Proof. Let G= ([R1‚ 1‚ 2‚ � � � 2n + 1‚ 2n + 2‚ S1]‚ a) be an A-shape having n + 2 arcs, containing the arc

(a(1) + 1, 2n + 2). Since G is a shape, there are no nested arcs or 1-arcs, whence removal of (a(1) + 1,

2n + 2) maps an A-shape into a B-shape.

Furthermore, as an A-shape, G has a boundary component of size three, c3, traversing the sides of the

rainbow, (1, a(1)) and (a(1) + 1, 2n + 2). Let h be the mapping defined by removing the arc (a(1) + 1,

2n + 2) together with its incident vertices and subsequent relabeling of the remaining vertices. Then h
decreases both: the number of boundary components, r, as well as the number of arcs n + 2 by 1. To see

this, we note that (a(1) + 1, 2n + 2) is traversed by two distinct boundary components, c, c3. Removing

(a(1) + 1, 2n + 2) consequently merges c and c3, whence the number of boundary components decreases by

one. Euler’s characteristic equation, 2 - 2g - r = 1 - (n + 2), shows that h preserves g (Fig. 14).

We next specify h - 1. Given a B-shape having n + 1 edges and genus g, we insert an arc with endpoints

between [a(1), a(1) + 1] and [2n, S1] and subsequently relabel the diagram. This insertion maps any B-

shape into an A-shape. Namely, by construction, it creates neither nested arcs nor 1-arcs (the latter would

imply that the rainbow has a nested arc). After relabeling, the inserted arc is incident to (a(1) + 1, 2n + 2)

and creates a new boundary component, c3, as specified above. Euler’s characteristic equation then shows

that h - 1 does preserve genus (Fig. 14). -

A

B

FIG. 11. (A) The four shapes of genus 1 over one backbone. (B) The two shapes of genus 0 over two backbones.

1 2 3 4 5 61 10 20 22

Shape

FIG. 12. From a diagram to a shape by removing all 1-arc and parallel arcs. The dashed arc is a rainbow, displayed

together with a nested preshape.
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Let Qg denote the set of shapes over two backbones of genus g, and S2
g denote the set of pairs of

disconnected one-backbone shapes whose sum of genera equals g. Let Q0g = Qg [ S2
g.

Theorem 4.2. We have the following commutative diagram of bijections:

Q0g
g

����������������!Ag + 1��� ���
Q0g(n + 2) gn

����������!Ag + 1(n + 3)

Proof. Since any Q0g-diagram has a unique number of arcs, it suffices to specify the bijections gn.

An Q0g(n + 2)-element can be denoted by

x = ([[R1‚ 1‚ 2‚ � � � ‚ m‚ S1]‚ [R2‚ m + 1‚ � � � 2n‚ S2]]‚ a)‚

having the rainbows (R1, S1), (R2, S2).

We define the mapping gn as follows:

� first we glue the two backbones into

[R1‚ 1‚ 2‚ � � � ‚ m‚ S1‚ R2‚ m + 1‚ � � � 2n‚ S2]‚

� secondly we add a new rainbow,
� thirdly we relabel the vertices.

This produces a unique backbone

[R1‚ 1‚ 2‚ � � � ‚ 2n - 1‚ 2n‚ 2n + 1‚ 2n + 2‚ S1]

and transforms the two rainbows into the new arcs

(R1‚ S1)1(1‚ a(1)) and (R2‚ S2)1(a(1) + 1‚ 2n)‚

respectively. Accordingly, gn(x) is an A-shape having (n + 3) edges (Fig. 15).

The mapping gn eliminates one backbone, that is, b0 = b - 1; generates a c3-boundary component

merging the two original rainbow-boundaries and adds a new rainbow boundary, that is, r0 = r; and adds

one edge, that is, n0 = n + 3. In view of 2 - 2g - r = 2 - (n + 2) we obtain

2g0 = 2 - r - (2 - 1) + (n + 3) = 2(g + 1)‚

which proves that Ag + 1(n + 3).

Table 1. The Coefficients j(g)
t

g = 1 2 3 4 5

t = 0 1 21 1485 225225 59520825

1 105 18018 4660227 1804142340

2 50050 29099070 18472089636

3 56581525 78082504500

4 117123756750

R 1 2 3 4 5 61 S1 R 1 2 3 4 5 61 S1

A B
FIG. 13. A-shapes [a(1) + 1 = 4 is paired with

6] and B-shapes [a(1) + 1 = 5 is not paired with 6].
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We next construct g- 1
n as follows: Consider an A-shape y 2 Ag + 1(n + 3), then

� remove the rainbow,
� cut the backbone between a(1) and a(1) + 1, and
� relabel the two respective backbones.

By construction, the edges (1, a(1)), (a(1) + 1, 2n) become the rainbows of the new backbones. The

mapping g- 1
n reverses gn, and our above accounting of backbones, boundary components, and edges applies

here. Thus g- 1
n (y) is a two-backbone diagram of genus g having n + 2 edges (Fig. 15). -

Corollary 4.3. Let x 2 Q0g(n + 2) be a shape over two backbones containing ‘-multiloops, then

gn(x) 2 Ag + 1(n + 3) is an A-shape over one backbone having ‘ + 1 multiloops.

Proof. The map gn merges two rainbow-boundary components of x and the new rainbow into a

multiloop of length 3 (Fig. 15). -

Algorithm 1: Uniform generation of shapes over two backbones

1: UniformBi-shape (TargetGenus)

2: while 1 do

3: s1 )UnifromShape(TargetGenus + 1)

4: if s1 is type A then

5: s2)g- 1(s1)
6: else

7: s2)g- 1h - 1(s1)
8: end if

9: if Connection (s2) then

10: return s2

11: end if

12: end while

A first application of Theorem 4.2 is a uniform generation algorithm for shapes over two backbones of

fixed topological genus g. We show the pseudocode in Algorithm 1.

Corollary 4.4. Algorithm 1 generates two-backbone shapes of genus g uniformly.

Proof. UniformShape (Huang and Reidys, 2014) generates one-backbone shape uniformly and any

two-backbone shape corresponds to either an A-shape via g or a B-shape via h � g. Since A- and B-shapes

are generated uniformly, any two-backbone shape is generated uniformly with multiplicity two. -

R 1
1

S1(1) (1)+1 2n+ 2 R 1
1

S1(1)

3

FIG. 14. h: removal of (a(1) + 1, 2n + 2) creates a B-shape.

R 11 S1R1 S1 (1) (1)+1 2nR2 S2

3

FIG. 15. The mapping g.
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Let S2 denote the set of pairs of disconnected shapes whose sum of genera equals g and let s2
g(n) denote

the number of these shapes having n arcs. Then S2
g(z) =

P
n s2

g(n)zn satisfies S2
g(z) =

Pg
1

Si(z)Sg + 1 - i(z).

Theorem 4.5. The polynomial of shapes of genus g over two backbones, Qg(z) =
P

l qg(l)zl, is given by

Qg(z) = Q0g(z) -
Pg

1 Si(z)Sg + 1 - i(z), where

Q0g(z) =
Sg + 1(z)

(1 + z)
=
Xg + 1

t = 1

j(g + 1)
t z2g + t + 1(1 + z)2g + t:

Proof. Each Q0g-diagram is a Q0g(n)-diagram for a unique n. As such we have

Q0g(n + 2) ������!������!gn
Ag + 1(n + 3)��������!��������!h�g

n

�!�!
h

Bg + 1(n + 2)

Suppose the generating function of A- and B-shapes is Ag(z) =
P

n ag(n)zn and Bg(z) =
P

n bg(n)zn, re-

spectively. From the bijection h : Ag + 1(n + 3)4Bg + 1(n + 2), we obtain bg + 1(n + 2) = ag + 1(n + 3). Then

Sg + 1(z) = Ag + 1(z) + Bg + 1(z) implies Sg + 1(z) = (1 + 1/z)Ag + 1(z), or equivalently, Ag + 1(z) = Sg + 1(z)
1 + 1=z

. By the

bijection g, the generalized two-backbone shape s2 Q0g has one arc less than g(s), which implies

Q0g(z) =
Ag + 1(z)

z
=

Sg + 1(z)

(1 + z)
:

Subtracting the set of disconnected two-backbone shapes, S2
g(z), the result follows. -

For genus g = 0, 1, 2, we accordingly have

Q0(z) = z3 + z4

Q1(z) = 21z5 + 167z6 + 479z7 + 645z8 + 416z9 + 104z10

Q2(z) = 1485z7 + 25401z8 + 172546z9 + 633370z10 + 1413585z11 + 2015525z12 + 1852256z13

+ 1064616z14 + 348880z15 + 49840z16

5. FIBERS

In the previous section, we computed the shape polynomials of shapes over two backbones of fixed

topological genus. Their coefficients can be recursively determined and are directly related to the coeffi-

cients of polynomials of shapes over one backbone.

Furthermore, Theorem 4.2 implies a linear time sampling algorithm for such two-backbone

shapes of genus g. By means of their preimages, shapes induce a natural partition of RNA complexes,

and here we shall study the sets of RNA complexes having a fixed shape, s, to which we refer to as the

fiber of s.

Given a two-backbone shape having l arcs and genus g, sg‚ l, let qsl‚ g(n) be the number of two-backbone

matchings of genus g having the shape sl‚ g.

Theorem 5.1. The generating function of matchings of genus g having shape sl‚ g is given by

Qsl‚ g
(z) =

X
n

qsl‚ g(n)zn = C0(z)2l + 2 zl + 2

(1 - zC0(z)2)l + 2
‚

where C0(z) = 1 -
ffiffiffiffiffiffiffiffi
1 - 4z
p

2z
. In particular, the number of two-backbone structures of length n having genus g

and shape sl‚ g depends only on l and
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qsl‚ g(n) ~
k

(l + 1)!
nl + 14n - l - 2‚

where k is some positive constant.

Proof. By the following steps, we can inflate an RNA-complex from a shape (Fig. 16).

Step 1: We inflate each arc in sl‚ g into a sequence of induced arcs; an induced arc N is an exterior arc

together with at least one nontrivial genus 0 matching in either one or both P-intervals. Clearly, we have

N(z) = z(2(C0(z) - 1) + (C0(z) - 1)2) = z(C0(z)2 - 1). Furthermore, we inflate the arc into a sequence M of

induced arcs M(z) = 1
1 - z(C0(z)2 - 1)

. Inflating all l + 2 arcs (including the two rainbows) into a sequence of

induced arcs leads to

zl + 2M(z)l + 2 = zl + 2 1

1 - z(C0(z)2 - 1)

� �l + 2

:

Denote the matching after this step by x1.

Step 2: We inflate each arc in x1 into a stack. The corresponding generating function is

z
1 - z

1 - z
1 - z

(C0(z)2 - 1)

 !l + 2

=
zl + 2

(1 - zC0(z)2)l + 2
: (3)

Step 3: We insert a C0 matching into the respective (2l + 2) r-intervals of sl‚ g. The corresponding gen-

erating function is C0(z)2l + 2.

Combining the above three steps, we derive

step 2

step1

step 3  

a

FIG. 16. (a) A shape of genus 1 with 4 arcs; step 1: inflate each arc to a sequence of induced arcs (red); step 2: inflate

each exterior arc to a stack (blue); step 3: insert a C0-matching into the r-intervals (green).
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Qsl‚ g(z) =
X

n

qsl‚ g(n)zn = C0(z)2l + 2 zl + 2

(1 - zC0(z)2)l + 2
‚

where qsl‚ g(n) denotes the number of genus g matchings generated from sl‚ g.

The generating function has a unique, dominant singularity q = 1/4 with multiplicity l + 2. Standard

singularity analysis (Flajolet and Sedgewick, 2009) implies

qsl‚ g(n) ~
k

(l + 1)!
nl + 14n - l - 2:

-

Corollary 5.2. The generating function Wg(z) of two-backbone matchings of genus g is given by

Wg(z) =
X

l

qg(l)Qsl‚ g(z) =
X

l

qg(l)C0(z)2l + 2 zl + 2

(1 - zC0(z)2)l + 2
:

A

B

FIG. 17. A shape with a distinguished loop (A). Inflation generates hairpin loops (blue), interior loops (green), and

two types of nonshape multiloops (red) (B). The length of the distinguished shape-loop increased by two.

A B

FIG. 18. Global and local sampling of shapes of RNA complexes of fixed topological genus: N = 5 · 105 shapes of

genus 1 were generated, and we display their multiplicities (dots) together with the binomial coefficients that are

observed from uniform sampling (A). Local sampling: we generate N = 5 · 105 shapes of genus 1 with Seven arcs (B).
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In particular, we have W0(z) = z3

(1 - 4z)2 ‚

W1(z) =
(20z + 21)z5

(1 - 4z)5
‚ W2(z) =

(1696z2 + 6096z + 1485)z7

(1 - 4z)8
:

We conclude this section by discussing loops in shape-fibers. By construction, there are only multiloops

and pseudoknot-loops in a shape. We observe that the lengths of the original shape-loops increase in

structures of the shape-fiber. Structures of the shape-fiber exhibit, in addition, hairpin loops, interior loops,

and two types of multiloops (Fig. 17).

6. DISCUSSION

In this article we study shapes of RNA complexes. We show that these shapes are directly related to

shapes of RNA structures of increased topological genus. More precisely, we show in Lemma 4.1 that there

is a bipartition of RNA-shapes into A-shapes and B-shapes. Furthermore, A- and B-shapes are in one-to-one

correspondence. We establish in Theorem 4.2 that each respective type is in one-to-one correspondence to

shapes of RNA complexes. These relations have various implications.

First, Lemma 3.1 guarantees that there are only finitely many such shapes. This leads to the shape

polynomials for shapes of fixed topological genus g. The above correspondences reduce the computation of

the coefficients of these polynomials for shapes of RNA complexes to those of shapes of RNA structures.

For the latter, Proposition 3.3 gives a simple two-term recursion, which allows us to obtain any such

polynomials for shapes of structures and complexes of fixed topological genus in constant time.

FIG. 19. Uniform sampling of RNA complexes

of genus 1 with length 40, 80, 100, 150, 200, and

(5 · 105). The solid curve displays the distribu-

tion induced by the coefficients of the shape

polynomial, while the dashed curve displays

distribution obtained from the sampling. Dis-

played is the average of the coefficients obtained

from sampling the above different lengths.

R S R S
1 1 2 2

FIG. 20. The shape extracted from the

biological RNA complexes (Richter and

Backofen, 2012).
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Secondly we obtain a sampling algorithm, Algorithm 1, for shapes of RNA complexes that have linear

time complexity. Algorithm 1 and the sampling algorithm of RNA shapes are freely available online. This

algorithm provides us with a plethora of statistics for shapes of RNA complexes of fixed topological genus.

To illustrate local and global uniformity, we display in Figure 18 the multiplicities of shapes of genus 1.

Here by local uniformity we mean that we can uniformly sample shapes of RNA complexes with a fixed

number of arcs.

Lemma 3.1 shows that there are only finitely many shapes of RNA complexes. Hence the shape poly-

nomial determines their numbers filtered by the number of arcs. This means that we can extract a finite

observable from interaction structures that captures their topological core.

Let us calibrate this information by inspecting what happens when we sample uniformly RNA complexes

of fixed topological genus (Fu et al., 2013). We uniformly sample RNA complexes having genus 1 and

record the frequencies of their associated shapes. We observe that the distribution of shapes of different

lengths equals the distribution obtained by normalizing the coefficients of the shape polynomial (Fig. 19).

Accordingly, the shape polynomial represents precisely the uniform case. As a result we can now

compute the shapes of databases of RNA complexes and derive empirical coefficients (distributions) and

FIG. 21. The distribution of the lengths of

exterior stacks in uniformly sampled structures

having the shape in Figure 20 (box); the distri-

bution of the length of exterior stacks in the bi-

ological RNA complexes obtained from Richter

and Backofen (2012) (circle).

A B

FIG. 22. The distribution of the average number of loops in the shapes of different genus: (A) the distribution of the

a-loops (loops contained in one backbone) and (B) the distribution of the b-loops (loops over two backbones).
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hence extract finite information from databases reflecting the topological properties of the biological

complexes.

Along these lines we study the shapes of biological RNA complexes obtained from (Richter and

Backofen, 2012). Because the data set contained only exterior arcs, we derived only one shape of genus

zero (Fig. 20).

We accordingly compare the distribution of the exterior stack lengths of biological with that of uniformly

sampled RNA complexes (Fig. 21).

We finally study loops in shapes of RNA complexes. By construction, such loops are multiloops, except

for the two rainbow loops. We uniformly generate 5 · 105 shapes of RNA complexes from genus 0 to 5 and

display the average number of loops (Fig. 22). The data suggest a central limit theorem for the average

number of loops since their mean scales linearly with topological genus.
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