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Abstract

Improved technology for reconstructing cryo-electron microscopy (cryo-EM) images has now

made it possible to determine secondary structural features of membrane proteins in enveloped

viruses. The structure of mature dengue virus particles was determined to a resolution of 9.5 Å by

cryo-EM and image reconstruction techniques, establishing the secondary structural disposition of

the 180 envelope (E) and 180 membrane (M) proteins in the lipid envelope. The α-helical ‘stem’

regions of the E molecules, as well as part of the N-terminal section of the M proteins, are buried

in the outer leaflet of the viral membrane. The ‘anchor’ regions of E and the M proteins each form

antiparallel E-E and M-M transmembrane α-helices, leaving their C termini on the exterior of the

viral membrane, consistent with the predicted topology of the unprocessed polyprotein. This is one

of only a few determinations of the disposition of transmembrane proteins in situ and shows that

the nucleocapsid core and envelope proteins do not have a direct interaction in the mature virus.

Knowledge of protein structures within cellular membranes is limited to only a few

examples of membrane proteins whose structures have been determined in situ1–3. Although

X-ray crystallography has succeeded in the analysis of the PRD1 membrane-containing

bacteriophage4, in general it is difficult to crystallize integral membrane proteins or

enveloped viruses. Improved technology for reconstructing cryo-EM images has now made

it possible to determine secondary structural features of membrane proteins in enveloped

viruses. We report here the structure and disposition of the membrane proteins in mature

dengue virus.

Dengue viruses belong to the Flavivirus genus of the family Flaviviridae. The flaviviruses

are insect-transmitted, icosahedral, enveloped RNA viruses that infect vertebrates and
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frequently cause serious, sometimes fatal, infections in humans5,6. Other viruses belonging

to the same genus are West Nile, yellow fever, Japanese encephalitis and tick-borne

encephalitis virus (TBEV). During the last half of the twentieth century, instances of dengue

hemorrhagic fever, which usually results from the sequential infection by more than one of

the four dengue virus serotypes, have spread from southeast Asia to most tropical and

semitropical regions on Earth. As there is no effective dengue virus vaccine or antiviral

agent, the spread of dengue virus infection has become a major health concern and a subject

of special interest to the World Health Organization. Similarly, the spread of the closely

related West Nile virus into North America has become a prominent public health issue in

the United States7.

The positive-sense, 10.2-kb RNA genome of dengue virus has a single, long open reading

frame that is translated into a polyprotein5,8. Signal sequences direct the translocation of the

polyprotein several times across the endoplasmic reticulum membrane to be subsequently

cleaved by cellular and virally encoded proteinases. Located at the N terminus of the

polyprotein is the capsid protein (C), followed by the premembrane (prM) and envelope (E)

glycoproteins. The prM protein is cleaved by the cellular protease furin9, releasing the N-

terminal 91 amino acids and leaving 180 copies of the 75-residue M protein along with 180

E proteins anchored in the viral membrane5.

The structure of the 500–Å diameter dengue virus (Fig. 1) has been studied by cryo-EM10.

The previous low-resolution cryo-EM map, in conjunction with an X-ray crystallographic

structure of the trypsin-cleaved, homologous, TBEV E glycoprotein11,12, had shown that the

mature virus has 90 E dimers arranged in a herringbone pattern10. In contrast to the smooth

surface of the mature virus, immature virions, in which the prM protein has not yet been

cleaved, have a rough surface characterized by 60 spikes that reach to an external diameter

of 600 Å (ref. 13). Neither the herringbone organization of the mature virus nor the pattern

of spikes in the immature particles obey the T = 3 quasi-symmetry that would be predicted

for icosahedral particles with 180 identical protein subunits14.

The 395-residue TBEV E fragment11 crystallized as a dimer12, consistent with the

expectation that maturation results in the formation of homodimers15. Each monomer

consists of three domains: the structurally central, N-terminal domain I, followed by the

dimerization domain II and finally the C-terminal, Ig-like domain III. Domain II contains the

hydrophobic ‘fusion’ peptide (residues 98–110) essential for virus-cell fusion16,17. Domain

III has been proposed to function as the binding site for cellular receptors and has been

recognized as the receptor attachment site in competition experiments with monoclonal

antibodies12,18–20. The 101-residue C terminus of the TBEV E glycoprotein, which was not

part of the X-ray structure, is called the ‘stem-anchor’ region. The stem is composed of

residues 396 to about 449, and the hydrophobic transmembrane anchor region is composed

of residues 450–496. The stem and transmembrane anchor regions of flaviviruses have been

predicted to each consist of two α-helices15,21 (Fig. 2).

A 9.5-Å resolution cryo-EM structure of mature dengue virus now shows that the two α-

helices in the stem region of E are buried in the outer leaflet of the viral membrane, and the

anchor region of E is arranged in an antiparallel, coiled coil transmembrane structure.
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Similarly, an α-helix near the N terminus of M is partially buried in the outer lipid bilayer,

and the C-terminal region of M consists of a pair of antiparallel helices traversing the

membrane. In contrast to alphaviruses, both the E and M proteins have their C termini in the

outer leaflet of the lipid bilayer, suggesting that the deposition of the polyprotein after post-

translational cleavage may be independent of the formation of the nucleocapsid and

influence both budding and fusion.

Results

The E ectodomain

The amino acid sequence of the dengue virus E glycoprotein is 37% identical to that of

TBEV E glycoprotein. An alignment of flavivirus E proteins and the known crystal structure

of the TBEV E dimer12 (PDB entry 1SVB) were used to build a homology model of the

dengue virus E glycoprotein. The density outside the viral membrane was fit with the

dengue dimer homology model using the program EMfit22 (Table 1). A difference map, in

which the density corresponding to the fitted E dimers was set to zero, showed density peaks

close to Asn67 (with heights of 4.4, 5.3 and 4.2 standard deviations for the red, green and

blue outlined molecules in Fig. 1c, respectively) and Asn153 (with heights of 5.7, 5.8 and

5.8 standard deviations for the red, green and blue outlined molecules in Fig. 1c,

respectively) for each of the three E glycoproteins in an icosahedral asymmetric unit. These

two peaks were within 10 Å of the potentially glycosylated asparagine residues in Asn-X-

Ser/Thr sequence motifs and, thus, were assigned to represent carbohydrate modifications.

Previous studies presented conflicting data as to whether there were one or two carbohydrate

sites23,24.

The lipid bilayer

The characteristic lipid bilayer is readily recognizable between 165-Å and 205-Å radii,

consistent with the lipid radii of the immature virus13, but is a revision of the previously

reported membrane location10. However, the envelope is markedly polygonal (Fig. 1b)

rather than spherical, with constrictions where proteins cross the membrane forming the

vertices of the polygon. A similar, but less pronounced, deviation from a spherical

membrane envelope was associated with the transmembrane regions in the structure of

immature dengue virus particles13, suggesting that the protein assembly influences the

overall shape of the membrane.

The center of the transmembrane region, corresponding to the lower density of the aliphatic

chains, is traversed by six pairs of higher density regions per icosahedral asymmetric unit

(Fig. 1c). Each pair represents two α-helices joined by density in the internal lipid leaflet. A

variety of different secondary structural predictions (Fig. 2) of the E and M transmembrane

regions show two α-helical regions linked by four to six amino acids rich in polar

residues15. The polar linker residues are unlikely to be buried within the central hydrophobic

region of the lipid bilayer, but are presumably embedded within the inner lipid leaflet. The

linking residues between the transmembrane helices do not seem to penetrate into the space

around the nucleocapsid core, but remain associated with the inner phospholipid polar head

groups. Thus, it is apparent that the transmembrane structures of these proteins are
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antiparallel helices, implying that each polypeptide traverses the membrane from the

external to the internal and back again to the external lipid leaflet as anticipated based on

sequence analyses21.

Each of the three monomers in an icosahedral asymmetric unit is associated with two pairs

of transmembrane helices, corresponding to four pairs per dimer. The four pairs of

transmembrane helices associated with the E dimer on the icosahedral two-fold axis can be

transformed onto the four associated with the E dimer in the general position (Fig. 1c) by the

same operations as pertain to the final fit of the E glycoproteins. This shows that the same

organization of transmembrane densities is associated with each type of dimer (Fig. 1c).

Presumably, one pair of E antiparallel transmembrane helices belongs to each E dimer and

one pair of M antiparallel transmembrane helices belongs to the two M proteins associated

with each E dimer. The lengths of the second transmembrane helices (E-T2 and M-T2) are

slightly different and can be matched with the lengths of the E (~18 residues) and M (~14

residues) transmembrane α-helix predictions. This assignment was subsequently verified by

observing the connectivity of the E ectodomain with the E-H1 and E-H2 stem helices and

with the E-T1 and E-T2 transmembrane helices. The E transmembrane helices form an

antiparallel coiled coil and could be fit with the dimeric, antiparallel coiled coil found in

colicin E3 (see Methods), whereas each of the M transmembrane helices had to be fit

independently (Table 1, Fig. 3). Similar sets of E and M transmembrane helices were found

in immature dengue virus particles, although the relationship of the E-M heterodimer to the

E and M transmembrane regions is different13.

Secondary structural predictions of the 56-residue stem region of E (residues 395–450) (Fig.

2) suggest that there are two consecutive mostly amphipathic helices (E-H1 and E-H2) that

would join the C-terminal residue 394 of the fitted E tryptic fragment to the transmembrane

region15,21,25. The fitted E tryptic fragment and the N terminus of the E transmembrane

region are joined consecutively by two cylindrical densities in the outer lipid bilayer. These

densities could be readily fit (Table 1) with model amphipathic α-helices, tentatively placing

the hydrophobic sides of the helices facing the hydrophobic center of the membrane (Fig. 3).

With the identification of the secondary structural elements belonging to E, it was then

possible to assign the remaining larger uninterpreted density features to the M protein.

Secondary structural predictions of the M protein show a weakly amphipathic α-helix (M-H)

followed by the two transmembrane α-helices (M-T1, M-T2)25. The cryo-EM density shows

that the M-H helix is partially buried at its C terminus in the outer lipid leaflet and makes an

angle of ~20° with the membrane surface (Fig. 3a). The N terminus of helix M-H is close to

the ‘hole’ between the two monomers that form the homodimer of the E ectodomain (Fig.

4). Some uninterpreted density between helix M-H and the i-j loop12 in domain II of the E

protein might correspond to the first ~20 amino acids of the M protein.

The considerable separation of the helical components in the lipid made it possible to

establish the position and connectivity of the secondary structural elements even at a

resolution of 9.5 Å. Nevertheless, the precise orientation of the helices around their long

axes and the amino acid residues that start and end the helices are uncertain.
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The nucleocapsid core

The outer and inner limits of the membrane envelope and the outer limits of the

nucleocapsid (150 Å) are at almost the same radii in the mature virus as in immature dengue

particles13 (Fig. 1b). The large 15-Å gap of low, but not zero, density between the polygonal

membrane and the core suggests that there probably is a unique structure that is in random

contact with the membrane.

Unlike the nucleocapsid shell of alphaviruses26 and, indeed, of most viruses, there is no

clear distinction between the presumed capsid protein shell and the RNA. The maximum

height of the nucleocapsid density is 60% of that observed for the outer glycoprotein shell

(Fig. 1b), as is also the case for the immature particles13. This, together with the short amino

acid sequence of the capsid (101 residues in the dengue virus capsid protein compared with

264 residues in Sindbis virus), gives rise to the hypotheses10,27 that the core of flaviviruses

might not have a unique structure, or that its icosahedral orientation is not synchronized with

the larger and dominant external structure, or that the core has an asymmetric structure with

a random orientation within the icosahedral envelope. As neither the E nor M proteins

appear to extend beyond the limits of the cytoplasmic side of the lipid membrane, the capsid

is probably randomly oriented relative to the outer glycoprotein shell.

Discussion

The results reported here represent a ‘quasi’-atomic description of a mature flavivirus. The

only other enveloped virus with an equivalent amount of structural information for the virion

is that of an alphavirus26,28. Although the E1 and E proteins in alpha- and flaviviruses have

a similar structure29 and have been shown to form heterodimers with PE2 (the E2

precursor30) and prM, respectively31, there are also some major differences that are reflected

in the biological properties of these viruses.

Contrary to previous expectations15,21, the stem region of E is a monotopic membrane

protein component present only in the outer leaflet of the viral lipid bilayer. In contrast, the

E1 glycoprotein in alphaviruses is well separated from the membrane surface, with no

indication of buried sequences in the outer membrane leaflet26. The stem regions of E and M

in flaviviruses are amphipathic α-helices half buried in the outer lipid leaflet. Their

interactions with the lipid phosphate head groups likely will be influenced by pH changes,

thereby contributing to the forces that induce the conformational rearrangements known to

occur on fusion10.

The topology of the polyprotein in viral membrane envelopes has generally been deduced

from amino acid sequences and limited biochemical studies. Visualization of the

transmembrane domains in dengue virus particles (Fig. 4) confirms the predicted antiparallel

orientations of the transmembrane helices and shows that the stem region of the E protein is

a membrane component of the outer lipid leaflet. However, in alphaviruses the E1 and E2

proteins associate with each other to form parallel coiled coils across the viral membrane

with their C termini emerging from the inner lipid leaflet26. This requires that, in

alphaviruses, the C termini of the E2 glycoproteins are withdrawn from the membrane after

post-translational cleavage of the membrane-bound polyprotein. This difference between
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flavi- and alphaviruses may be related, in part, to differences in their assembly pathways in

which the association of the nucleocapsid with an envelope lipid bilayer and particle

budding is completed earlier in the endoplasmic reticulum for flaviviruses, as opposed to

later at the plasma membrane for alphaviruses.

Differences in viral morphogenesis are expected to have an impact on the properties of the

nucleocapsids. In alphaviruses, the 33 cytoplasmic residues of each of the 240 copies of the

E2 protein bind to a corresponding capsid protein, thus assuring that the icosahedral

symmetry of the external glycoprotein assembly is synchronized with that of the internal

core structure32,33. In contrast, the E and M proteins of flaviviruses are not exposed on the

cytoplasmic side of the viral membrane. Therefore, they do not provide an anchor to

synchronize the orientation of the nucleocapsid with respect to the external glycoprotein

shell, and, hence, leave the nucleocapsid separated from the inner lipid bilayer. It would

seem probable that the different relationship of the nucleocapsid to the external shell may be

reflected both in the budding and fusion processes. For example, alphaviruses normally

mature when preformed nucleocapsids bud through the plasma membrane, as can readily be

seen in electron micrographs of infected cells34. This is the result of the interactions between

the cytoplasmic domain of E2 and the nucleocapsid, described above, which provides one of

the driving forces for virus assembly. However, preformed nucleocapsids are almost never

seen in flavivirus-infected cells35,36. Thus, different mechanisms are at work in the assembly

of alphaviruses and flaviviruses.

Methods

Electron microscopy and image processing

Dengue virus was prepared and cryo-EM image data were recorded as described10. A total

of 1,691 dengue virus images were selected from 78 micrographs recorded with defocus

settings ranging between 0.8 and 4.8 μm under focus and used for the final cryo-EM

reconstruction. Particle processing was as described26 with the exception that orientations

were refined by a procedure37 based on a reciprocal space refinement38. Phase agreement

(<50°) and Fourier shell correlation coefficients (>0.5) indicated that the resolution of the

final map was 9.5 Å. The pixel separation in the map representing the reconstruction was

2.80 Å.

Fitting atomic structures to the cryo-EM density

The cryo-EM density outside the viral membrane was fit with the homology model of the

dengue E glycoprotein dimer using EMfit22 in the same two-step process as described10.

However, instead of using only the Cα atoms, all nonhydrogen atoms were used (Table 1).

The fit of the model to the density showed that the angle between domains I and III of the

homology model required a consistent 4.5° adjustment in each of the three independent E

monomers. In addition, the loop between residues 240 to 250 in domain II was outside

density and needed repositioning. As the absolute hand of the cryo-EM map was unknown,

the fitting procedure was attempted for both possible enantiomorphs. However, only one

enantiomorph gave satisfactory results.

Zhang et al. Page 6

Nat Struct Biol. Author manuscript; available in PMC 2014 August 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The stem regions of the E and M proteins (helices E-H1, E-H2 and M-H) were initially fit

by manually placing regularized polyalanine α-helices into the cryo-EM density

corresponding to one monomer in the dimer on the icosahedral two-fold axis. The

transmembrane helices of E (E-T1 and E-T2) were fit simultaneously by using the colicin

E3 Cα coordinates as the best available model structure of an antiparallel coiled coil (PDB

entry 1JCH). The transmembrane helices of M (M-T1 and M-T2) were independently fit

with regularized polyalanine α-helices as these were not associated with each other as in a

coiled coil. The resultant fitted components of the stem and anchor regions of E in one

monomer were then associated with each other as a rigid body and used as a model to fit

simultaneously into all three E monomers in the icosahedral asymmetric unit using the

program EMfit22 (Table 1). The stem-anchor region of the M protein was also fit similarly

(Table 1).

Coordinates

The Cα atom coordinates of the fitted E, M and TM proteins have been deposited with the

Protein Data Bank (accession code 1P58).
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Figure 1.
The dengue virus structure. (a) Stereo view of the viral surface at a resolution of 12.0 Å. The

brown triangle demarcates the limits of one icosahedral asymmetric unit as defined by the

five- and three-fold axes. Note the two protrusions per monomer corresponding to the

glycosylation sites at Asn67 (yellow) and Asn153 (red). (b) A central cross section looking

down an icosahedral three-fold axis, showing the polygonal shape of the membrane. The

darkness of the shading is proportional to the magnitude of the cryo-EM density. Viral

components are labeled. Maximum density heights are plotted below on a relative scale as a

function of radius. (c) A radial cryo-EM density section at a radius of 185 Å, corresponding

to the center of the lipid membrane, highlighting the herringbone arrangement of the three E

dimers. The density is indicated in gray scale, with the highest density being the blackest.

Shown also in brown is the limit of one icosahedral asymmetric unit. The boundaries of the

E glycoprotein dimers are also indicated. The E dimer on the icosahedral twofold axis is red,

whereas the monomers of the general-position dimer are blue and green. The transmembrane

helices are viewed in cross section and marked for the green monomer according to the

nomenclature of Figure 2.
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Figure 2.
Secondary structural predictions based on the primary sequences of the E and M stem-

anchor regions. Helical coils represent the E stem (E-H1, E-H2) and transmembrane anchor

(E-T1, E-T2) and the M stem (M-H) and transmembrane anchor (M-T1, M-T2) regions.
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Figure 3.
Stereoscopic diagrams showing the fit of the Cα backbones for the E and M regions into the

cryo-EM density (gray) of the outer lipid (green) leaflet associated with the E dimer on the

icosahedral two-fold axis. E ectodomains I, II and III are red, yellow and blue, respectively;

stem-anchor region of E, cyan; M protein, orange; cryoEM density of the lipid bilayers,

green. The stem and transmembrane helices are labeled with the nomenclature shown in

Figure 2. Contour levels are chosen arbitrarily. The contour level for the lipid (green) is

lower than that for the protein (gray). (a) Side view showing E and M monomers. (b)

Enlarged view of a with a +50° rotation about the vertical axis to more clearly show the fit

of E-H1 into the density. (c) Enlarged view of a with a –20° rotation about the vertical axis

to more clearly show the fit of E-H2 and M-H into the density. (d) Top view of helices E-

H1, E-H2 and M-H.
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Figure 4.
Diagrams of the dengue virus ectodomain and transmembrane domain proteins. The volume

occupied by the ectodomain of an E monomer is pink (domain I), yellow (domain II) and

lilac (domain III). The stem and anchor helices of E and M are blue and orange,

respectively. Helices are identified by the nomenclature shown in Figure 2. CS represents

the conserved sequence between E-H1 and E-H2. (a) View as in Figure 3a. (b) View as in

Figure 3d with the superimposed E ectodomain homodimer.
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