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Abstract

Increasing evidence of a role of chronic inflammation in type 2 diabetes progression has led to the development of
therapies targeting the immune system. We develop a model of interleukin-1b dynamics in order to explain principles of
disease onset. The parameters in the model are derived from in vitro experiments and patient data. In the framework of this
model, an IL-1b switch is sufficient and necessary to account for type 2 diabetes onset. The model suggests that treatments
targeting glucose bear the potential of stopping progression from pre-diabetes to overt type 2 diabetes. However, once in
overt type 2 diabetes, these treatments have to be complemented by adjuvant anti-inflammatory therapies in order to stop
or decelerate disease progression. Moreover, the model suggests that while glucose-lowering therapy needs to be
continued all the way, dose and duration of the anti-inflammatory therapy needs to be specifically controlled. The model
proposes a framework for the discussion of clinical trial outcomes.
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Introduction

Despite more than 350 million patients worldwide and the

concomitant expensive socioeconomic burden, the pathogenesis of

type 2 diabetes (T2D) is not yet completely understood. T2D is a

progressive disease. The most important physiological components

of T2D are insulin resistance, which is characterized by impaired

response to insulin in insulin-sensitive tissues, and b-cell failure,

which is characterized by b-cell dysfunction and reduced b-cell

mass. The progression of T2D is clearly divided into at least two

phases, pre-diabetes and overt diabetes [1–5]. In the pre-diabetes

phase, insulin resistance is compensated by increased single b-cell

secretion capacity and/or b-cell number. If insulin resistance is not

completely compensated, the blood glucose level would grow

slowly, manifested as higher fasting glucose (impaired fasting

glucose, IFG) and/or higher post-load glucose (impaired glucose

tolerance, IGT) [6]. Overt T2D is characterized by compensation

failure and continuous loss of functional b-cells [7,8], hence

accompanied by continuously aggravated hyperglycaemia.

Although insulin resistance is usually present in the early phase

of pre-diabetes, it is the pace of b-cell failure that determines the

onset of overt T2D [9]. The mechanisms leading to the transition

from pre-diabetes to overt T2D are unclear [10]. However, there

is evidence that the transition from b-cell compensation to b-cell

failure happens in a comparably short time span [2,4], typically

within 3 years [2]. This is further supported by a recent

longitudinal study in a large population [5]. The trajectory of

glycaemia before diagnosis of T2D was shown to be composed of a

slow and stable adaptation, which lasts 12 years, followed by a

rapid rise of glucose to overt T2D within 2 years [5]. Once overt

T2D is started, hyperglycaemia continues to worsen regardless of

treatments based on oral anti-diabetic agents [11–13].

The evidence of a role of inflammatory responses in the

pathogenesis of T2D was increasing in recent years. Interleukin-1b
(IL-1b) has been reported to contribute to b-cell failure [14–18]. b-

cells themselves secrete IL-1b upon glucose stimulation [14].

Furthermore, IL-1b stimulates its own production in b-cells [17]

and attracts macrophages [18] which can act as an extra source of

IL-1b and other cytokines. Although it is currently unclear

whether inflammatory responses are a primary cause or a

secondary effect in T2D progression, therapies targeting IL-1b
have shown encouraging progress albeit diverse results in different

clinical trials [19–26].

These results motivated our working hypothesis that the pre-

diabetic and overt T2D might be characterised by two qualita-

tively different states and that IL-1b is a potential candidate for

promoting the transition between these two states. The hypothesis

is consistent with results from clinic trials in which IL-1b blockade

by interleukin-1-receptor antagonist (IL-1Ra), a naturally occur-

ring competitive inhibitor of IL-1b, induced sustained improve-

ments of b-cell function and the systemic inflammation state in

patients with a mean disease duration of 11 years, even 39 weeks
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after cessation of treatment [19,20]. IL-1Ra competes with IL-1b
for IL-1 receptors but does not trigger any signalling event. It is an

important regulator of the effect of IL-1b in many cell types,

including human pancreatic b-cells which secrete IL-1Ra them-

selves [27,28]. In several liver, autoimmune, and infectious

diseases IL-1Ra is a better indicator of disease severity than IL-

1b [29]. Results from a recent longitudinal study show that an

accelerated increase in circulating IL-1Ra starts about 5 years

before diagnosis of T2D [30], coinciding with the accelerated

deterioration of insulin-sensitivity and the compensation of b-cell

function [5]. In addition, long-term effects of temporary intensive

insulin therapy on diabetes remission (or at least a prolonged

normoglycaemia phase) in newly diagnosed diabetic patients may

be partially attributed to the anti-inflammatory activity of insulin

[31]. All these results highlight the role of inflammatory responses

in the pre-diabetes phase and the possibility that the long-term

effects induced by temporary anti-inflammatory therapy are

mediated by a switch, i.e. a sudden transition, between the

qualitatively different compensation and overt T2D states.

Interestingly, in vitro experiments show that the effect of IL-1b
on b-cell mass and insulin secretion is twofold [32]: low

concentration of IL-1b stimulates b-cell proliferation, inhibits b-

cell apoptosis and enhances glucose-stimulated insulin secretion

while high concentration of IL-1b has opposite effects. In other

words, IL-1b may contribute to both the b-cell compensation

phase and the b-cell failure phase.

Here, we present a mathematical model showing the

possibility that T2D onset is induced by a sudden transition of

IL-1b to a high level. The IL-1b switch results from the

coexistence of two different states, which is often termed as bi-

stability. Bi-stable switch models have been widely used in

modeling developmental processes, such as cell cycle progression,

cellular differentiation and apoptosis. The characteristics of bi-

stable switches include sudden transition, and hysteresis. The

latter means that the state of a system depends not only on the

current environment but also on its past state. We combine the

IL-1b bi-stable switch model with a previously published T2D

progression model [33], by assuming extrapolated b-cell turnover

rates caused by exogenous IL-1b [32]. Similar concepts

describing diabetes progression by different steady states have

been already developed for both type 1 and 2 diabetes [33–35].

Our model falls into the same class as those previously published

by Topp et al. [33] and De Gaetano et al. [35], which considered

the evolution of b-cell mass, insulinemia and glycaemia over a

time-scale of years and rely on glucose toxicity. b-cell mass is

controlled by an empirical parabolic function of glucose in [33].

Subsequently a physiologically amenable concept of pancreatic

reserve was introduced, which controls the direction of b-cell

mass change [35]. Both b-cell mass and the pancreatic reserve

were modeled phenomenologically as functions of glucose, where

some parameters bear the potential to act as bifurcation

parameters. The model presented here is built on these results.

The phenomenological implementation of glucose toxicity is

replaced by a model of IL-1b, which is explicitly defined and

relatively easy to measure. We focus on an IL-1b bi-stable switch

giving rise to hysteresis which is not discussed in previous studies.

IL-1b hysteresis turns out to be of utmost importance because it

widely shapes the strategy of anti-inflammatory therapies. While

the complexity of the disease will never be captured by a

mathematical model, the structural insights suggested by the

model will help exploiting treatment approaches more efficiently

and elaborating the effect of different therapies on b-cell mass

and disease progression.

The IL-1b bi-stable switch model implies that T2D onset and

later irreversible progression of b-cell failure arise from altered

stability properties of the b-cell compensation state. Therefore,

the strategy of glucose control would be more effective in the

compensation phase than after the onset of overt T2D. This

model result is consistent with recent data from the Diabetes

Prevention Program Outcome Study (DPPOS) showing that

IGT people who once regressed to normoglycaemia have a 56%

lower relative risk of developing diabetes [36]. While glucose-

lowering therapy bears the potential of stopping disease

progression in the compensation phase, the IL-1b bi-stable

switch model suggests that a combined glucose-lowering and

anti-inflammatory therapy is necessary to stop the loss of

functional b-cell mass as well as hyperglycaemia progression in

the overt T2D phase, and eventually reestablish the compen-

sation phase.

Materials and Methods

A full description of the model (Fig. 1), the assumptions, and the

derivation of all model parameters from experimental data

(summarized in Table 1) are provided in this section. Scripts of

all calculations are provided in the supplement, including the

model file and the parameter estimation procedures.

Overview
The mathematical model (Fig. 1) is constructed in three steps.

First, we build the core of the model which describes the

competition between IL-1b and IL-1Ra, where glucose stimulates

IL-1b production. Since the effect of IL-1b on b-cells is mediated

by the binding to its receptor, which is also the target of IL-1Ra

antagonism, the fraction of IL-1b bound receptor F is used as a

measure for IL-1b stimulation.

Second, the interaction between glucose (G) and insulin (I) is

modeled with b-cell mass being a parameter. This subsystem is

mainly adopted from [33], which is a single-compartment

model justified by the slow dynamics of glucose and insulin over

a time-scale of days to years. G and I are associated with long-

term fasting glucose and insulin levels. As short-term (daily)

fluctuations are averaged out, the model cannot describe

disease onset derived from details of glucose and insulin

dynamics.

Third, the two subsystems which describe the inflammatory

signals and glucose-dependent insulin secretion are connected. For

that purpose the IL-1b-dependent b-cell turnover rates are

adopted from human islets which were cultured with exogenous

IL-1b. The data suggest a bimodal effect of IL-1b on the b-cell

mass [32]: IL-1b stimulates b-cell proliferation and inhibits b-cell

Author Summary

Insulin resistance and relative insulin deficiency are two
hallmarks of type 2 diabetes. While insulin resistance is
always present in the early phase, it is b-cell failure that
determines the pace of the disease onset. Increasing
evidence that the immune system is activated and plays an
important role in type 2 diabetes has stimulated efforts of
developing drugs targeting inflammatory cytokines. We
built a model to describe the principles of type 2 diabetes
onset under the influence of interleukin-1b. The disease
onset is understood in terms of bifurcation. It is found that
inflammatory cytokines are required to be suppressed for a
limited time only, while glucose has to be controlled over
the long term. These structural insights may serve as a
guideline for future clinical trials.
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apoptosis when presented in low concentrations. Conversely, at

high concentrations IL-1b enhances b-cell apoptosis and reduces

b-cell proliferation. The unknown model parameters are deter-

mined from steady state conditions of the IL-1b/IL-1Ra

subsystem and from the natural history of fasting glucose in the

pre-diabetic phase [5].

There are three different time scales in the model (Fig. 1). The

IL-1b/IL-1Ra subsystem evolves on the fastest scale, since ligands

and receptors bind/unbind on a time scale of seconds and proteins

are synthesised/secreted on a time scale half an hour. The

glucose/insulin subsystem evolves on an intermediate time scale of

days [33]. b-cell evolves on the slowest scale. The turnover rate of

b-cell is rather slow: typically, one or two cells divide per month.

Since our main interest lies on long-term evolution of fasting

glucose, the IL-1b/IL-1Ra subsystem is assumed in steady-state

equilibrium and b-cell mass is assumed to be constant on this

relatively fast time scale of fasting glucose. The different time-

scales in the model make it possible to separate the model into

different subsystems and justify our three-step modelling approach.

The antagonist effect of IL-1Ra (A)

All effects of IL-1b (L) are mediated by the IL-1 receptor

and are blocked by IL-1Ra (A). IL-1Ra competes with IL-1b
for the receptor but does not trigger any signalling event.

Therefore, ligand-receptor binding and unbinding are consid-

ered to describe the antagonist effect of IL-1Ra. The ligand-

receptor binding/unbinding happens on a time scale of

seconds and is fast compared to other time-scales in the

model, such as IL-1b and IL-1Ra production and secretion

which happens on a time-scale of tens of minutes. Therefore, it

is reasonable to assume that ligand and receptor are always in

equilibrium, which enables us to describe the fraction of IL-1b
bound receptors (F) by

Figure 1. Model scheme: IL-1Ra (A) and IL-1b (L) compete for IL-1 receptors giving rise to a fraction of IL-1b bound receptors (F)
which determines subsequent signalling in b-cells (B). These control insulin (I) release and, via the influence of insulin resistance, blood glucose
level (G). Arrows: activation effect, line with bar end: inhibition effect. Kinetic terms corresponding to each interaction are labelled. Variables evolving
on different time scales are marked by different colours.
doi:10.1371/journal.pcbi.1003798.g001
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Table 1. Summary of parameters used in the model.

Description Symbol Value Unit Ref.

glucose G

initial value 5.47(A22) mM [5]

5.25(W2222) mM

glucose production r0 48 mM d21 [33]

insulin-independent Glucose uptake dG 1.44 d21 [33]

insulin I -

initial value 70.73(A22) pM DBSS

74.28(W2222) pM

maximal rate of insulin secretion by b-cells h 300.02 pM d21 [33]

insulin clearance rate dI 432 d21 [33]

glucose stimulated insulin secretion s(G) -

KG 7.86 mM2 [33]

b-cell mass B -

initial value 312.1(A22) mgmg DBSS

346.7(W2222) DBSS

ratio of proliferation to apoptosis l 2.33 DBSS

b-cell proliferation p(F) -

ap 20.048 by fit

bp 20.46 by fit

cp 0.62 by fit

b-cell apoptosis rate a(F) -

aa 0.047 by fit

ba 0.57 by fit

ca 2.36 by fit

b-cell turnover time constant t 0.00052 d21 FBNH

IL-1Ra A

initial value 6000(A22) pg ml21 *

5982(W2222) pg ml21 DBSS

IL-1b stimulated IL-1Ra production -

k1 9.47e5 pg ml21 d21 DBSS

k2 3.12e7 pg ml21 d21 DBSS

k3 2.65e4 d21 DBSS

degradation rate of IL-1Ra dA 166.36 d21 [29]

dissociation constant of IL-1Ra KA 1300 pg ml21 [29]

IL-1b L

initial value 12(A22) pg ml21 *

11.25(W2222) pg ml21 DBSS

inhibitory effects of basal IL-1b mRNA b(L) -

u 5.8 by fit

r 2 by fit

coefficient relating IL-1b mRNA level to its concentration k4 0.047 pg21 ml DBSS

glucose stimulated IL-1b production g(G) -

s 2.77 by fit

v 3.52 mM by fit

k5 3.745e3 pgml21 d21 DBSS

IL-1b auto-stimulation l(F)

t 3 by fit

KF 0.1575 by fit

k6 1.048e9 pgml21 d21 DBSS

degradation rate of IL-1b dL 55.45 d21 [63]

Modelling Pre-diabetes Progression
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F~
L

KLzLzKLA=KA
ð1Þ

where KL and KA are the dissociation constants of IL-1b and

IL-1Ra, respectively. We assume a constant number of IL-1

receptors on the b-cell membrane. Consequently, F can be

considered as a measure of IL-1b stimulation.

Estimate of endogenous IL-1b (L) and IL-1Ra (A) in
cultured islets

F is used in the following to fit certain functions in the model to

corresponding experimental data. In these experiments, different

amounts of exogenous IL-1b were added to cultured human islets

and the corresponding effects were measured, while endogenous

IL-1Ra and IL-1b were not measured. It is safe to neglect

endogenous IL-1b and IL-1Ra when exogenous IL-1b is

dominant, which is the case for most measured data points.

However, it is necessary to estimate the endogenous IL-1b and IL-

1Ra concentrations for data points with zero exogenous IL-1b.

Secretion of IL-1Ra from cultured human islets was measured

after 4 days which led to the endogenous IL-1Ra concentration of

114 pg/ml [32]. Endogenous IL-1b is estimated to be 0.228 pg/

ml using the ratio of IL-1Ra/IL-1b of 500 [27].

IL-1Ra (A) dynamics
IL-1Ra (A) stimulation by IL-1b (L) is bimodal [32]. IL-1Ra is

induced by IL-1b at exogenous concentrations below 20 pg/ml.

At higher concentrations, IL-1b restores IL-1Ra to nearly the

basal level. This nonlinear effect is phenomenologically captured

by the nonlinear equation

dA

dt
~k1zk2F{k3F2A{dAA ð2Þ

where dA is the natural degradation rate of IL-1Ra. The

parameters k1 to k3 are determined in the Section ‘‘steady states

conditions’’ (see below).

IL-1b (L) dynamics
IL-1b dynamics are described by

dL

dt
~b(L)(k5g(G)zk6l(F)){dLL ð3Þ

Glucose induces b-cells to secrete IL-1b [17] (k5 g(G)). IL-1b is also

secreted from islets via auto-stimulation [17] (k6 l(F)). High levels of

IL-1b mRNA inhibit the stimulating effect of glucose and of auto-

stimulation [17] (b(L)). IL-1b degrades with a rate dL. In the

following, the functions g(G), l(F), and b(L) are derived from

experimental data. The parameters k5 and k6 are determined in

the Section ‘‘steady state conditions’’.

1. IL-1b induction by glucose (g(G)). We use a Hill function

g(G)

g(G)~ag

Gs

vszGs
ð4Þ

to fit data from cultured human islet describing the increase of IL-1b
mRNA (Fig. 4A in [17]) as a function of glucose (Fig. 2 A). This

implicitly assumes that IL-1b mRNA level is proportional to IL-1b
concentration. Since the available data do not include glucose levels

below 5.5 mM, we assume that half of the control rate is achieved at

3 mM (marked in Fig. 2A by the black square), which is the usual

limit of hypoglycaemia. The choice of this value does not alter the

model results. Other values, such as 2 or 4 mM, only affect the

values of the model parameters (k1–6) determined by steady state

conditions (see Section below). We ignore the data point at 40 mM

glucose, since such a high glucose level is not physiological. ag = 1 is

used in the model, since the constant is merged with k5.

2. IL-1b auto-stimulation (l(F)). IL-1b auto-stimulation is

described by

l(F )~al
Ft

KF
tzFt

ð5Þ

and is fitted to data (Fig. 4B in [17]) which determine the increase

of IL-1b mRNA of cultured human islets in dependence on

exogenous IL-1b concentrations (Fig. 2 B). al = 1 is used in the

model, since the constant is merged with k6.

3. Inhibition of the effects of glucose and IL-1b by IL-1b
mRNA (b(L)). The stimulatory effect of glucose is inhibited by basal

IL-1b mRNA [17]. IL-1b auto-stimulation is linearly related to glucose

stimulated IL-1b in human islet preparations [17]. This linear

relationship suggests a common regulatory mechanism of glucose-

stimulated and auto-stimulated IL-1b production. This is represented

in Eq. (3) by basal IL-1b mRNA-dependent inhibition of both glucose

stimulation and IL-1b auto-stimulation using the sigmoidal function

b(L)~
ab

uz(k4L)r ð6Þ

where the scaling parameter k4 relates IL-1b mRNA level to IL-1b
protein concentration. Eq. (6) is fitted to the data (Fig. 1E in [17]) as a

function of basal IL-1b (Fig. 2 C) and k4 is determined in the Section

‘‘steady state conditions’’. ab = 1 is used in the model, since the constant

is merged with k5 and k6.

Table 1. Cont.

Description Symbol Value Unit Ref.

dissociation constant of IL-1b KL 1300 pg ml21 [29]

insulin resistance R

R0 9.643 pM d [33]

m 1.688 pM d FBNH

Parameter values of the mathematical model and references. A22: initial value of incident diabetes cases; W2222: initial value of non-diabetic control; FBNH: fitted by glucose
history; DBSS: determined by steady state conditions;
*: parameter discussed in the section ‘‘steady state conditions’’.
doi:10.1371/journal.pcbi.1003798.t001
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Glucose (G) and insulin (I) dynamics
G and I are quantities associated with long-term changes (days to

years) of fasting levels of glucose and insulin, respectively. Therefore,

a single-compartment model for glucose and insulin is used. The

ordinary differential equations describing glucose and insulin are

adapted from Topp et al. [33] with the modification that the

dynamics of insulin resistance (R) is included as input to the model.

1. Glucose dynamics (G). Glucose is produced with a

constant rate (r0) and consumed by an insulin-dependent (I/R) and

an insulin-independent rate (dG)

Figure 2. Parameter fit from experimental data. A: Data are reproduced from Fig. 4A in [17]. The function g(G) in Eq. (4) is fitted to these data.
Note a = 1 is used in the model, since the constant could be merged with k5. B: Data were reproduced from Fig. 4B in [17]. The function l(F) in Eq. (5) is
fitted to these data. Note a = 1 is used in the model. C: Data are reproduced from Fig. 1E in [17]. Eq. (6) is fitted to these data. Note the interchanged
axes and a = 1 is used in the model. D: Data are reproduced from Fig. 1C in [32]. The function a(F) in Eq. (13) is fitted to these data. E: Data are
reproduced from Fig. 1B in [32]. The function p(F) in Eq. (14) is fitted to these data.
doi:10.1371/journal.pcbi.1003798.g002
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dG

dt
~r0{

I

R
zdG

� �
G ð7Þ

where R denotes insulin resistance.

2. Insulin dynamics (I). Insulin dynamics is modeled by a

mass balance equation

dI

dt
~hs(G)B{dII ð8Þ

with a secretion rate s(G) and a clearance rate (dI). Secretion is

stimulated by glucose according to the sigmoidal function

s(G)~
G2

KG
2zG2

ð9Þ

and is proportional to the b-cell mass (B). The maximal rate of

insulin secretion h, the insulin clearance rate dI, and the half

concentration KG of glucose stimulated insulin secretion are taken

from [33].

3. Insulin resistance (R). Insulin sensitivity provided in [5]

is homeostatic model assessment (HOMA) index. The one

compartment model of glucose and insulin dynamics is a

simplification of the minimal model [37]. Insulin resistance

derived from the minimal model exhibits a linear relationship to

the HOMA-IR index on logarithmic scale [38]. Hence,

R~R0
SH,0

SH

� �m

ð11Þ

is used to convert the HOMA index value into R. Here SH is the

insulin sensitivity index (HOMA2 %S) reported in [5]. The

parameter m is determined by fitting the model to the natural

history of fasting glucose in the pre-diabetic phase [5].

b-cell mass dynamics (B)
The dynamics of the b-cell mass

dB

dt
~tB½p(F){l a(F)� ð12Þ

is controlled by IL-1b induced b-cell apoptosis and proliferation.

The apoptosis rate a(F)

a(F)~aa log2(F)zba log(F)zca ð13Þ

and the proliferation rate p(F)

p(F)~ap log2(F)zbp log(F)zcp ð14Þ

are fitted to data from human islets [32], which were cultured for 4

days with different IL-1b concentrations applied at day 0 (Fig. 2 D

and E, respectively).

We assume that the initiation of apoptosis and proliferation is

faster than IL-1b-induced IL-1b and IL-1Ra secretion. Thus, the

IL-1b and IL-1Ra dynamics are de-coupled from b-cell turnover

and the initial F (at day 0 of the experiment) can be used as an

approximation in fitting the data. Since the apoptosis and the

proliferation rates depend on log(F), eventual modifications of F
caused by newly secreted molecules would anyway remain small

on the logarithmic scale.

b-cell apoptosis and proliferation were measured as percentage

of control (i.e. no IL-1b added) [32] such that the absolute rates

remained undetermined. Scaling of the rates is represented by an

extra parameter t (Eq. (12)), which is fitted to the natural history of

fasting glucose in the pre-diabetic phase [5]. The relative

importance of apoptosis and proliferation is controlled by the

parameter l in Eq. (12), which is determined in the Section

‘‘steady state conditions’’.

Steady state conditions
While a large number of model parameters could be determined

by experimental constraints, the parameters k1–6 and l remained

undetermined and are derived from steady state conditions for

Eqs. (2,3,12). Eq. (12) is used to determine l. Eq. (2) and (3) each

exhibit two stable steady states and a bifurcation point, such that

these 6 additional conditions can be used to determine k1–6.

1. Steady state of the compensation phase. Reports from

the Whitehall II longitudinal study [5] show that 13 years before

diagnosis of T2D, the fasting glucose level of the incident diabetic

participants is already higher than that of control (5.47 vs.

5.25 mM, Table 2). The corresponding serum IL-1Ra concentra-

tion of the incident diabetic participants is 300 pg/ml [30]. Using

the reported in vitro ratio of IL-1Ra/IL-1b, which is 500 [27], the

corresponding serum IL-1b concentration is estimated to be

0.6 pg/ml. This value is consistent with the average serum IL-1b
level (0.5760.93 pg/ml) reported in [39]. Since IL-1b/IL-1Ra are

locally produced in the pancreas islets and their half-lives are short

(5,10 minutes), we assume 20 fold more IL-1b/IL-1Ra in the

pancreas than in the blood under healthy conditions (note that the

blood-tissue ratio might change after T2D onset), inferring 12 and

6000 pg/ml (Table 2) of IL-1b and IL-1Ra, respectively, in the

islets. As this choice is arbitrary, other choices of the tissue-blood

ratio, such as 200 or 2000, with fixed ratio of IL-1Ra/IL-1b, were

tested. The ratio does not change the model behaviour since the

fraction of IL-1b bound receptors F rather than the level of IL-1b
determines the inflammatory stimulus. However, the choice of the

Table 2. Steady state conditions for the IL-1b/IL-1 Ra subsystem.

Glucose(mM) IL-1b (pg/ml) IL-1 Ra (pg/ml)

(G) (L) (A)

compensation 5.47 12 6000

bifurcation 5.84 Lb (unknown) Ab (unknown)

overt diabetes 13.4 12*55.8 6000*1.8

doi:10.1371/journal.pcbi.1003798.t002

Modelling Pre-diabetes Progression

PLOS Computational Biology | www.ploscompbiol.org 7 August 2014 | Volume 10 | Issue 8 | e1003798



tissue-blood ratio affects the values of the model parameters (l and
k1–6) derived from steady state conditions.

2. Steady state of b-cell mass determines l. b-cell

proliferation and apoptosis are assumed to be exactly balanced

at a healthy glucose level (4.5 mM), which determines the

parameter l assuming Eq. (12) in steady state using

F0(G0 = 4.5 mM). If the glucose level is less than 4.5 mM, the

apoptosis rate would surpass the proliferation rate which would

decrease the b-cell mass. When the glucose level increases, more

IL-1b is produced which stimulates b-cell proliferation and

increases the b-cell mass. Increasing insulin resistance detunes

this equilibrium.

3. Steady state at the critical (bifurcation) point. A

sudden rapid increase in fasting glucose happens about two

years before diagnosis of T2D. The average fasting glucose level

at the inflection point of glucose history is 5.84 mM [5]

(Table 2).

4. Steady state in the overt diabetes phase. IL-1b mRNA

expression was measured in b-cells from T2D and non-diabetic

cadaver donors [17]. Real-time quantitative PCR revealed in

average 55.8 fold more IL-1b mRNA in T2D patients compared

to healthy controls. As discussed above, we assume a linear

relation of mRNA and protein concentration. The average fasting

glucose of those diabetic donors was 13.4 mM (Table 2) [17].

Because of the bimodal dependency of IL-1Ra on IL-1b (see

Fig. 2E in [32]), two IL-1Ra levels may be consistent with the 55.8

fold increase of IL-1b: Either the basal level of IL-1Ra or a 1.8 fold

increased level. We tested both solutions by parameter scanning

(see below) and only the latter solution yielded consistent results

and is, therefore, taken in the model (Table 2).

5. Steady state equations. The steady state equations for

Eq. (2) and (3) read

0~k1zk2Fi{k3Fi
2Ai{dAAi

0~b(Li)(k5g(Gi)zk6l(Fi)){dLLi

where i = {c,b,d} correspond to the compensation, bifurcation and

diabetes state, respectively. The values are summarized in Table 2.

Note that IL-1b (Lb) and IL-1Ra (Ab) are not determined by

experimental data.

6. Determine the range of IL-1b and IL-1Ra at bifurcation

by parameter scan. The Lb-Ab parameter plane is scanned in

order to identify possible IL-1b and IL-1Ra concentrations at the

bifurcation point. The values are restricted by the side condition that

a switch of IL-1b and IL-1Ra exists (Fig. 3 A and B). This is done by

numerically checking the determinant of the Jacobian and then

checking the number of solutions on both sides of the bifurcation

point Gb (the Matlab script is included in Dataset S1). While a switch

of IL-1b exists in a large area of the Lb-Ab plane (red region, Fig. 3

A), the required switch to a 55.8 fold IL-1b level is only achieved for

a small subset of values (Fig. 3 B). Most parameter combinations led

to a smaller switch of IL-1b. This determined the choice of the values

for Lb and Ab. Note that the scan for different basal IL-1b/IL-1Ra

levels (120/66104 or 1200/66105 with IL-1Ra/IL-1b ratio fixed at

the reported value [27]) yielded similar results (Fig. 3).

Figure 3. Parameter determined by scanning. A: Random points are selected in the Lb-Ab plane (normalised with Lc and Ac) and used in the
steady state equations (Eq. (2,3)) to determine k1–6. If k1–6 are non-negative, points either induce an IL-1b switch (red) or do not (blue). B: The IL-1b
level Ld/Lc after the switch is shown as a function of IL-1Ra concentration at the bifurcation point.
doi:10.1371/journal.pcbi.1003798.g003

Modelling Pre-diabetes Progression

PLOS Computational Biology | www.ploscompbiol.org 8 August 2014 | Volume 10 | Issue 8 | e1003798



Fitting the natural history of fasting glucose
The last two undetermined parameters, m and t defined in Eq.

11 and 12, are determined by fitting the model to the fasting

glucose history of both incident diabetes cases and the non-

diabetics controls [5]. The best fit is shown in Fig. 4A.

Interpolated insulin sensitivity [5] (Fig. 4B) which is an input to

the model during fitting, the behaviour of the b-cell mass (Fig. 4C)

and of IL-1b (Fig. 4D) are also shown. The fitting is implemented

in the SBTOOLBOX2 [40] using a differential evolution

algorithm, which reports multiple possible parameter sets

(Fig. 5A). A strong correlation between m and t was identified

(Fig. 5B), which gives rise to large variations of glucose and b-cell

mass in the simulations of overt diabetes (Fig. S1). In other words,

the pre-diabetes glucose trajectory does not allow for a precise

determination of m and t. The values from the best fit are reported

in Table 1 and used throughout the paper.

A complementary approach
The above approach demonstrates that the bifurcation of the IL-

1b/IL-1Ra subsystem is sufficient to account for the fitted data set. To

investigate whether the bifurcation of the IL-1b/IL-1Ra subsystem is

necessary, a complementary approach is employed: the model is fitted

to the data without bifurcation as a presupposed condition. The

steady state equations for Eq. (2) and (3), in the compensation phase

and in the overt diabetes phase, allow reducing the degree of freedom

from 8 (k1,6, m and t) to 4: k1, k2, k5, and k6 are explicitly expressed

as functions of k3 and k4, and only k3, k4, m and t are fitted. Strong

correlations are found to exist between m and t, which cause large

variations of glucose and b-cell mass in the simulations of the overt

diabetes (Fig. S2 A and B). Strong correlations are also found between

m and k4, which cause large variations of the time point of the IL-1b/

IL-1Ra switch (Fig. S2 C and D). Please note that the complementary

approach found, although with low probability, cases allowing an

extra transition (see Fig. S2 C and D).

Although some parameters cannot be determined precisely, the

key qualitative property, i.e. the switch of the IL-1b/IL-1Ra

subsystem before T2D diagnosis, remains robust. Taking together

the results of both complementary approaches, it is suggested that

the bifurcation of the IL-1b/IL-1Ra subsystem is both sufficient

and necessary to account for the data set, in the framework of the

current model. Please note that despite the model being validated

by quantitative experimental data, the results presented here

Figure 4. Fitting the model to the fasting glucose history to determine m and t. Shown are the best fit results of incident diabetes cases
before T2D diagnosis and the data (black line) (red line cross) and non-diabetic controls (red line) (A), interpolated insulin resistance as model input
(B), corresponding behaviour of b-cell mass (C) and IL-1b (D).
doi:10.1371/journal.pcbi.1003798.g004
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remain of qualitative nature. In particular, in the overt T2D state

we expect that additional physiological process as well as

medication will alter the results on a quantitative level.

Results

The IL-1b/IL-1Ra subsystem has multiple steady states
An IL-1b switch is observed in a large range of parameter

values including the physiological relevant range. Below the

critical glucose level of 5.84 mM the model gives rise to five

steady states, three stable and two unstable ones (Fig. 6A). The

stable steady state with lowest IL-1b (green in Fig. 6 A) is stable

only if glucose is below the critical level. It is interpreted as

corresponding to the compensation phase. The hyperglycaemia

parts of the two other stable steady states may be associated with

overt T2D.

Nullcline analysis facilitates understanding the transition between

the different inflammatory levels. Steady states appear as the

crossing points of the IL-1Ra versus IL-1b nullclines where both

quantities become static (Fig. 6B). The IL-1b nullcline (Fig. 6B red

line) exhibits a nadir followed by a peak, which is the typical feature

of an auto-stimulation species. The IL-1Ra nullcline (Fig. 6B black

line) exhibits one peak. This implies that at large IL-1b its further

increase is accompanied by decreased IL-1Ra. The measured non-

linear dependence of IL-1Ra on IL-1b [32] is at the origin of the

third stable steady state with highest IL-1b. If IL-1Ra is stimulated

by IL-1b in a linear manner, only two stable steady states would

have been found. Such a dysregulation of IL-1Ra may also happen

in other diseases involving IL-1b, such as chronic myelogenous

leukaemia and hairy cell leukaemia [29]. Hence, dysregulation of

IL-1Ra at high IL-1b concentrations might be associated with a

boost of disease progression.

The compensation steady state is lost upon progression
to overt T2D

The stable steady state with lowest IL-1b corresponds to the pre-

diabetic state. As glucose influences IL-1b production [14,17] the nadir

of the IL-1b nullcline moves up in response to increased glucose

(Fig. 6B inset) while the IL-1Ra nullcline remains unchanged (Fig. 6B,

black line). The two involved steady states approach each other and

ultimately merge into one steady state (Fig. 6B inset, blue line). At even

higher glucose this steady state disappears and the system makes a

transition (Fig. 6B, black arrow) to the next available stable steady state,

which is characterised by substantially higher IL-1b and moderately

increased IL-1Ra. This transition is interpreted to correspond to the

sudden transition from the compensation phase to disease progression.

At even higher levels of IL-1b, the effect of glucose on IL-1b
production is inhibited by IL-1b itself (represented in Eq. 3 by b(l)),

such that the IL-1b nullcline remains unaffected by glucose at high

IL-1b concentrations. Therefore, the current model only reflects the

transition from the compensation phase to the mild disease phase and

not to the strong disease phase. An extended model including detailed

IL-1b mRNA dynamics and other factors like free fatty acids, leptin

or tissue resident macrophages might generate two transitions.

Glucose-lowering therapy cannot cure or stop
progression of T2D

Glucose-lowering therapy, simulated in silico by fixing the level of

glucose at normal level (5.47 mM), is represented by the IL-1b
nullcline which now, as in the pre-diabetic state, intersects with the

IL-1Ra nullcline (Fig. 7A) around its nadir at low IL-1b. The therapy

reconstitutes the existence of the pre-diabetic stable steady state

(Fig. 7A, red circle). However, the original pathological steady state

(Fig. 7A, black square) is neither deleted nor does it lose stability. The

disease state remains stable irrespective of the glucose levels reached

by glucose therapy. Therefore, the glucose-lowering therapy does not

induce a transition from overt T2D to pre-diabetes and the functional

b-cell mass is further decreasing (Fig. 7D, black squares).

The pre-diabetic state cannot be restored by IL-1Ra
therapy of overt T2D

IL-1Ra is a naturally occurring inhibitor of IL-1b, and it is

upregulated in obesity [28] and reduced in poorly controlled T2D

patients [27]. By injecting exogenous IL-1Ra, IL-1Ra therapy aims at

inhibiting IL-1b signalling. This is simulated in silico by fixing the level

Figure 5. There exist multiple reasonable fits (shadow) of incident diabetes cases before T2D diagnosis and the data (black line)
and non-diabetic controls (red line) (A). Fitted parameters exhibit correlations (B).
doi:10.1371/journal.pcbi.1003798.g005
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of IL-1Ra at a higher concentration (Fig. 7B, red cross). The simulated

therapy slows down the loss of b-cell mass (Fig. 7D, red crosses)

because increased IL-1Ra drives IL-1b into a less pathological regime.

The higher IL-1Ra is set, the more IL-1b is reduced. At a threshold

level of IL-1Ra, which is determined by the peak of the IL-1b nullcline

(Fig. 6B, red line), the response of IL-1b becomes qualitatively different

and it is reset below its physiological normal level (Fig. 7B, green

triangle). Though the speed of b-cell loss is significantly reduced, it is

not stopped (Fig. 7D, green triangles). Releasing IL-1Ra fixation leads

to a restoration of the T2D state associated with accelerated loss of b-

cell mass (Fig. 7B, black square), because the stable pre-diabetic steady

state associated with low IL-1b is not restored by this therapy (Fig. 7B).

The pre-diabetic state can be restored by combined
glucose-lowering and IL-1Ra therapy

A combined IL-1Ra and glucose-lowering therapy (Fig. 7C) is

required to induce functional b-cell mass reconstitution. Strong

IL-1Ra therapy induces a transition from the overt T2D steady

Figure 6. A: The bifurcation diagram of the IL-1b-IL-1Ra subsystem as glucose (G) varies. This subsystem exhibits three stable (full lines)
and two unstable (dotted blue lines) steady states. Above a critical glucose level (5.84 mM) the system loses stability of the pre-diabetic state (green
line) and progresses to a high IL-1b state (red line), which is stable across the whole physiological glucose range. A third stable state (black line) with
even higher IL-1b exists, which, in the hyperglycaemia range, may be associated with advanced T2D. B: A transition from five to three steady states is
found that corresponds to the transition from pre-diabetes to overt T2D. Steady states appear as crossing points of the nullclines. The nullclines of IL-
1b (red) and IL-1Ra (black) cross in five points at normal glucose level (4.5 mM). When glucose increases, the IL-1b nullcline raises its minimum (inset,
transition from red to blue to green curve) such that the low IL-1b and low IL-1Ra steady state vanishes. The system is forced to switch to a high IL-1b
state which may be associated with overt T2D. The corresponding glucose level is 4.5, 5.84 and 6.84 mM for the red, blue and green IL-1b nullcline in
the inset, respectively.
doi:10.1371/journal.pcbi.1003798.g006
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state to a transient state at low IL-1b (Fig. 7C, from black square

to red dot) associated with reduced speed of b-cell loss (Fig. 7D,

red dots). A concurrent glucose-lowering therapy restores a stable

steady state at low IL-1b (Fig. 7C, blue circle). Upon withdrawal of

the IL-1Ra fixation, the in silico patient makes a transition to the

restored stable steady state (Fig. 7C, from red dot to blue circle)

which is associated with b-cell growth (Fig. 7D, blue circles), thus,

inducing a long-standing improvement of the disease state.

The IL-1Ra therapy must be released to achieve a disease
state improvement

Long-term combined IL-1Ra and glucose-lowering therapy

prohibits b-cell mass regrowth in silico (Fig. 7D, red dots). The

model predicts that IL-1Ra therapy, simulated in the model as the

fixation of IL-1Ra, must be released in order to allow for

functional b-cell mass reconstitution. b-cell mass regrowth is

suppressed during IL-1Ra therapy as it reduces IL-1b to levels

below the pre-diabetic state.

Discussion

An IL-1b switch model of T2D onset after long-term

compensation was presented and a strategy for an anti-inflamma-

tory therapy of T2D was proposed. The model is characterised by

a pre-diabetic state during which increasing insulin resistance

drives hyperglycaemia. This ultimately leads to a changed steady

state configuration and progression into the overt T2D disease

state. The model parameters are derived from in vitro islet

measurements, from steady state conditions, and from glucose

history of T2D patients, such that the model parameters are fully

determined. In the following we first discuss its relevance to the

empirical theory of five-stage b-cell dysfunction [3], then describe

the predictions of the model, its relevance and potential

contributions to clinical trials [23,26], and its relation to previous

modelling works [33,35]. Last but not least, we discuss its

limitations.

Interestingly, the model shows three steady-states of IL-1b. This

result is beyond our expectations when designing the model but is

consistent with the five-stage diabetes development theory [3].

This theory is mainly based on clinical observations, where stage 2,

‘‘adaptation’’ (termed as compensation in this paper) corresponds

to the model state of lowest IL-1b (green in Fig. 6A). Stage 3

‘‘transient unstable early de-compensation’’ corresponds to the

sudden switch of IL-1b/IL-1Ra in the model, where a 55 fold

increase in IL-1b level is accompanied with only 2 fold more IL-

1Ra, and the transient adaptation time thereafter. Stage 4 ‘‘stable

de-compensation’’ corresponds to the state with medium IL-1b
level (red in Fig. 6A) and stage 5 ‘‘severe de-compensation’’

Figure 7. T2D therapy strategies and their effect on b-cell mass. A: Glucose-lowering therapy. The pre-diabetic steady state is restored at the
IL-1b (red line) and IL-1Ra (black line) nullcline intersection (red circle). But the system stays in the stable T2D steady state (black square). B:
Permanent IL-1Ra therapy. The IL-1b (red line) and IL-1Ra (black dotted line) nullclines do not intersect at low IL-1b and the system starts in the stable
overt T2D steady state (black square). Clamping IL-1Ra to levels below the peak of the IL-1b nullcline (lower blue line) reduces IL-1b (red cross).
Clamping IL-1Ra to levels above the peak (upper blue line) makes IL-1b jump to low levels (green triangle). C: Combined IL-1Ra and glucose-lowering
therapy. Above threshold clamp of IL-1Ra (dashed dotted line) induces a substantial IL-1b reduction (red dot). Simultaneous control of glucose
restores a stable steady state at low IL-1b (red and black nullclines intersect at the blue circle). A release of IL-1Ra clamp induces a transition to this
steady state. D: Effect of the different treatments on b-cell mass. Therapy as in A (black squares), B (red crosses for below threshold IL-1Ra clamp;
green triangles for above threshold IL-1Ra clamp), C (red dots for combined IL-1Ra and glucose-lowering therapy; blue circles after release of IL-1Ra
clamp). No treatment (black line).
doi:10.1371/journal.pcbi.1003798.g007
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corresponds to the state with highest IL-1b level (black in Fig. 6A).

Stage 1 ‘‘normal’’ is not represented in the model because glucose

level is already higher even 14 years before T2D diagnosis (see

Fig. 4A and [5]). Thus, the IL-1b switch model qualitatively

reflects all stages of T2D development, starting from the

compensation phase and progressing to the mild disease and

ultimately to the strong disease state.

Stage 3 is observed to be transient, persisting a few weeks in

different animal models that were subjected to partial pancreatec-

tomies [41] or islets transplantation [42,43]. Interestingly, islets

transplantation [43] and pancreatectomies [41] in rodents gave rise

to glucose levels in two discrete groups: either normal glucose or

severe diabetes, with almost no glucose levels in between, a pattern

consistent with the idea of two distinct states in the presented model.

Stage 3, transient and unstable, lies between the clinically non-

pathologic and pathologic states, and thus, may be of great interest in

terms of providing a time window during which therapies are more

efficient in reversing the pathological processes right after diagnosis.

Results from newly diagnosed diabetic patients who received

intensive insulin therapy supports this notion [31]. However, in the

current model, the switch of IL-1b/IL-1Ra, which is relevant to stage

3, is instantaneous (see Fig. 6 and Fig. S2) because the model does not

describe the dynamics of the IL-1b/IL-1Ra subsystem during the

transition. The equations of the IL-1b/IL-1Ra are mainly based on

assumed steady state relations, which were derived from in vitro data.

In addition, the model does not describe the dynamics of insulin

resistance, the improvement of which has been assumed to be

responsible of preventing/postponing the transition during stage 3

[3]. Rather, insulin resistance is implemented as an input to the

glucose/insulin subsystem. These limitations of the current modeling

approach (see also later discussions about the meaning of G and I in

the model) make information about the duration of stage 3

unavailable from the model.

The IL-1b bi-stable switch model suggests four requirements for

a successful anti-inflammatory treatment of T2D:

1. Glucose-lowering therapy is combined with IL-1Ra therapy;

2. IL-1Ra is kept at an above threshold level;

3. IL-1Ra fixation is released when IL-1b levels are down;

4. Glucose-lowering therapy is continued on long-term.

Then, the functional b-cell mass is predicted to increase. But

even if it reaches its healthy level, the in silico T2D patient would

remain in the pre-diabetic state, since the release of glucose control

would restart T2D progression due to the pathological state of

insulin resistance. The power of this therapy is not to cure T2D

but to keep the in silico patient in the pre-diabetic state.

Dose and duration of anti-IL-1b therapy are critical. On the

one hand, an above threshold IL-1Ra is required for inhibition of

IL-1b auto-stimulation and the reverse transition from b-cell

failure to compensation. On the other hand, IL-1b has to be kept

above its healthy level for b-cell reconstitution. This infers a U-

shaped dose-effect relationship of anti-IL-1b therapy in silico,

which has been confirmed in a phase 1 clinical trial using a

monoclonal antibody of human IL-1b [23].

Large scale clinical trials with anti-IL-1b agents revealed that

glycaemia was less efficiently reduced in patient groups with short (6

years) compared to groups with long (11 years) disease duration

[26]. We have performed simulations of IL-1Ra therapy on patients

with short and long T2D duration, where short and long T2D are

associated with mild and strong T2D steady states, respectively

(Fig. 8). The strong T2D state is initiated by manually increasing IL-

1b and decreasing IL-1Ra to the levels shown in Fig. 6B at 11 years.

Then, anti-IL-1b therapy (ignoring other adjuvant medication) is

applied by an IL-1Ra fixation for 90 days to both in silico patient

groups. The IL-1Ra dose-effect relationship for the two groups,

expressed by the glycaemia improvement versus control, is

compared (Fig. 8). In agreement with the clinical-trials results,

optimal IL-1Ra dosage induced more efficient glucose improve-

ment for strong than for mild T2D. This happens because in strong

T2D the aggravation of blood glucose levels is faster in the control

group. The optimal dose of IL-1Ra is different in both groups in
silico (Fig. 8). This calls for an individualised treatment according to

the endogenous inflammatory state. These simulations do not aim at

explaining the diverse outcomes from clinical trials because other

adjuvant medications are neglected during the simulations.

Furthermore, the capability of the current model is limited to the

low to medium hyperglycaemia/IL-1b region (see later discussion).

However, the model still provides a framework in which different

outcomes can be discussed in respect to patients’ internal

inflammatory levels and strategies may be suggested for patient

stratification with respect to their inflammatory levels at the

beginning of a clinical trial.

The model proposed by De Gaetano et al [35] is able to account

for different arms of the Diabetes Prevention Program (DPP)

results [44], by modeling the effects of different drugs on insulin

resistance development. Some differences and similarities are

worth noting here, besides those already discussed in the

introduction. In both models glucose toxicity introduces a positive

feedback in the disease progression. Therefore, both models

emphasize the importance of an early treatment of hyperglycae-

mia. The unique property of the current model is that the

inflammatory signal, once switched on by glucose, cannot be

switched off by glucose-lowering therapies. It has to be treated

separately. This point seems to be consistent with recently

discovered anti-inflammatory effects of some long-standing anti-

diabetic agents. In fact, insulin has long been known for its anti-

Figure 8. The dose-effect relationship of IL-1Ra therapy for
mild (red circle) and strong T2D (black dot) in silico are shown.
Following the protocol of the clinical trial, glycaemia improvement after
90 days of therapy versus control, is used as a measure. The IL-1Ra
threshold predicted by the model is reflected in the jump of the
resulting glucose level for both T2D groups. The optimal IL1-Ra dose for
strong T2D is substantially larger because of the lower endogenous
level of IL-1Ra. The best achieved glucose improvement in response to
the therapy is three-fold higher in the case of strong than in mild T2D.
The starting glucose level is 11.96 and 18.02 mM for mild and strong
T2D, respectively. The final glucose level of the both control groups is
12.21 and 18.82 mM, respectively.
doi:10.1371/journal.pcbi.1003798.g008
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inflammatory effect, which, early presumed to be due to its

glucose-lowering ability, recently was established to be a comple-

ment to its metabolic role [for a recent review see 45].

Additionally, there is emerging evidence suggesting that metfor-

min, the first-line diabetic drug, have anti-inflammatory effects

that are independent of its hypoglycaemia effect [46], even though

its anti-inflammatory effect in T2D being not as robust as in other

diseases, such as hypertension [47–49]. The impact of currently

employed T2D drugs onto the inflammatory state of the patients

prohibits falsification or verification of the model prediction that

the T2D disease state cannot be alleviated by controlling

glycaemia alone.

The presence of the IL-1b switch suggests that the system is

operating in two distinct regimes, which defines a clear threshold

for an anti-inflammatory therapy. A striking prediction of the

model is that the anti-inflammatory therapy has to be released

after a certain time. These inferences are derived from the IL-1b/

IL-1Ra hysteresis and are consistent with some long-standing

findings [11,12], as well as recent progresses in the field, such as

multistage development of the disease [3,5], long-term effect of

temporary IL-1Ra in overt-diabetes [20] and the efficiency of

glucose control in pre-diabetes but not overt-diabetes [31,36].

The present IL-1b switch model is built on in vitro data and

several assumptions, both of which cast limitations on its

applicability. The in vitro data show regulation of IL-1b and IL-

1Ra by glucose and exogenously added IL-1b [14,17,27,32].

Other factors involved in in vivo IL-1b control, such as free fatty

acids [50], infiltrated macrophages and islet amyloid polypeptides

[51] are not considered. These factors are associated with serious

hyperglycaemia and overt T2D. However, they do not or only

weakly affect the results of the core IL-1b model, especially

concerning the onset bifurcation at glucose levels below 6 mM.

IL-1b induced b-cell proliferation and apoptosis were extrap-

olated from data of cultured islets [32]. It is unclear to what degree

the in vitro data can reflect relevant in vivo processes, but several

weak points of this assumption could be delineated. There is

evidence that b-cells can re-enter cell cycle in vivo and that b-cell

mass can adapt to metabolic needs [52], both supporting adaptive

b-cell proliferation in vivo. However, it is not the only possible

source of functional b-cells. Dedifferentiation of other cell types

with a common precursor [53], as well as reactivation of

dysfunctional b-cells [8], contributes to b-cell homeostasis.

Furthermore, data from autopsy indicate that the proliferation

rate of existing b-cells is very low. Consequently, increased b-cell

mass seen in the compensation phase may be mainly attributed to

new islet formation from other cell types [54]. A more realistic

description of b-cell mass dynamics may further improve the

model and extend its validity to later stages of the disease.

By representing the inflammatory stimulus via F instead of IL-1b,

it is implicitly assumed that the amount of membrane IL-1b receptor

per b-cell is constant. In support of this, there is evidence that the

amount of IL-1b receptor in the b-cell membrane is much higher

than in other cell types [55], suggesting that it is saturated. However,

it is unlikely that the receptor is not down-regulated at high

concentrations of IL-1b. Consequently, the model may overestimate

the inflammatory signal at high IL-1b levels. This limitation has to be

kept in mind when interpreting model results at high IL-1b.

Another important assumption concerns the IL-1b mRNA

quantity used in the model. The IL-1b mRNA quantity is assumed

to be proportional to the IL-1b protein level, in order to establish the

quantitative relationships in IL-1b production. However, IL-1b
production is characterized by the dissociation of transcription and

translation. As a result, high levels of IL-1b mRNA are always

associated with low levels of protein [29]. Alternatively, a sigmoidal

relationship may be considered instead of the linear one used here.

While it is difficult to estimate the quantitative error induced by the

assumed linear relationship, it is straightforward to predict that the

alternative sigmoidal relationship would increase the nonlinearity of

IL-1b auto-stimulation, and of the interaction between glucose and

IL-1b. Therefore, the essential elements for the bi-stable switch

remain unchanged (or even would be increased), such that the

qualitative results of the IL-1b switch model are robust.

It is difficult to define the exact physiological meaning of G and

I in the model [35]. Since G and I are described by one-

compartment dynamics in the model, only changes in long-term

fasting levels are accessible to the model. Hence, we propose to

interpret G as an abstract parameter associated with long-term

fasting glucose on a time scale of days to weeks. Fasting levels

represent more the internal property of the body’s glucose control

system than the history of how it was perturbed by meal or

exercise [56]. However, the driving stimulus of IL-1b production

may depend on peaks of glycaemia rather than on fasting levels. It

is possible that dysregulations of fasting glucose levels and

postprandial peaks are independent, as evidenced by patients

with impaired glucose tolerance but normal fasting glucose.

Eventually, the modifications of the dynamics of insulin release

(first-phase insulin) are more important for glycaemia control than

the long-term fasting levels of glucose. We would like to emphasize

that these details of glucose and insulin dynamics are beyond the

resolution of the model presented here and have to be addressed

with a model focusing on the short-term dynamics of these

quantities.

T2D is a very complex disease. The current model is simplified

on purpose in order to generate structural insight. Other players of

the glucose control system, for example glucagon, also play very

important roles in glucose homeostasis and T2D development.

Augmented glucagon secretion, together with impaired b-cell

function, happens in the very early phase of pre-diabetes [57,58].

The underlying islet defects were identified as reduced maximal

insulin response and reduced glucose-sensitivity of b-/a-cell [58].

According to the physiological integral rein control theory [56,59],

glucose-sensitivity of b-/a-cell are important factors in setting

steady state glucose level. In fact, recent studies support an

independent role of glucose-sensitivity in hyperglycaemia devel-

opment [60,61]. Future improvement of the model should include

the glucose-sensitivity of b-/a-cell to account for the rising of

fasting glucose in the compensation phase. In particular, this might

improve the fitting to the data in Fig. 4A during the compensation

phase.

In addition, post-load glucose of incident diabetes cases showed

a rapid increase 5 years before diagnosis [5], which is followed by

a rapid decrease in insulin sensitivity. This important change is

not reflected in the history of fasting glucose while it is

represented in the model output (Fig. 4A). On the one hand,

the absence of a corresponding change in fasting glucose at ,5

years before diagnosis suggests that fasting glucose level is

dominated by factors other than insulin resistance. Again, this

might point to a role of glucagon. On the other hand, the

coincident post-load glucose increase and insulin sensitivity

decrease at ,5 years before diagnosis might suggest a cause-

effect relationship between b-cell function and insulin resistance

[62]. The complexity of the defects during the pre-diabetes phase

highlights the necessity of the mathematical modeling approach

in the field.

Although results from both in vitro experiments and animal

models were promising, the actual effect of anti-IL-1b agents in

clinical trials of T2D was a matter of debate because the observed

effect was very modest so far. Besides the possible role of
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polymorphisms of the IL1RN gene which encodes IL-1Ra [20],

more research is needed to clarify for example, drug interaction

with other IL-1 family members, such as soluble IL-1 receptors

and soluble IL-1 receptor accessory proteins, in the pancreatic

local environment as well as in blood and liver.

On the structural level, the present analysis proposes that the

transition from pre-diabetes to overt T2D is associated with

changed stability properties of the endocrine-immune system.

The transition is initiated at a threshold value of glucose and

associated with qualitatively different inflammatory states. The

notion of an IL-1b hysteresis is supported by data from different

studies, which showed the effectiveness of glucose control in pre-

diabetes [36] or newly diagnosed patients [31] and the

ineffectiveness of glucose control in long-standing T2D patients

[11–13]. It is also supported by the clinical trial based on a

combined IL-1Ra and glucose-lowering therapy: the improve-

ment of the disease state remained for a year after release of the

IL-1Ra therapy [20]. The existence of the IL-1b hysteresis

requires a combined glucose-lowering and anti-inflammatory

therapy for overt T2D patients, where the anti-inflammatory

therapy should be kept for only a limited time.

Supporting Information

Dataset S1 This zip files contains the matlab scripts for

reproducing the figures in the manuscript. It contains a readme.txt

where more details are present.

(ZIP)

Figure S1 Simulation of glucose (A) and b-cell mass (B)

evolution to overt-diabetes based on multiple fitted parameters.

Bifurcation is used as a side condition.

(EPS)

Figure S2 Simulation of glucose (A), b-cell mass (B), IL-1b (C)

and IL-1Ra (D) evolution to overt-diabetes based on multiple fitted

parameters. Bifurcation is not used as a side condition.

(EPS)
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