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Abstract

Asthma is a complex disease with genetic and environmental influences and emerging evidence

suggests that epigenetic regulation is also a major contributor. Here, we focus on the developing

paradigm that epigenetic dysregulation in asthma and allergy may start as early as in utero

following several environmental exposures. We summarize the pathways important to the allergic

immune response that are epigenetically regulated, the key environmental exposures associated

with epigenetic changes in asthma genes, and newly identified epigenetic bio-markers that have

been linked to clinical asthma. We conclude with a brief discussion about the potential to apply

newly developing technologies in epigenetics to the diagnosis and treatment of asthma and

allergy. The inherent plasticity of epigenetic regulation following environmental exposures offers

opportunities for prevention using environmental remediation, measuring novel biomarkers for

early identification of those at risk, and applying advances in pharmaco-epigenetics to tailor

medical therapies that maximize efficacy of treatment. ‘Precision Medicine’ in asthma and allergy

is arriving. As the field advances this may involve an individually tailored approach to the

prevention, early detection, and treatment of disease based on the knowledge of an individual’s

epigenetic profile.
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INTRODUCTION

Asthma is a heterogeneous chronic inflammatory disorder of the airway resulting from

complex interactions between genetic predispositions and environmental exposures. The

environmental component is critical, as supported by many studies documenting shifting

asthma rates by geographical region and level of urbanization (Asher, 2011; Masoli et al.,

2004), and others documenting differences in disease incidence between monozygotic twins

(MZTs) (Thomsen et al., 2010). Despite this well-established premise, the underlying

biological basis for this heterogeneity still needs to be elucidated.

It is becoming increasingly evident that epigenetic regulation following environmental

exposures may underlie the interface between prenatal and early life environmental exposure

and asthma susceptibility. The term ‘epigenetics’ refers to all meiotically and mitotically

heritable changes in the phenotype. Epigenetic changes result in altered gene activity and

expression, while the DNA sequence remains unchanged (Cheung and Lau, 2005; Lee and

Workman, 2007; Li et al., 2007). These changes include DNA methylation at cytosine-

guanine dinucleotides (CpG) residues, posttranslational modifications of histones proteins

and noncoding RNA-mediated gene silencing (Koppelman and Nawijn, 2011). These

mechanisms regulate gene expression and translational output by blocking the ability of

transcription factors to bind to the recognition sites on CpG nucleotides, allowing binding of

transcription-inhibiting proteins, inducing chromatin remodeling through methylation,

acetylation, phosphorylation or ubiquitylation of histone tails, or by binding of the

microRNA (miRNA) to the 3′-untranslated regions of mRNA and inducing degradation of

target mRNA (Yang and Schwartz, 2012).

Emerging evidence suggests that crosstalk among epigenetic pathways and epigenetic marks

exist. High levels of DNA methylation in gene promoters, for example, can be associated

with the induction of repressive deacetylation of histones and the presence of relatively

transcriptionally inactive chromatin regions, known as heterochromatin (Fuks, 2005;

Vaissière et al., 2008). Alternately, methylation and histone acetylation may work in

conjunction to affect gene transcription, as found in the case of expression of interleukin

(IL)-13 in proallergic T helper (Th) 2 cells; it is induced by both DNA methylation and

permissive histone acetylation, as described in more detail later in this review (Webster et

al., 2007). There is communication between small RNAs and DNA methylation as well.

Knockout mice with disruption of the RNAase III family nuclease Dicer, critical in the

generation of small RNAs and RNA interference, exhibited defects in global DNA

methylation (Benetti et al., 2008). Greater DNA methylation at the suppressor of cytokine

signaling (SOCS) 3 gene promoter and subsequent decreased gene expression of SOCS3 has

been shown to impair microRNA-122 (miR122) function and enhance interferon-stimulated

response element (ISRE) activity (Yoshikawa et al., 2012). New advances in our

understanding of rheumatoid arthritis suggest that cross talk between DNA methylation and

miRNAs may be important in this disease as well (Miao et al., 2013).

Changes in DNA methylation can occur throughout life, but much of the epigenome is

established during embryogenesis and early development of the fetus (Reik, 2007). In

support of this premise is growing evidence that several prenatal environmental exposures

de Planell-Saguer et al. Page 2

Environ Mol Mutagen. Author manuscript; available in PMC 2014 August 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



have been associated with altered risk for asthma development. Cigarette smoking during

pregnancy, for one, has been shown to modify fetal lung development (Carmines et al.,

2003; Hylkema and Blacquiere, 2009) and fetal immune function (Noakes et al., 2003;

Singh et al., 2011) important to the later development of asthma and other respiratory

diseases. Other intrauterine exposures, including the maternal diet (Chatzi et al., 2008;

Dunstan et al., 2003) and microbial exposures (Heederik and von Mutius, 2012), also are

known to modify the risk of allergic disease in the offspring.

The maternal phenotype more often than the paternal phenotype has been shown to predict

asthma and allergy in the child, indicative of a ‘parent-of-origin’ effect. For example, in

children under 5 years of age, the risk of transmission of asthma from an affected mother

was approximately four times higher than the risk associated with paternal asthma (Litonjua

et al., 1998; Moffatt and Cookson, 1998). Childhood atopy also was linked strongly with

maternal asthma in a New Zealand cohort (Sears et al., 1996). Cookson provided the first

evidence of specific maternal linkage to atopy and asthma in the child at the 11q13 marker

for the β subunit of the high affinity IgE receptor, FC∈RI-β (Cookson et al., 1992). Although

previously attributed to differences related to the metabolism of environmental toxins in the

intrauterine environment, these studies also support the possibility that specific changes in

the epigenome of the fetus and genomic imprinting following prenatal environmental

exposures may be contributing.

However, some studies suggest that the apparent ‘parent-of-origin’ effect can be relatively

complex. As an example, in the Isle of Wight Birth Cohort (n = 1,456), maternal asthma was

associated with asthma in girls (ages 4, 10, and 18 years) (prevalence ratio [PR], 1.91; 95%

CI, 1.34–2.72), but not in boys; paternal asthma was associated with asthma in boys (age 4,

10 and 18 years) (PR, 1.99; 95% CI, 1.42–2.79), but not in girls. Maternal eczema was

associated with increased risk of eczema in girls only (ages 2, 4, 10, and 18 years) (PR, 1.92;

95% CI, 1.37–2.68), whereas paternal eczema did the same for boys (1, 2, 4, and 10 years)

(PR, 2.07; 95% CI, 1.32–3.25) (Arshad et al., 2012). Known differences in the prevalence of

asthma by sex likely would not explain these results based on the several epidemiological

studies that have shown that asthma generally is more common among boys than girls.

Following puberty that sex effect may switch (De Marco et al., 2004; Tantisira et al., 2008).

Instead, these data suggest that the mother’s versus father’s epigenome is important, and its

expression is potentially mediated by sex of child, in contrast to a simple ‘parent-of-origin

effect’ or ‘sex effect.’

In this review, we will address the role of epigenetic regulation and the influence of the

environment on the development and pathogenesis of asthma, with special attention on

exposures during the prenatal and early post-natal period. We will start by presenting a

description of the key pathways important to the allergic immune response that are

epigenetically regulated followed by reviewing evidence that environmental exposures

implicated in asthma induce epigenetic alterations. We will discuss the development of new

epigenetic biomarkers and the evidence supporting a relationship between these and clinical

asthma. We will conclude with a brief discussion about novel tools and applications in

asthma epigenetic research.
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EPIGENETIC REGULATION OF KEY PATHWAYS IN THE ALLERGIC

IMMUNE RESPONSE

Just as the clinical presentation of asthma and the response to associated environmental

exposures is heterogeneous, so are the underlying immune pathways. Although there are

some reports that epigenetic regulation may play a role in various asthma phenotypes

including obesity-associated asthma (Rastogi et al., 2013), the bulk of the scientific literature

in this field focuses on the role in allergic immune pathways leading to asthma. For the key

allergic immune pathways, epigenetic regulation already has been widely reported, and the

field is growing, as reviewed below.

Antigen Presentation/Dendritic Cell Differentiation

Differentiation of antigen presenting dendritic cells is critical to the differentiation of naïve

T cells into effector T cells (i.e., Th1, Th2, and Th17 cells) and T regulatory (Treg) cells,

and is linked to the development of allergic asthma (Kuipers and Lambrecht, 2004). In a

murine study designed to evaluate the effects of maternal allergen exposure on offspring,

pups of mice that were sensitized with ovalbumin (OVA) in an experimental model of

allergic asthma were found by genome-wide DNA methylation studies to have different

DNA methylation profiles in splenic CD11c(+) dendritic cells compared to pups of

nonallergic female mice. Using this genome-wide approach the authors identified 40

differentially methylated gene loci CpG sites that demonstrated about ninefold or greater

(ranging from 8.9- to 716.7-fold) differences in methylation between the pups born to

asthmatic mothers and the controls. Furthermore, the overall methylation was higher in the

dendritic cells of mice born to allergic versus nonallergic mothers (Fedulov and Kobzik,

2011). This difference in dendritic cell DNA methylation profiles as it related to allergic

asthma suggested there was a functional capacity of this cell type to mediate asthma

susceptibility through epigenetic mechanisms.

T Helper (Th) Cell Pathway

Naïve helper T cells are capable of differentiation into Th1 cells of which interferon (IFN)-γ

and interleukin-12 are predominating cytokines or Th2 cells that are primarily responsible

for the production of proallergic IL-4, IL-5, and IL-13. Some evidence suggests allergic

asthma represents a skew toward a Th2 profile and suppression of regulatory Th1 cytokines

(Calderon et al., 2009). The production of Th2 cytokines also is thought to be critical in the

development of airway hyperresponsiveness (Kuperman et al., 2002; Venkayya et al., 2002).

Early exposure to allergens may be responsible for this imbalance. For example, Prescott et

al. demonstrated increased production of Th2 cytokines in cord blood and peripheral blood

mononuclear cells (PBMCs) of infants from birth to 2 years when samples were cultured

with house dust-mite allergen (HDM) (Prescott et al., 1999). Emerging evidence suggests

Th1 cytokines also play a significant role and may be more important in severe compared

with mild asthma (Abdulamir et al., 2008). As described below, numerous studies to date

have demonstrated that this imbalance between the Th1 versus Th2 phenotypes may be

regulated through epigenetic mechanisms.
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For example, chromatin remodeling, whereby hyperacetylation of histones is responsible for

the open chromatin structure that allows for binding of transcription factors necessary for

gene transcription, is critical in helper Th cell differentiation. Avni et al. demonstrated that

conversion of H3 and H4 histone hypoacetylation in naïve cells to a hyperacetylated profile

upon stimulation under Th1 and Th2 conditions induced the differentiation of CD4+ T cells.

The differentiated Th1 and Th2 cells exhibited reduced acetylation in IFN-γ and IL-4 gene

loci that was considered responsible for the associated silencing of gene transcription in

these differentiated cells (Avni et al., 2002). Further studies demonstrated that GATA-3, a

proallergic Th2-specific transcription factor, induced chromatin remodeling at the IL-4/

IL-13 intergenic regulatory region of developing Th cells allowing for accessibility and thus

differentiation to Th2 cells (Takemoto et al., 2000).

DNA methylation also plays an important role in the control of Th2 cytokine expression and

stabilization during Th cell development. When naïve T cells are activated under Th2-

polarizing conditions, demethylation occurs at the IL-4 genetic promoter (Janson et al.,

2009; Lee et al., 2002). As mentioned above, Webster et al. examined CD4+ T cells from

human cord blood samples and found that CpG methylation levels in the proximal promoter

of the IL-13 gene was reduced significantly in Th2 when compared with Th1 cells. This

finding corresponded with higher histone H4 acetylation levels in the IL-13 proximal

promoter, but not in the IFN-γ promoter (Webster et al., 2007).

DNA methylation of the counter-regulatory Th1 cytokine IFN-γ also has been the subject of

much investigation. Several studies have demonstrated the association between Th1

differentiation and hypomethylation in the promoter region of the IFN-γ gene (Dong et al.,

2013; Webster et al., 2007). Interestingly, White et al. also found a reduction in IFN-γ

methylation levels of CD8+ T cells in atopic versus nonatopic children. In addition,

hypermethylation of the IFN-γ promoter region was associated with decreased IFN-γ gene

expression in splenic CD4+ T cells (Brand et al., 2012; Jones and Chen 2006).

Kumar et al. transfected primary cultured T cells with let-7 family miRNAs (a highly

conserved family of miR-NAs known to be involved in Toll-like receptor 4 signaling) and

found reduced IL-13 levels. Intranasal administration of let-7 also reduced the allergic

phenotype (airway inflammation, airway hyperresponsiveness, mucus metaplasia, and

subepithelial fibrosis) in sensitized mice (Kumar et al., 2011). Let-7 miRNAs were tested

further in a murine model of asthma by Polikepahad et al. Short RNAs and miRNAs were

highly enriched in both naïve and allergen-sensitized and challenged mouse lungs, with the

most abundant ones belonging to the let-7 family. However, targeted inhibition of let-7

miRNA suppressed Th2 cytokine production, eosinophil recruitment to the lung, and airway

hyperresponsiveness, suggesting that in this in vivo model let-7 miRNAs exerted a

proinflammatory role (Polikepahad et al., 2010). The authors attributed these unexpected

findings to the large (>800) repertoire of targets of let-7 miRNAs and possible secondary

effects.

T Regulatory (Treg) Cell Pathway

Treg cells suppress Th1/Th2 activity and may be impaired in patients with allergic disease

including asthma (Larche, 2007). Activation of the forkhead box transcription factor 3
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(FOXP3) is responsible for the differentiation of Treg cells and thus is a target for

investigating this pathway. Hinz et al. used a novel method of determining Treg number by

measuring the percent of demethylation in the Treg-specific demethylated region (TSDR) of

FOXP3. Using this method they found that low Treg numbers in cord blood DNA was

associated with increased risk of atopic dermatitis at age 1 year. They also demonstrated that

environmental exposures, such as prenatal maternal smoke exposure, were associated with a

decrease in cord blood Treg numbers (Hinz et al., 2012). Several studies also have shown

the importance of histone modifications in making the FOXP3 locus available for Treg gene

transcription and expression. Using chromatin immunoprecipitation (ChIP), Floess et al.

(2007) found the FOXP3 gene locus in an open euchromatin structure in Treg cells as

compared to the closed structure in a conventional T cell, and this finding was associated

with differences in histones H3 and H4 acetylation and trimethylation profiles. Furthermore,

inhibition of histone deacetylases (HDAC) promoted acetylation in the FOXP3 gene locus,

which resulted in both an increase in FOXP3 gene expression and Treg function.

Th17 Pathway

Th17 is a distinct lineage of Th cells that has been newly linked to allergic diseases

including asthma. Epigenetic mechanisms are thought to be involved in Th17 differentiation.

Th17 lineage, whose cells are responsible for the production of several cytokines, including

IL-17a, IL-17f, IL-21, and IL-22 may be regulated through histone modifications. In one

study, Koenen et al. demonstrated that human Treg cells can differentiate into Th17 cells,

likely through HDAC activity (Koenen et al. 2008). In another publication, Mukasa et al.

examined the chromatin structure of the IL-17a, IL-17f, and IFN-γ gene loci in Th17 cells

and also found differences in cytokine expression associated with changes in histone

methylation (primarily in histone H3) in the presence of extrinsic cell manipulation with

various cytokines including TGFβ and IL-12 (Mukasa et al., 2010).

Arginase-Nitric Oxide Synthase Pathway

The nitric oxide synthase (NOS) pathway recently has emerged as an important mechanism

in the development of asthma, and the enzyme arginase may play a key role in limiting the

production of nitric oxide (NO). L-arginine can be metabolized to either urea or L-ornithine

via arginase activity, or nitric oxide, and L-citrulline via NOS activity. Increased arginase

activity results in decreased NO production by competitive inhibition for the substrate L-

arginine. Conversely, increased NOS activity results in increased NO production which has

been associated with asthma (Benson et al., 2011). Several studies have related elevated

fractional exhaled nitric oxide (FeNO), a bio-marker of airway inflammation, to early

environmental exposures, and allergic airway inflammation, respiratory symptoms, and

asthma (Cornell et al., 2012; Dweik et al., 2010; Fitzpatrick et al., 2006; Kalliola et al.,

2013; Strunk et al., 2003).

In a recent publication by Breton et al., the conventional understanding of this pathway was

somewhat challenged with the novel finding that DNA methylation of the arginase gene

promoter (thus silencing of gene transcription), but not the iNOS gene, was associated with

decreased FeNO production in children both with and without asthma (Breton et al., 2011).

This pathway is complex, as Kuriakose et al. illustrated in their response to the publication
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where they reported pilot data of an inverse association between iNOS methylation and

proximal but not distal FeNO components (Kuriakose et al., 2012). This later finding

supports the theory that decreased methylation and increased expression on iNOS results in

increased NO production. Although Breton’s findings appear to contradict our current

understanding of this pathway, it was the first paper to identify an association between DNA

methylation changes and an airway inflammatory marker of asthma.

ASTHMA-RELATED ENVIRONMENTAL EXPOSURES AND EPIGENETIC

DYSREGULATION

Exposure to a number of environmental elements has been associated with the development

of asthma and allergies in children and altered epigenetic regulation (Table I). These

relatively ubiquitous exposures include allergens, ambient air pollution, environmental

chemical compounds, folate, and other prenatal supplements, as discussed below.

Allergens

Exposure to allergens is critical to the process of allergic sensitization and the development

of atopic diseases, such as asthma. Emerging literature supports the importance of the

prenatal time period of allergen exposure to the development of atopic disease in childhood,

or in the case of household pets, to its protection (Lodrup Carlsen et al., 2012; Ownby et al.,

2002; Perzanowski et al., 2013). The literature supporting allergen exposure-induced

epigenetic changes is beginning to accumulate. Brand et al. documented that allergic

sensitization in mouse models increased DNA methylation in the IFN-γ promoter and

silenced IFN-γ gene transcription. The effect was reversed with administration of DNA

methyl-transferase (DNMT) inhibitor in vitro and in vivo (Brand et al., 2012). In a

subsequent study by our group, Niedzwiecki found that the grand-offspring of mice

sensitized with A. fumigatus during pregnancy had lower DNA methylation at IL-4 promoter

CpG-408 and CpG-393 as compared to mice exposed after birth or those without exposure

(P <0.005 across all doses). The prenatally exposed grand-offspring paradoxically had lower

allergic IgE levels (Niedzwiecki et al., 2012). Shang et al. also, in an experimental allergic

sensitization model involving treatment of mice with HDM extracts, found that treated mice

exhibited changes in global methylation compared to controls. Using methylation sensitive

restriction finger-printing, the group identified several asthma candidate genes in cAMP

signaling, AKT signaling, ion transport, and fatty acid metabolism that exhibited altered

methylation (Shang et al., 2013).

Collision et al. characterized the miRNAs that are expressed in the airway wall after allergen

provocation of mice sensitized to HDM. Interestingly, the investigators measured elevated

levels of miR-145, miR-21, and let-7b in the HDM-induced allergic airways as compared to

non-allergic mice. Notably, miR-145, miR-21, and let-7b have been implicated in airway

smooth muscle function, allergic inflammation, and airway epithelial cell function,

respectively, suggesting that these miRNAs may regulate aspects of the host response to

HDM. Selective inhibition of miR-145 significantly reduced IL-5 and IL-13 production by

Th2 cells, eosinophils recruitment to airways, mucus hypersecretion, and airway

hyperresponsiveness to a level similar to that observed following treatment with
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dexamethasone (Collison et al., 2011). Furthermore, in one human cell study, ex vivo

exposure of CD4+ T lymphocytes to dust mite antigens resulted in hypomethylation of

several CpG sites in the IL-4 promoter region (Kwon et al., 2008).

Dietary Supplementation with Methyl Donors

Despite the publication of several studies suggesting that alterations in diet during

pregnancy may protect against the risk of asthma or allergies in the child (Chatzi et al.,

2008; Dunstan et al., 2003), only prenatal supplementation with folate has been linked to

epigenetic changes and an asthma phenotype. This was first demonstrated in a mouse model

of experimental asthma where pregnant and weaning mice received a diet supplemented

with methyl-donors including folic acid. Offspring of these mice showed enhanced features

of experimental asthma following OVA sensitization, including more severe airway

hyperresponsiveness and airway eosinophilia. This allergic phenotype also was associated

with altered DNA methylation and protein suppression of several genes including runt-

related transcription factor 3 (RUNX3) (Hollingsworth et al., 2008), a gene known to

regulate CD4+/CD8+ T lymphocyte development by silencing CD4+ expression during T

cell lineage decisions (Ehlers et al., 2003). This study also found that a diet rich in methyl

donors during lactation or adulthood did not induce airway disease in this experimental

model, suggesting that the timing of methyl donor supplementation may be key in epigenetic

regulation (Hollingsworth et al., 2008).

The association of prenatal folate supplementation with child asthma risk has since been

tested in human cohorts. In an Australian prospective birth cohort, the intake of

supplemental folic acid late in pregnancy was associated with increased risk of asthma in the

child at 3.5 and 5.5 years (Whitrow et al., 2009). Håberg et al. (2009) found that the use of

folic acid supplements in pregnancy during the first trimester was associated with an

increase in the risk of early respiratory infections and wheeze. A later study from the same

group measured concentrations of blood plasma folate during the second trimester of

pregnancy and found an increased risk of asthma at age 3 years for children with high

maternal plasma folate levels (Håberg et al., 2011). In contrast, Magdelijns et al. (2011)

found that folic acid use during pregnancy was not associated with a greater risk of wheeze,

asthma, or eczema. At age 2 years, serum folate levels were associated inversely with total

IgE levels, atopy and wheeze (Matsui and Matsui, 2009). These latter human studies further

support the premise that the current evidence is insufficient to recommend any change from

the current practice of peri-conceptional folic acid supplementation to protect children from

neural tube defects.

Particulate Matter (PM)

Several studies have associated exposure to traffic-related air pollution, in particular diesel

soot and fine particulate matter (PM2.5), with asthma exacerbations and hospitalizations

among children (Bell et al., 2009; McConnell et al., 2006; Patel et al., 2009; Spira-Cohen et

al., 2011). In the Columbia Center for Children Environmental Health birth cohort of

children from New York City (NYC), our group found a positive association between

measured residential indoor levels of PM2.5 and the development of new wheeze that was

reported between the ages of 5 and 7 years, a symptom characteristic of asthma at young
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ages (Jung et al., 2012). Furthermore, two studies to date in adults have demonstrated that

exposure to PM2.5 (Salam et al., 2012) and PM10 (Tarantini et al., 2009) is associated with

decreased methylation of the inducible nitric oxide synthase (iNOS) promoter, an important

enzyme in NO production and airway inflammation (Benson et al., 2011). Interestingly, the

association between iNOS DNA methylation and PM10 exposure was only evident in short

term (after 3 consecutive days of work in a steel production plant) and not long-term

exposure (after 2 consecutive days off from work, reflecting baseline levels of exposure)

(Tarantini et al., 2009).

Polycyclic Aromatic Hydrocarbons (PAHS)/Diesel Exhaust Particles (DEP)

Exposure to airborne polycyclic aromatic hydrocarbons (PAH), traffic-related combustion

products, has been linked to epigenetic changes associated with childhood asthma and

allergy. Our group first reported that high levels of ambient PAH measured during

pregnancy was associated with DNA methylation of the acyl-coenzyme A synthetase long-

chain family member 3 (ACSL3) promoter in cord white blood cell DNA and with increased

asthma risk in children (Perera et al., 2009). Moreover, levels of ambient PAH measured

during pregnancy were associated with hypermethylation at multiple CpG sites in the IFN-γ

promoter from the same cord blood DNA (Tang et al., 2012), offering a mechanism whereby

the counter-regulatory cytokine is suppressed or silenced in asthma.

Exposure to PAH also has been shown to alter DNA methylation of genes important in Treg

function. Nadeau et al. demonstrated that FOXP3 was hypermethylated in children with

higher measures of ambient PAH exposure (Nadeau et al., 2010). In further mechanistic

experiments in cell systems by the same group, high dose administration of the PAH

phenanthrene increased DNA methylation and reduced gene expression of FOXP3. Most

interestingly, these changes were associated with conversion of the Treg to a more Th2

phenotype (Liu et al., 2013), suggesting immunemodulation of key pathways in allergic

sensitization, as reviewed below.

Exposure to diesel exhaust particles (DEP), another environmental air pollutant, also has

been associated with epigenetic regulation of asthma genes. Our laboratory (Liu et al., 2008)

exposed mice almost daily to 3 weeks of inhaled DEP while undergoing intranasal

sensitization to A. fumigatus to study whether DEP would induce methylation changes of the

asthma genes IL-4 and IFN-γ. Inhaled DEP exposure and intranasal A. fumigatus induced

hypermethylation at CpG-45, CpG-53, CpG-205 sites of the IFN-γ promoter and

hypomethylation at CpG-408 of the IL-4 promoter. Altered methylation of both genes

correlated significantly with changes in IgE levels. This was the first study to demonstrate

that inhaled environmental exposures influenced methylation of Th genes important in IgE

regulation in vivo. In human cohort work, measures of DEP exposure, estimated by land use

regression analysis, was associated with altered expression of FOXP3 by increased DNA

methylation in saliva DNA in children (n =92) selected from the Cincinnati Childhood

Allergy and Air Pollution Study. This group reported a 4% (95% CI, 1.83–6.18%) increase

in FOXP3 methylation per interquartile range increase in estimated DEP exposure (Brunst et

al., 2013).
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Environmental Tobacco Smoke (ETS)

Prenatal and early childhood exposure to tobacco smoke represents a major risk factor for

the development of childhood asthma (Thomson, 2007). Substantial literature suggests that

some of these effects may be epigenetically regulated. To demonstrate epigenetic effects on

lung tissue in smokers, one study examined lung biopsy specimens and alveolar

macrophages obtained from bronchoalveolar lavage in a group of otherwise healthy tobacco

smokers and age-matched, healthy, nonsmoking adults. They found a reduction in the

expression and activity of HDAC-2 as well as enhanced gene expression of the

inflammatory mediator, IL-1β-induced tumor necrosis factor (TNF)-α that was correlated

with HDAC activity (Ito et al., 2001). Reported maternal smoking during pregnancy was

associated with higher methylation levels of leukocyte DNA as well (Terry et al., 2008). In

contrast, Breton et al. examined global and gene-specific methylation patterns in buccal cells

from children in the Children’s Health Study in relation to history of prenatal ETS exposure.

Although there was no strong clustering of gene methylation patterns by prenatal smoke

exposures, they found that methylation of the DNA repetitive short interspersed nucleotide

element AluYb8 was decreased in association with maternal smoking during pregnancy.

Methylation of the DNA repetitive long interspersed nucleotide element (LINE-1) was

decreased only among children with the common GSTM1 null genotype (Breton et al.,

2009), a genotype previously associated with early onset asthma following prenatal ETS

exposure (Gilliland et al., 2002). Even more recently, using plasma cotinine levels measured

during pregnancy to document in utero exposure to cigarette smoke in the Norwegian

Mother and Child Cohort Study researchers discovered differential DNA methylation for 26

CpGs mapped to 10 genes, including aryl-hydrocarbon receptor repressor (AHRR),

cytochrome P450 family 1 subfamily A (CYP1A1), and growth factor independent 1

transcription repressor (GFI1) (Joubert et al., 2012).

Volatile Organic Compounds (VOCs)

Childhood exposure to benzene, toluene, xylene and other VOCs has been shown to be

associated with a greater prevalence of asthma and nonspecific respiratory symptoms,

although adverse respiratory effects of prenatal exposures to VOC are less apparent. While

effects of VOC exposure on asthma gene methylation or other epigenetic alterations have

not yet been demonstrated, in vitro experiments have shown that benzene exposure induces

hypermethylation of poly (ADP-ribose) polymerase-1 (PARP-1), a gene involved in DNA

repair (Gao et al., 2010). Airborne measures of benzene were associated with demethylation

of LINE-1 and Alu, repetitive elements that are indicators of global methylation (−2.33% for

a tenfold increase in airborne benzene levels; P = 0.009; −1.00%; P =0.027, respectively).

Hypermethylation in p15 promoter (+0.35%; P = 0.018) (a gene whose hypermethylation

has been associated with acute myeloid leukemia) and hypomethylation in melanoma-

associated antigen (MAGE)−1 (−0.49%; P = 0.049) (a gene known to be hypomethylated in

malignancy) were associated with increasing airborne benzene levels (Bollati et al., 2007).

Given this and the link between benzene exposure and asthma respiratory symptoms, further

study into epigenetic mechanisms is this area may be informative.
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Microbes

Several studies support the hypothesis that the risk of atopic sensitization and allergic

disease is reduced by higher microbial exposure prenatally or during early life (Lampi et al.,

2011; Leynaert et al., 2001; Remes et al., 2003; Riedler et al., 2001; Von Mutius 2007). This

protective effect may persist into adult life (Leynaert et al., 2001). First, there is mounting

evidence that microbes can alter asthma gene IFN-γ regulation. For example, infection with

several viruses like human immunodeficiency virus, lymphocytic choriomeningitis virus,

and Epstein Barr virus have been shown to induce either hypermethylation or demethylation

of IFN-γ in CD8+ T cells (Vuillermin et al., 2009), although effects on allergy were not

determined in these studies. Second, in one clinical trial, prenatal exposure to probiotics

intended through supplementation with Lactobacillus rhamnosus GG during pregnancy and

lactation suppressed the development of allergic disease in children through age of 4 years

(Blümer et al., 2007). Third, in a birth cohort study, the protection against the development

of allergy following prenatal microbial exposure via exposure to farming during pregnancy

was associated with enhanced neonatal Treg function in cord blood cells, as well as greater

FOXP3 expression and DNA demethylation (Schaub et al., 2009). Finally, in the PASTURE

(protection against allergy: study in rural environments) birth cohort, cord blood DNA

methylation levels in regions in ORM1-like protein (ORMDL)1, and STAT6 were

hypomethylated in DNA from farmers’ as compared to nonfarmers’ children. In comparison,

regions in RAD50 and IL-13 were hypermethylated. Changes in methylation between birth

and age 4.5 years occurred in 15 gene regions and these differences clustered in the genes

highly associated with asthma (ORMDL family) and IgE regulation (RAD50, IL-13,

andIL-4), but not in the Treg genes (FOXP3, RUNX3) (Michel et al., 2013).

EPIGENETIC BIOMARKERS AND CLINICAL ASTHMA

Despite the growing literature relating epigenetic changes in asthma genes following

environmental exposures, the literature supporting that such changes are associated with

clinical asthma is just beginning to emerge. For example, in the Cincinnati Childhood

Allergy and Air Pollution Study described above, a twofold increase in the mean level of

FOXP3 methylation was observed among persistent wheezers compared with nonwheezers.

Early transient wheezers and asthmatic children had higher mean levels of FOXP3

methylation when compared with nonwheezers and nonasthmatic children (Brunst et al.,

2013). Isidoro-Garcia et al. compared CpG methylation levels of the D-prostanoid receptor

(PTGDR) gene, a mediator of the production of prostaglanding D2 (PDG2), in a cohort of

allergic asthmatic patients and controls. PTGDR methylation levels were decreased in

multiple CpG sites in asthmatic patients compared with controls (Isidoro-García et al.,

2011). Further, bronchial biopsy specimens from adult asthmatic patients exhibited lower

histone deacetylase (i.e., HDAC1 and HDAC2) protein expression and activity, when

compared with those derived from healthy controls, indicative of impaired transcriptional

repression via altered removal of acetyl groups in asthma (Ito et al., 2002). Decreased

HDAC activity and increased histone acetyltransferase (HAT) activity (i.e., increased

transcriptional activity) also was observed in alveolar macrophages collected via

bronchoalveolar lavage in adult asthmatics when compared to controls (Cosío et al., 2004).

Royce et al. demonstrated that administration of an HDAC inhibitor (valproic acid) in a
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murine model of allergic airways disease suppressed airway hyperresponsiveness and

inhibited the development of airway epithelial thickening and fibrosis (Royce et al., 2011),

highlighting the potential importance of HDAC activity to asthma and suggesting a novel

epigenetic approach to the treatment of airway remodeling.

Moreover, when bronchial epithelial miRNA expression was studied by microarray analysis

among steroid-naive adults with asthma versus controls, those with asthma had evidence of

217 miRNAs that were differentially expressed. Another 200 were identified in steroid-

using subjects with asthma (false discovery rate, 0.05). Treatment with inhaled

corticosteroids induced changes in nine of the miRNAs identified in steroid naïve asthmatics

(Solberg et al., 2012). Using microarray expression profiling of mRNA and noncoding RNA

(ncRNA) to examine RNA patterns in peripheral CD4+ and CD8+ T cells, large differences

among severe as compared to nonsevere asthmatics were detected in the CD8+ T cell

samples, particularly in natural antisense, pseudogenes, intronic, and intergenic long

noncoding RNAs (lincRNAs), consistent with an activated CD8+ T cell pattern (Tsitsiou et

al., 2012).

Also, in nasal cells collected from asthmatic children aged 8–11 years, lower promoter

methylation of both IL-6 (+29.0%; P = 0.004) and iNOS (+41.0%; P = 0.002) were

associated with higher FeNO level (Baccarelli et al., 2012). In the Infancia y Medio

Ambiente (INMA) Project: Menorca and Sabadell cohorts, lower whole blood DNA

methylation at age 4 years in the arachidonate 12-lipoxygenase (ALOX12) gene was

associated with persistent wheezing in children at age 6 years (Morales et al., 2012). Finally,

in the Isle of Wight Cohort, IL-4 receptor (IL4R) gene methylation levels, identified using

the Illumina Infinium Human Methylation 450 Bead Chip, showed an association with

asthma at age 18 years. Testing for an interaction between eight different single nucleotide

polymorphisms (SNPs) and IL4R methylation level on the risk for asthma revealed a

significant interaction between SNP rs3024685 and IL4R methylation levels (P =0.002; after

adjusting for false discovery rate) (Soto-Ramírez et al., 2013).

However, much more discovery is needed to gain a better understanding of the contribution

of epigenetic bio-markers to clinical asthma. Several studies have demonstrated that

variability in DNA methylation levels is cell-and tissue-specific (Nadeau et al., 2010; Talens

et al., 2010). This was well-demonstrated by Jacoby et al., who assessed DNA methylation

levels of 58 CpG sites from eight immune response genes and identified very different

patterns of interindividual variability across neighboring CpG positions depending on cell

type (i.e., highest for CD56+, CD8+, unsorted cord blood mononuclear cells or PBMCs;

lowest for CD4+ cells). This particular pattern also exhibited an age effect and tended to be

greater in adult versus newborn cord blood specimens in all cell types, and differed

depending on the immune response gene (Jacoby et al., 2012). Stefanowics et al.

documented substantial differences when comparing the DNA methylation signatures,

determined by Illumina GoldenGate Methylation Cancer Panel I, of airway epithelial cells

(AECs) versus PBMCs among asthmatic, atopic, and healthy children undergoing elective

surgery for nonrespiratory conditions. They found 57 CpG sites across 47 genes that were

differentially methylated in AECs as compared to PBMCS. Moreover, they identified 8

methylated sites including CpGs in STAT5A and CRIP1 genes that were differentially
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methylated in asthmatic versus atopic alone-derived AECs. Such differences were not

evident in PBMCs, quesitoning the suitability of using methylation levels in DNA derived

from PBMCs as bio-markers of methylation patterns in asthma (Stefanowicz et al., 2012).

Pharmaco-Epigenetic Studies

Epigenetic regulation also has emerged as a potential mechanism for the action of asthma-

related pharmacologic therapies and differences in therapeutic drug responses across

individuals. For example corticosteroids, which suppress some of the hyperactive immune

responses in the airways, are believed to exert some of their anti-inflammatory action by

inducing histone acetylation of anti-inflammatory genes and by recruiting HDAC2 to

activated pro-inflammatory genes (e.g., glucocorticoreceptor) (Barnes, 2009). Theophylline,

although used less frequently in the management of asthma, also has been shown to reverse

the effects of corticosteroid resistance by restoring HDAC2 activity and inducing

deacetylation of proinflammatory genes (e.g., IL-8, NF-kβ) (Barnes 2009). Wu et al. tested

the DNA methyltransferase inhibitor 5-azacytidine in asthma animal models and found that

treated mice exhibited reduced airway hyperreactivity, pulmonary eosinophilia, and other

allergy related biomarkers while the number of FOXP3+ cells was increased (Wu et al.,

2012).

NOVEL TOOLS AND NOVEL APPLICATIONS IN ASTHMA EPIGENETIC

RESEARCH

In contrast to observational studies of singletons, twin studies can provide several

advantages for studying epigenetic regulation. Monozygote twin (MZT) pairs are matched

on age, genome, and intrauterine and usually early childhood environment and cultural

milieu. Yet they are often discordant for diseases including asthma (Runyon et al., 2012;

Strachan et al., 2001). For example, Fraga et al. reported that with age, MZTs showed large

differences in global DNA CpG island methylation, gene expression profiles on microarray

analysis and levels of histone acetylation (Fraga et al., 2005). Wong et al. measured the

levels of DNA methylation of three neuropsychiatric genes (dopamine receptor 4 [DRD4],

serotonin transporter [SERT], and X-linked monoamine oxidase A [MAOA] in MZT and

dizygotic twin [DZT]) pairs at 5 and 10 years old, and found significant differences in

methylation patterns of both DZT and MZT pairs, as well as differences over time (Runyon

et al., 2012; Wong et al., 2010). MZT studies in which there is discordance in environmental

exposures and asthma are certainly a powerful method for studying epigenetics as they can

eliminate potential confounders such as genetic predisposition and in utero exposures.

Epigenome-wide association scan (EWAS) is another tool that has the potential to discover

risk factors and molecular and disease consequences. This fairly novel application to

epigenetic lung research allows for assessment of methylation pattern variations across

numerous candidate gene loci. For example, such arrays from peripheral blood DNA have

been useful in identifying genes alternatively regulated by epigenetics mechanisms

following current and past exposure to cigarette smoke (Breitling et al., 2011). Moreover,

Zeilinger et al. conducted EWAS comparing the association of tobacco smoking on DNA

methylation with the illumina 450 K BeadChip using DNA obtained from whole blood
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(Zeilinger et al., 2013). They identified 972 CpG sites with differential methylation levels,

depending of the smoking status. This new technique may prove useful in determining

epigenetic marks in complex diseases such as asthma, recognizing however that whole blood

may still not be the optimal tissue for studying epigenetic regulation in this disease.

CONCLUSION

The inherent plasticity of epigenetic regulation following environmental exposures offers

opportunities for prevention using environmental remediation, measuring novel biomarkers

for early identification of those at risk, and applying advances in pharmaco-epigenetics to

tailor medical therapies that maximize efficacy of medical treatment. Future studies that

focus on the contribution of interacting environmental exposures, cell, and tissue-specific

effects, and possible multigenerational effects, are needed. ‘Precision Medicine’ in asthma

and allergy is arriving. This may involve an individually tailored approach to the detection,

prevention, and treatment of disease based on the knowledge of an individual’s epigenetic

profile as this field advances. A greater understanding of epigenetic regulation in asthma and

allergy is at its core.
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TABLE I

Environmental Exposures and Their Epigenetically Regulated Asthma Genes

Environmental exposure Gene(s) affected Epigenetic modifications
induced by
environmental factor

References

Allergens, including IL-4, IFN-γ DNA methylation Liu et al. (2008) Niedzwiecki et
al. (2012)

 A. fumigatus, dust mite IL-4 DNA methylation Kwon et al. (2008)

PDE4D, AKT1s1, TM6SF
ACLS3, POM121/2

DNA methylation Shang et al. (2013)

IFN-γ DNA methylation Brand et al. (2012)

Dietary supplement with methyl donors,
including folate

RUNX3 DNA methylation Hollingsworth et al. (2008)

Particulate matter (PM) iNOS DNA methylation Salam et al. (2012), Tarantini et
al. (2009)

Polycyclic aromatic hydrocarbons
(PAHs)/Diesel exhaust particles (DEP)

ACSL3 DNA methylation Perera et al. (2009)

IFN-γ DNA methylation Liu et al. (2008)

FOXP3 DNA methylation Liu et al. (2013), Brunst et al.
(2013), Nadeau et al. (2010)

Cigarette smoke GSTM1/GSTP, IL-8 and
IL-1β-induced TNF-α

Histone deacetylation Ito et al. (2001)

AHRR, CYP1A1, GFI1 DNA methylation Joubert et al. (2012)

VOCs LINE-1, Alu1 DNA methylation Bollati et al. (2007)

Microbes FOXP3 DNA methylation Schaub et al. (2009)

RAD50, IL-13, IL-4 DNA methylation Michel et al. (2013)
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