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Abstract

Published methods for imaging and quantitatively analyzing morphological changes in neuronal 

axons have serious limitations because of their small sample sizes, and their time-consuming and 

nonobjective nature. Here we present an improved microfluidic chamber design suitable for fast 

and high-throughput imaging of neuronal axons. We developed the Axon-Quant algorithm, which 

is suitable for automatic processing of axonal imaging data. This microfluidic chamber-coupled 

algorithm allows calculation of an ‘axonal continuity index’ that quantitatively measures axonal 

health status in a manner independent of neuronal or axonal density. This method allows 

quantitative analysis of axonal morphology in an automatic and nonbiased manner. Our method 

will facilitate large-scale high-throughput screening for genes or therapeutic compounds for 

neurodegenerative diseases involving axonal damage. When combined with imaging technologies 

utilizing different gene markers, this method will provide new insights into the mechanistic basis 

for axon degeneration. Our microfluidic chamber culture-coupled AxonQuant algorithm will be 

widely useful for studying axonal biology and neurodegenerative disorders.
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Introduction

Axonal damage is a common and early feature in a large number of neurodegenerative 

diseases including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral 

sclerosis [1–4]. In some cases, it has been demonstrated that axonal impairment not only 

precedes but also induces neuronal death in a ‘dying back’ mechanism [5]. Although 

significant effort has been made in studying axonal damage, methods for detecting and 

quantifying axonal damage in cultured neurons remain limited.

Studying axonal damage quantitatively is challenging because such damage can be triggered 

by various insults, including injury, toxins, epigenetic changes and genetic defects. In vitro 

models have been developed for examining axonal morphology by providing controlled 

culture environment, compound delivery and genetic manipulation, and a shortened 

experimental time window. In most studies, conventional primary neuronal culture has been 

used for axon morphological characterization. Different methods have been reported to 

evaluate axonal damage. The most frequently used method for quantifying axonal 

morphology is ‘image segmentation’ [6–10], which is employed in commercial software 

such as MetaMorph and Imaris. This method isolates spot-like discontinuous image 

components from homogenous regions of an image by automatically detecting the local 

intensity maxima or threshold segmentation. Recently, a semiautomated ImageJ-based 

method was reported for quantifying axonal segmentation in microfluidic chamber-cultured 

neurons [6]. This method relied on manually defining regions of interest (ROI) and ImageJ 

and therefore only allowed quantification of axons in low-density areas. Another frequently 

used method for quantifying axonal morphology is ‘filament tracking’ [11, 12], which 

detects continuity of axons in a semiautomatic manner which also depends on manual 

definition of the axons to be quantified.

Many of these published methods [6–12] have a number of limitations. First, random 

selection of imaging fields during the image capture process may introduce subjective 

errors. Second, because the measurement of axonal abnormality is manual or semimanual in 

most cases, it is often extremely time-consuming. Third, the lack of objective criteria and an 

insufficient sample size limit the reliability and sensitivity of analyses. Fourth, in many 

studies, quantification of axonal morphology was limited to low-density cultures or less-

than-mature neurons because extensive overlapping of neuronal processes in high-density 

culture or mature neurons prevents the definitive identification of individual axons, leading 

to an inability to quantify axonal morphology under such conditions. These limitations have 

prevented the use of axonal damage as an effective parameter in high-throughput screening.

Compartmentalized cultures [13–15] for neurons have been improved significantly since the 

development of the original Campenot chamber [16–19]. The development of micro-fluidic 

chambers has facilitated compartmentalized neuronal cultures [19]. Axons and cell bodies 
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can be cultured in separate compartments because of their growth properties and 

morphological features. Such microfluidic chambers also make it possible to reduce the 

culture scale to a few thousand cells, using a small amount of culture medium in a more 

precisely defined 3D space. However, published designs of microfluidic chambers for 

neuronal cultures [15, 20–22] have not been sufficiently developed to incorporate automatic 

analyses or to allow high-throughput applications. In this study, we redesigned the 

microfluidic chamber system, using a multiwell format to facilitate the application of an 

automated image processing and quantification algorithm for studying axonal damage. This 

combination has produced a standardized platform for analyzing axon integrity in a 

systematic and high-throughput manner. We provide a high-throughput axon quantification 

tool kit, Axon-Quant1.0, which includes a neuronal culture using the newly designed 

microfluidic chambers and an algorithm for quantification of axonal morphology based on 

wavelet transform (WT) and machine learning.

Materials and Methods

Microfluidic Chamber Fabrication

We followed established protocols of soft lithography to fabricate the microfluidic chambers 

[20, 23, 24]. Briefly, masks were designed with AutoCAD (Autodesk). Masters consisting of 

2 layers of photosensitive epoxy SU-8 (SU-8 2005 and SU-8 2010, respectively, from 

MicroChem) patterns were prepared by standard photolithography with a mask aligner 

(MJB4; Suss MicroTec) in a clean facility. The first layer of SU-8 (3 μm in depth) contained 

the microgrooves (3 μm in height; 5 μm in width), fabricated with a high-resolution 

chromium mask, whereas the second layer of SU-8 (100 μm in depth) contained the 

compartments and central flow channels, fabricated with a printed transparency mask. 

Replica molding of polydimethylsiloxane (PDMS; Dow Corning) was performed to obtain 

the elastic microfluidic chambers. The cell body and growth cone compartments were made 

using punchers (Harris Uni-Core; Ted Pella, Inc.) of 5 mm in diameter, and the inlet and 

outlet wells of the central flow channels were made using punchers of 3 mm in diameter 

(fig. 1). Other critical dimensions of the PDMS axonal chambers are illustrated in online 

supplementary figure S1 (for all online suppl. material, see www.karger.com/doi/

10.1159/000358092).

Primary Rat Neuronal Culture and Electroporation

Primary neuronal cultures were carried out as previously described. Briefly, cortices from 

E18 rats (Sprague-Dawley) were isolated in ice-cold Hanks’ balanced salt solution medium 

(Invitrogen) and dissociated with papain (Sigma) for 15 min at 37°C. Single-cell suspension 

was achieved by trituration using a 5-ml pipette followed by washing with neuronal culture 

medium [Neurobasal medium supplemented with 2% B27 (Invitrogen), 5% fetal bovine 

serum (Gemini Bio-Products) and 0.5 mM glutamine (Invitrogen)]. For DNA plasmid 

transfection, dissociated cortical neurons were electroporated with DNA plasmids using the 

Amaxa Nucleofector apparatus. Briefly, 5 million cells were resuspended in Nucleofector 

solution containing 3 μg of plasmid DNA, then immediately zapped in the Nucleofector 

using program O-03. After electroporation, the cells were resuspended in neuronal culture 

medium and plated on coverslips or into microfluidic chambers attached to coverslips or 
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glass bottom culture dishes that were coated with 200 μg/ml poly-D-lysine. The cells were 

cultured at 37°C and 5% CO2, and half of the medium was changed twice a week.

Immunostaining

Neurons were fixed in 3.7% paraformaldehyde and 5% sucrose for 20 min at 37°C. After 3-

fold rinsing in PBS, the cells were permeabilized with 0.5% Triton X-100 for 5 min, and 

blocked with 2% normal goat serum and 0.1% Triton X-100 for 1 h. To visualize axons and 

dendrites, anti-Tuj1 (Covance; MMS-435P) and anti-MAP2 (PTG Lab; 17490-1-AP) 

primary antibodies were used for immunostaining, followed by Alexa Fluor 594 or 633 

secondary antibodies. For growth cone staining, cells were incubated with 33 nM Alexa 

594-phalloidin (Invitrogen) for 2 h and rinsed before mounting for microscopy.

Results

Designing a Microfluidic Chamber System That Allows Efficient Axonal Imaging

To develop a microfluidic system suitable for efficient imaging of neuronal axons, we 

prepared compartmentalized microfluidic chambers by modifying previously published 

systems [20, 23, 24]. Several modifications were made, including: (1) reducing the overall 

size of the microfluidic device; (2) decreasing the dimensions of the cell body and axonal 

compartments, and (3) decreasing the space between the microgrooves and increasing the 

number of axonal microgrooves to 300 (fig. 1; online suppl. fig. S1). This improved design 

makes it easy to assemble the microfluidic chambers onto standard 18-mm circular cover-

slips and to fit the entire device in a single well of conventional 12-well cell culture dishes 

(fig. 1a, 2a). Importantly, maintaining the height of the axonal microgrooves at 3 μm and 

decreasing the space between the microgrooves made it possible to perform rapid imaging of 

axonal bundles and axons in multiple microgrooves within the same focal plane (fig. 2b). 

Poly-D-lysine was used to coat the coverslips before assembling the PDMS device onto the 

coverslip. Under our culture conditions, axons extended across microgrooves in a time-

dependent manner. Immunofluorescent staining with anti-Tuj1 (an axonal marker) and anti-

MAP2 (a dendritic marker) demonstrated that neuronal processes detected inside proximal 

axonal microgrooves were axons, whereas most dendrites were confined to the cell body 

compartment (fig. 1c). By day 7 after cell seeding, growth cones were detected in the axonal 

microgrooves and in the growth cone compartment (fig. 1b; online suppl. fig. S2). We first 

optimized the neuronal culture conditions. It was noticed that the axonal microgrooves in the 

most peripheral regions did not reliably support axonal growth and that the central 250 

axonal microgrooves showed consistent results to support axonal growth (online suppl. fig. 

S3a). We therefore used 250 microgrooves in the central region for subsequent imaging and 

data analyses.

When approximately 7,500–30,000 cells were plated in each microfluidic chamber, ca. 250 

axonal bundles, containing about 1,250–5,000 axons in total (approx. 5–20 axons per 

microgroove), were identifiable in a single chamber and suitable for imaging and analysis. 

Our platform offers the advantage of large image data sampling, which is critical for 

improving sensitivity of data quantification. This was not achieved by previously published 

methods. Two key features make our microfluidic chamber design suitable for high-
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throughput imaging of axons: (1) the overall size of the chamber is sufficiently compact to 

fit into a standard 12-well cell culture dish, whereas in other microfluidic designs, larger 

culture dishes were used, and (2) the condensed array of approximately 300 microgrooves 

with the limited height of 3 μm makes it possible to perform fast-speed confocal microscopy 

of a large number of axons or axonal bundles within the same focal planes (fig. 2). 

Furthermore, our design makes it easy to simultaneously image multiple growth cones 

(online suppl. fig. S2).

When axons in multiple microgrooves were imaged simultaneously using confocal 

microscopy, the unidirectional growth of axonal bundles and the 3-μm microgroove height 

made it possible to clearly visualize and reliably image approximately 250 axonal bundles 

(approx. 1,250–5,000 axons) in these microgrooves on each coverslip (fig. 2). This 

prompted us to develop algorithms for automatically determining axonal morphology in a 

quantitative manner.

Developing an Algorithm for Automatic Quantification of Axonal Morphology

To measure axonal morphology in a high-throughput manner, we developed an algorithm, 

AxonQuant, for the quantitative measurement of axonal integrity (fig. 3). The flowchart for 

this algorithm development is shown in figure 3a and b. First, the Radon transform was used 

to automatically separate the individual microgroove image from the entire axon array 

image in order to annotate individual ROI. For each axonal image, we used the WT to 

decompose the image into multiple resolution levels and subbands (fig. 3c) which contained 

transient and continuous components at different scale levels. Because the amounts of 

transient and continuous components were determined by the axon continuity degree, a 

gaussian mixture model (GMM) and an entropy-based feature extraction were used to obtain 

feature vectors in each subband coefficient of the WT. Finally, an artificial neural network 

(ANN) [25, 26] (fig. 3b) was employed to determine what percentage of all imaged axons 

were ‘healthy’ (continuous) or ‘broken’. This classification allowed us to calculate a 

quantitative ‘axonal continuity index’, which was defined as the proportion of healthy axons 

to the total number of axons and was used to measure the degree of axonal health. These 

different aspects of the algorithm will be discussed in more detail below.

Annotation of ROI—Using the matrix-capturing mode of our confocal microscopy 

system, 30 fields for each sample were captured to scan the entire microfluidic sample. Each 

single view covered approximately 10 microgrooves. In our method, the quantification of 

axonal bundles in microgrooves was regarded as a Monte Carlo sampling for the global 

index of axonal continuity. ROI covering the exact microgroove area were set for automatic 

annotation. This was achieved by determining the image rotation angles and the shift of 

microgrooves in images, because the width and spacing of the microgrooves were known. 

An algorithm employing a Radon transform [27] was used to determine these parameters. 

The Radon transform of a 2D function, Rf (θ, r), was defined as

(1)
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where f(x,y) was the image in the spatial domain, r was the perpendicular distance of a line 

from the origin, and θ was the angle formed by the distance vector. According to the Fourier 

slice theorem, θorigin was determined by

(2)

To determine the shift of microgrooves, a fast Fourier transform was performed on the 

signal Rf(θorigin,r), because the original image contained periodicity structures. Thus, the 

shift was accurately determined by calculating the phase and frequency of the main 

component. Using these parameters, sample images were segmented into individual ROI 

called slices, and stored independently.

Feature Extraction—Feature extraction was used to reduce the high-dimension signal 

(the fluorescent image) to form a low-dimension vector that could be reliably correlated with 

the actual axonal integrity. Fluorescent variations or singularities caused by varicosities and 

discontinuity of axons introduced transient components to the image signals in their spatial 

domain. Therefore, in our method, WT [28, 29] was used to separate these transient 

components from the continuous components in multiresolution scales. Figure 3c shows the 

2D wavelet decomposition of the axonal image containing a single axonal bundle. 

Daubechies wavelets were employed to decompose the image signals into 3 levels or 

‘subbands’. In the wavelet coefficient pyramid shown in figure 3c, cVi, cDi and cHi were 

detailed vertical, diagonal and horizontal coefficients at the ith level, respectively. The 

vertical coefficient cVi contained the most information on image discontinuity at the 

segmentation points and varicosity spots because axons in our microfluidic chambers grew 

horizontally within the 3-μm microgrooves. The highest image energy of healthy axons was 

expressed as the horizontal coefficient cHi. In addition, at high cellular densities, axons 

overlapped with each other, masking variations in the image signals. Therefore, the 

approximate coefficient cAi was introduced into the feature pool to ensure that the axonal 

continuity index is not affected by image signal intensity. To convert wavelet coefficients of 

the subbands to eigenvectors, the GMM was used to specify those coefficients with a 

distribution that had near-zero means. It was observed that only a few coefficients had large 

values at the positions of image signal variations, whereas most others had very small 

values. Let wi, i = 1, 2, …, K be the wavelet coefficients. Therefore, it was reasonable to 

specify the probability density function (PDF) of coefficients p(wi) by the two-component 

GMM, as follows:

(3)

where N (wi | 0, σ1
2) was a gaussian distribution with a mean of 0 and variance σ1

2. P and 1 

− P were the proportions of each GMM component. For the approximate coefficient cAi, we 

calculated the entropy instead of using the GMM to avoid ill-condition during iteration, 

because the PDF of cAi was more complex than of cVi and cHi. Entropy was a measure of 

the uncertainty in random variables. The entropy, H (I), of N gray-level images was defined 

as
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(4)

where Pr (r) was the PDF of grayscale, also known as a histogram. Thus, the eigenvectors of 

axonal images within the microgrooves, E, consisted of several parameters that were defined 

by the entropy of cAi and GMM coefficients of cAi, cVi and cDi. The parameters that were 

used to extract feature vectors in the proposed algorithm are shown in figure 3e. 

Importantly, the wavelet transformation level, L, was estimated by the largest aggregation 

spot in the image. If the diameter of the spot was d pixels, L was calculated by log2 d. For 

our testing images (fig. 2b; online suppl. fig. S3, S4), we let L = 3 because the largest 

aggregation spot in our axonal images is estimated as 8 pixels (23 = 8). In addition, to reduce 

the feature vector dimension and to speed up training/classification processes, the diagonal 

coefficient cDi was ignored. Because axons in our microfluidic chambers grew horizontally 

within the microgrooves in the same plane, the diagonal continuous component was 

sufficiently small, and therefore could be ignored. The eigenvector E chosen for our testing 

images was defined as

(5)

For those images with a low signal-to-noise ratio, adding σ2
2 to the feature vector was 

recommended to reduce effects of noises.

Configuration and Training of ANN—A single-layer, adaptive linear neuron network 

with bias vectors was used to build the classifier of axonal continuity. The linear output 

activation function was selected. Therefore, the output of ANN was defined as follows:

(6)

where k was the index of iteration, W was the weight matrix between the ANN input and 

output, E was the eigenvectors defined by formula (5), and b was the bias vector, which was 

defined as the difference between the output and the forward image and was included to 

describe the error introduced by feature extraction. The goal of ANN training is to optimize 

a least-square difference objective function by a gradient descent algorithm [26]. Therefore, 

we used the minimal mean square and delta rule to minimize the differences between ANN 

output and ground truth by supervised learning [30].

To train and validate the ANN classifier, a training dataset was generated, consisting of 

input eigenvectors of images and ground truth as the actual axonal continuity. It should be 

noted that when the axon density was high, it was difficult to annotate the ground truth 

manually. We therefore generated a hybrid training dataset based on our experimental data 

and a simulation scheme. We established 2 standardization datasets to define axonal 

continuity. We defined a supremum set which included axonal images from a healthy 

control group. The supremum set was used to define 100% axonal continuity (fig. 3d). The 

infimum set was used to define 0% continuity (fig. 3e). The evaluation data were a linear 

combination of the data from the supremum and infimum sets according to a defined axonal 
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continuity index, and thus a hybrid evaluation dataset (fig. 3f). Three different levels of cell 

density were used to generate hybrid evaluation datasets in order to reduce the fluctuation of 

the axonal continuity index caused by variations in cell density.

The AxonQuant algorithm was coded in MATLAB (R2011b) and based on the MATLAB 

built-in Toolbox. The source code and data for the method presented in this manuscript are 

provided in the Supplementary Software and published online. The important parameters of 

AxonQuant1.0 are listed in table 1.

Algorithm Validation

The exact number of healthy axons versus the number of damaged axons and the proportion 

of healthy axons to total axons were regarded as the ground truth to the training data. At the 

time of imaging, each individual microgroove contained 5–20 axonal fibers when 7,500–

30,000 cells were seeded in each chamber (fig. 4a). At high axonal density, it is difficult to 

determine the continuity of the individual axons. Therefore, we first selected microgrooves 

in which the axonal density was sufficiently low in order to allow the use of manual 

annotation to define the integrity of axons (fig. 4b). In this case, there were 2, 1 or 0 

continuous axonal fiber(s) in each microgroove, such that the number of intact axons was 2, 

1 or 0, respectively. From this annotation, the ground truth of axonal continuity was thus 

defined (fig. 4b). A large number of images were examined to identify proper images in 

which manual annotation was successful in identifying images containing specific levels of 

axonal integrity. The ground truth here was a set of discrete values (0, 33.3, 50, 66.7 and 

100%; fig. 4c) because the total number of axons in the selected microgroove was 2–3 and 

the number of healthy axons varied between 0 and the maximum value. The linear-

regression result of such data is shown in figure 4c. Three groups of simulation data at 

different axonal densities were used to demonstrate that the axonal continuity index derived 

from our algorithm was not affected by the changes in axonal density (within the range of 

7.5–30 × 103/chamber, 5–20 axons/microgroove; fig. 4d, 5a). Different axonal densities 

were also evaluated for their effects on the axonal continuity index. We chose 5–20 axons 

per microgroove because this range was equivalent to the axonal density observed in 

microfluidic chambers when 7.5–30 × 103 cells per chamber were seeded. Analyses using 

the AxonQuant algorithm revealed that the axonal continuity index obtained was not 

affected by changes in neuronal cell density or axonal densities (fig. 4). Even with 

overlapping of axonal fibers (healthy axons) or the presence of multiple axonal varicosities 

(fig. 4), or with different imaging intensities (online suppl. fig. S3), the axonal continuity 

index calculated with AxonQuant was stable. In summary, the output of our AxonQuant 

algorithm reliably reflects the health condition of axons, showing strong stability and linear 

correlation with ground truth values at different cellular and axonal densities. Different 

positions of microgrooves or variations in cellular density per chamber or axonal density per 

microgroove did not affect axon continuity index determination.

We then carried out a number of experiments to demonstrate that the axonal continuity 

index determined in this way faithfully measured changes in axonal health under different 

culture conditions and in different paradigms of axonal damage. We evaluated the Axon-

Quant algorithm using axonal bundles imaged in the microgrooves after axons had traversed 
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the entire length of both proximal and distal axonal microgrooves (fig. 2b, 4b). Confocal 

microscopy was performed with all axons in microgrooves scanned, using the matrix 

capturing mode or tile mode of the Leica SP5 microscope with a motorized stage. Our 

microfluidic chamber allowed the formation of 300 microgrooves, out of which 250 in the 

central region consistently and reliably supported axonal growth in repeated experiments. 

Therefore, only the images from the 250 microgrooves in the central region were included in 

our analyses.

First, we showed that axonal density was correlated with cell density when neurons were 

plated in a range of cell densities (7.5–30 × 103 cells/chamber). The axonal continuity index 

obtained using our AxonQuant algorithm was not affected by variations in cell density when 

axons were healthy or severely damaged (fig. 5; online suppl. fig. S3, S4), nor was the 

axonal continuity index affected by imaging intensity (online suppl. fig. S3c, d). Second, we 

used published paradigms to induce axonal damage and demonstrated that our AxonQuant 

algorithm detected axonal damage with a sensitivity equivalent to, if not higher than, that 

measured by a commercial software such as MetaMorph (fig. 5). In our previous study, 

manganese (MnCl2) treatment of neurons in primary cultures led to axonotoxicity at 

concentrations of 100–800 μM, as quantified by MetaMorph [31]. In our microfluidic 

setting, MnCl2 treatment of neuronal cultures at 5–10 μM showed reproducible and 

consistent axonotoxicity (fig. 5c–g). Again, the axonal continuity index was not affected by 

cell density (fig. 5c–e) but was dependent on the MnCl2 concentration within the range of 2–

10 μM (fig. 5g). Under our conditions, quantification of MnCl2-induced axonotoxicity using 

the axonal continuity index with data collected from multiple microgrooves in a single 

individual microfluidic chamber led to highly reproducible results. Inclusion of data from 4 

chambers further reduced output variation (fig. 5h). Analyses of the axon continuity index in 

the central 250 microgrooves found that most, if not all, of these 250 microgrooves showed 

consistent results and that the position of the microgrooves did not significantly affect the 

axonal continuity index (fig. 5a, d, h; axonal microgrooves No. 1–250).

We next used another axonal damage paradigm, temperature change-induced axonotoxicity, 

to validate the AxonQuant algorithm (fig. 6). Figure 6a shows time-lapse imaging of the 

axonal damage in a single axon of a cortical neuron cultured for 7 days in vitro. The axon 

was visualized by the expression of green fluorescent protein (GFP) after transfection of the 

neuron with a plasmid expressing GFP. Both increases and decreases in temperature have 

been shown to cause axonal damage, as in the case of hyperthermia or hypothermia [32–34]. 

At the beginning of imaging, the heating stage of the live-cell culture chamber was switched 

off to gradually reduce the temperature of the neuronal culture from 37 to 22.6°C (room 

temperature; fig. 6c). Images were captured at different time points with the axonal 

continuity index calculated and plotted (fig. 6b). At the 36-min time point, axonal damage 

reached the maximal level near complete breakage (fig. 6b), in agreement with manual 

evaluation of axonal health, as shown in figure 6a.

Comparison with Traditional Methods

We compared our algorithm with published methods that utilized ‘filament tracking’ and 

‘image segmentation’, such as MetaMorph and Imaris. It should be noted that software 
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based on spatial-domain image segmentation are sensitive to image intensity and axonal 

density. Comparison of AxonQuant with MetaMorph (with image segmentation) showed 

that Axon-Quant had better algorithm stability than ImageJ or MetaMorph (fig. 7). When the 

axon density was high, the results obtained using MetaMorph showed remarkable deviation 

from the ground truth and poor linearity. To our knowledge, no method has previously been 

reported on with automatic quantification of axon morphology suitable for analyzing images 

with high axonal density.

NeuronJ is a filament-tracking plug-in for ImageJ that was developed to measure neuronal 

morphology [12]. We compared our AxonQuant algorithm with ImageJ + NeuronJ, using 25 

microgrooves in which the axon density was sufficiently low to allow manual annotation as 

the ground truth (fig. 7). For ImageJ, axonal continuity was determined by annotating all 

detectable continuous axons and calculating the total length of axons in the microgroove. All 

the quantification results by ImageJ are below the ideal line and have greater variation than 

those obtained by AxonQuant. This may be due to the fact that ImageJ does not allow 

precise annotation of all the axons because of axons overlapping or crossing over. The linear 

regression analysis indicates that our AxonQuant has better performance than ImageJ or 

NeuronJ (fig. 7). In addition, to quantify axonal continuity using ImageJ or MetaMorph is 

extremely time-consuming and often unreliable when axons are present at high density or 

cross each other or form bundles.

Discussion

In this study, we developed a microfluidic chamber-coupled axonal quantification algorithm 

that is suitable for high-throughput automatic quantification of axonal morphology. Under 

our culture conditions, embryonic cortical neurons harvested from one E18 pregnant rat 

(approx. 2.5 × 106 cells), are sufficient for cultures in 50 microfluidic chambers, yielding 

12,500 usable axonal bundles that can be imaged and quantified. The confocal imaging of 

50 chambers takes approximately 25 h, and analyses of these images using our algorithm 

take no more than 0.5 h. Therefore, quantification of axonal morphology using our method 

is significantly more time efficient as compared with previously published methods.

In contrast to the traditional method using neurons cultured on coverslips, in which cell 

density and axonal density have a significant impact on the quality of axonal analysis, our 

microfluidic chamber-coupled AxonQuant method can be used at different cell densities 

with the analyses not affected by cellular or axonal density. In traditional neuronal cultures, 

when the cell density or axonal density is high or uneven, quantitative analysis of axonal 

morphology is often difficult. Furthermore, because of the small fraction of axons that can 

be selected for analyses by the traditional culture method and due to the inefficient nature of 

manual selection and manual analysis of axonal morphology, the traditional method of 

axonal quantification has been highly labor-intensive and fraught with selection bias as well 

as subjectivity in assessment.

In summary, our microfluidic chamber culture-coupled AxonQuant algorithm has several 

advantages over published methods [6–12] for axonal morphological analysis. First, our 

method allows efficient analyses of a large number of axonal images in a nonbiased 
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objective manner. Second, the AxonQuant algorithm is more reliable and not affected by 

cell density or axonal density in cultures, in contrast to currently available software such as 

MetaMorph, which was used in our previous study. Third, our method makes it easy to 

automatically quantify large numbers of axonal bundles without manual selection of areas of 

interest, whereas traditional methods such as MetaMorph and ImageJ are useful only with 

individual axons when they are imaged at densities sufficiently low to allow selection/

marking of axonal regions to be quantified. To assess axonal continuity using MetaMorph or 

ImageJ is extremely time-consuming and often not reliable when axons are present at a high 

density or overlap each other or form bundles, and it is difficult to decide whether there is 

axonal breakage or not.

The core algorithms, feature extraction and ANN-based feature analyzer of the Axon-Quant 

can also be used to quantitatively study axons of neurons cultured on regular cover-slips 

after minor modifications have been made. It should be noted that our algorithm can be used 

for quantifying axons of neurons cultured in commercially available microfluidic devices 

such as the ones provided by Xona Microfluidics LLC. In addition, the algorithm can also be 

used to quantify the specified structural feature of images, such as aggregates or filamentous 

structures, in a high-throughput manner. When fully utilized, our new method will facilitate 

large-scale high-throughput screening of genetic factors and pharmacological compounds 

that alter axonal morphology. Our method should be highly useful for studying 

neurodegenerative diseases involving axonal damage and for developing therapeutic 

approaches to such debilitating health problems.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Improved microfluidic chamber design and its application in imaging axons. a Diagram 

illustrating a compartmentalized microfluidic chamber which is suitable for efficient 

imaging of axons. Different compartments are labeled, including proximal (Prox.) and distal 

(Dist.) axonal microgrooves. b The top view and overall view of the microfluidic chamber 

with the axonal images captured in the axonal microgrooves. The axons in microgrooves 

were imaged following immunostaining using anti-Tuj1 antibody using × 10 and × 63 

objectives. c Immunostaining using anti-Tuj1 and anti-MAP2 demonstrated that neurites 

detected inside proximal microgrooves were axons, with most dendrites confined to the cell 

body compartment. DIC = Differential interference contrast imaging.
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Fig. 2. 
Multiple-microgroove axonal imaging of microfluidic chamber-cultured neurons. a 
Diagrammatic illustration of a microfluidic chamber and adaptation to a 12-well format. b 
Representative images by confocal microscopy of axonal bundle arrays in microgrooves 

following Tuj1 immunofluorescent staining. When the microfluidic chamber was removed 

from the coverslip for immunostaining and imaging, the axonal bundles were flattened onto 

the coverslips, making the axonal bundles appear bigger than 5 μm (the width of the 

microgrooves).
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Fig. 3. 
Flow chart and images illustrating the development of the AxonQuant1.0 algorithm. RT = 

Radon transform; FFT = fast Fourier transform; GMM = Gaussian mixture model; ANN = 

artificial neural network. a Flowchart for developing our AxonQuant algorithm. b Core 

features of ANN model used for calculating the axonal continuity index. c Wavelet 

decomposition of axonal images. The vertical, diagonal and horizontal (cVi, cDi and cHi) 

wavelet coefficients were derived from image data after 3 decomposing iteration processes 

at different scale levels. d Feature vectors as defined by the entropy and GMM of WT 

coefficients at different levels. e The supremum and infimum sets of simulation data. f 
Representative axonal image datasets used for machine training in algorithm development 

are shown at the axonal density of 10–40 axons per microgroove. The entire training 

datasets include 5, 10, 15, 20, …, 40 axons per microgroove.
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Fig. 4. 
Stability of AxonQuant algorithm. a,b Representative fluorescent microscopic images of 

selected microgrooves in which axon bundles (a) or 2 individual axons (b) could be clearly 

imaged under a ×63 objective. In b, the status of axonal integrity was determined by manual 

annotation as: ‘intact (2/2)’, ‘intermediate (1/2)’ or ‘completely broken’ (0/2). c The 25 

microgrooves in which axon density was sufficiently low to allow manual annotation as the 

ground truth was selected to validate the quantification method. The ground truth here had 

several discrete values (0, 33.3, 50, 66.7 and 100%) because the total number of axons in the 

selected microgroove was 2–3 and the number of healthy axons varied between 0 and the 

maximum value. The linear-regression result is shown. d Three groups of simulation data 

with different axonal densities (5, 10 and 20 axons/microgroove) were used to evaluate 

effects of axonal density on the axonal continuity index; 5–20 axons/microgroove were 

representative of the axonal density observed in microgrooves of microfluidic chambers. e 
Three groups of simulation data at different imaging intensities (×1.0, ×0.5 and ×0.25) were 

used to assess the influence of imaging intensity on algorithm stability. The maximum 

intensity without overexposure was denoted as ×1.0.
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Fig. 5. 
Validation of AxonQuant1.0 in quantitative measurement of axonal damage in MnCl2-

treated neurons. a,b Quantification results in neurons from the control group (Ctrl) at 2 

different cell densities. Approximately 15,000 and 30,000 cells were seeded in each 

chamber. Quantification of the axonal continuity index was not affected by cell density. c–e 
Fluorescent immunostaining images of axons treated with 0 (Ctrl) or 10 μM MnCl2 for 12 h 

(c) and quantification of axonal damage in neurons at 2 different cell densities, 15,000 and 

30,000 cells/chamber. f,g Quantification of axonal damage in neurons treated with MnCl2 at 

different concentrations: 0 (Ctrl) and 2–40 μM MnCl2. h Data distribution of axonal 

continuity index measured in axonal microgrooves from individual single chambers versus 

from 4 chambers.
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Fig. 6. 
Validation of AxonQuant1.0 in quantitative measurement of axonal damage induced by 

temperature change. a The loss of axonal continuity of a single GFP-expressing axon as 

revealed by time-lapse fluorescent microscopy. Axonal damage was initiated when the 

temperature was gradually reduced to 23° C in cultured neurons by switching off heating 5 

min after the beginning of imaging. Time-lapse imaging was performed on a single axon of 

a cortical neuron for 50 min in 2-min intervals with 5 out of 26 time points shown. b Axonal 

continuity index plotted at different time points of images obtained in a. c Temperature 

changes in the cell culture dish over time.
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Fig. 7. 
Comparison between AxonQuant and ImageJ or MetaMorph in quantifying axonal 

morphology. a Twenty-five microgrooves in which the axon density was sufficiently low to 

allow manual annotation as the ground truth were selected to compare the performance of 

AxonQuant with that of ImageJ. The linear regression of the results obtained using 

AxonQuant (green line) is closer to the ideal line than the one obtained by ImageJ (purple). 

In addition, the variation by AxonQuant is smaller than that by ImageJ. b Simulation data 

were used to compare the performance of AxonQuant with that of MetaMorph. AxonQuant 

shows better algorithm stability than MetaMorph. When the ground truth value for axonal 

continuity was high, the results obtained using MetaMorph showed more deviation and 

poorer linearity.
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Table 1

Parameters used in AxonQuant1.0 algorithm

Parameters Description Values in this paper

ROI annotation w microgroove width 5 μm (determined by design of microfluidic chamber)

s microgroove spacing 15 μm (determined by design of microfluidic chamber)

c scale 0.175 μm/pixel (calculated from confocal imaging)

Feature extraction L WT level 3 (estimated by size of aggregation spot)

E feature vector P (cVi), σ1
2 (cVi), P (cHi), σ1

2 (cHi), H (cAi)

ANN classifier N number of ANN nodes N = a dim(EE); a ∈ [1, 2], dim(E) is the dimension of the feature vector, thus 20 
was used in this study
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