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Two long-standing traditions have highlighted cortical decision mechanisms in the parietal and prefrontal corti-
ces of primates, but it has not been clear how these processes differ, or when each cortical region may influence
behaviour. Recent data from ventromedial prefrontal cortex (vmPFC) and posterior parietal cortex (PPC) have
suggested one possible axis on which the two decision processes might be delineated. Fast decisions may be re-
solved primarily by parietal mechanisms, whereas decisionsmade without time pressuremay rely on prefrontal
mechanisms. Here, we report direct evidence for such dissociation. During decisions under time pressure, a value
comparison process was evident in PPC, but not in vmPFC. Value-related activity was still found in vmPFC under
time pressure. However, vmPFC represented overall input value rather than compared output value. In contrast,
when decisions were made without time pressure, vmPFC transitioned to encode a value comparison while
value-related parameters were entirely absent from PPC. Furthermore, under time pressure, decision perfor-
mance was primarily governed by PPC, while it was dominated by vmPFC at longer decision times. These data
demonstrate that parallel cortical mechanisms may resolve the same choices in differing circumstances, and
offer an explanation of the diverse neural signals reported in vmPFC and PPC during value-guided choice.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
Introduction

The ability to decide on appropriate courses of action amongst
competing alternatives is central to adaptive success. Whilst neural
signals representing the potential value of different courses of action
are widespread throughout the brain (Cai et al., 2011; Dorris and
Glimcher, 2004; Hernandez et al., 2002; Kable and Glimcher, 2007;
Kim et al., 2008; Padoa-Schioppa and Assad, 2006; Platt and Glimcher,
1999; Serences, 2008; Sugrue et al., 2004; Wunderlich et al., 2009),
two cortical regions, the ventromedial prefrontal cortex (vmPFC) and
the posterior parietal cortex (PPC), have attracted particular attention
for their likely roles in the selection process. Evidence for central roles
in choice for these two brain regions comes from two independent
and largely separate traditions. Extensive single unit recordings in the
Sciences, Faculty of Economics,
, Universitätsplatz 2, D-39106

. This is an open access article under
lateral intraparietal sulcus (LIP) of macaque monkeys during saccadic
decisions have revealed activity that integrates sensory information to
solve ambiguous sensory decisions (Gold and Shadlen, 2007); that
tracks the relative value of competing actions (Platt and Glimcher,
1999; Sugrue et al., 2004) and the Bayesian evidence for different
value-guided choices (Yang and Shadlen, 2007). By contrast, vmPFC's
importance for value-guided choice has been established largely in
the human literature. Patients with lesions to vmPFC become indecisive
about even trivial decisions (Barrash et al., 2000); choices that aremade
are often made poorly (Bechara et al., 1994, 2000) and according to un-
usual strategies (Fellows, 2006). In human imaging experiments, neural
activity in this region often contains value representations consistent
with a decision (Basten et al., 2010; Boorman et al., 2009; Jocham
et al., 2012; Kolling et al., 2012); and the balance of excitatory and in-
hibitory neurotransmitters in vmPFC impacts both on this neural signa-
ture and on behaviour in a fashion consistent with competitive models
of choice (Jocham et al., 2012).

These findings suggest analogous roles in choice for PPC and
vmPFC. Such similarities are further strengthened by the finding
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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that vmPFC lesions also impair decision-making in macaques
(Noonan et al., 2010); and that, in humans, the same signatures of
categorical choice can be seen in magnetoencephalography (MEG)
signals from these two cortical regions (Hunt et al., 2012). The exis-
tence of two such similar neural signatures in two brain regions so
distinct in both their anatomical location and connectivity pattern
(Öngür and Price, 2000; Sack, 2009) raises the question of what dis-
tinguishes neural processing in vmPFC and PPC, and in what situa-
tions either region might come to the fore to influence decision-
making. One intriguing possibility comes from the aforementioned
MEG study. Here vmPFC involvement was strongest in trials early
in the experiment, and stronger in trials that required integration
across choice dimensions. In both cases, more vmPFC activity was as-
sociated with longer reaction times, possibly as a result of more
deliberate and less automated choices. These data provided a sug-
gestive hint that vmPFC and PPC might be capable of performing
the same computations, but do so under differing circumstances.
We therefore designed an experiment to explicitly test the hypothesis
that vmPFC and PPC would perform decision-related computations in
choice situations without or with time pressure, respectively.

Methods

Participants

31 healthy participants (11 females, aged 18 to 35 years) participat-
ed in the experiment. Written informed consent was obtained prior to
the study. All experimental procedures were approved by the Central
University Research Ethics Committee. Volunteers were paid between
£ 20 and £ 30, depending on task performance. Three volunteers had
to be excluded because of extreme head motion, leaving a final sample
of 28 subjects (10 females).

Behavioural task

During fMRI, subjects performed a task that involved repeatedly
choosing between a left and right option to obtain monetary reward
(Fig. 1). Each option consisted of one rectangular horizontal bar and a
percentage written underneath it. The bar width represented the re-
ward magnitude and the percentage specified the probability with
which this reward would be delivered. Reward probabilities were inde-
pendent, such that on any given trial, either one of the two options, both
or none of them could be rewarded. The task thus required subjects to
integrate reward probability and magnitude into a value estimate to
make the best possible choice. Subjects made choices by pressing a
left or right button with the index or middle finger, respectively, of
the right hand. When a reward was available for the chosen option, an
amount proportional to the reward magnitude was added to a gray
progress bar at the bottom of the screen. Subjects' goal was to move
the progress bar across a gold target line to the right to win £ 2, at
which time the progress war was reset to zero and subjects started
over again. On a subset of trials, which we refer to as ‘no brainer’ trials,
both the magnitude and probability of one option were higher than on
Fig. 1. Task schematic. Short, middle and long trials were grouped in alternating blocks of 10 tr
middle condition, subjects could respond as soon as the options were onscreen. In the long con
prompting them to respond within 1 s.
the alternative option. The reward schedule was designed such that the
correlation between chosen and unchosen valuewas as low as possible,
thus allowing for largely separate portions of variance to be explained
by those factors. Themean correlation of these two factorswas r= 0.18.

In the short condition, options were presented on screen and sub-
jects had to make a choice within one second. In the middle condition,
options were presented on screen and subject could make a decision
whenever theywanted, without any response deadline. In the long con-
dition, options were first presented for a fixed viewing period of 3 s be-
fore a question mark appeared, from which time subjects had 1 s to
respond. If subjects failed to respond within the 1 s response window
in the short and long conditions, the following message appeared on
the screen: “Please respond faster!”. After a response wasmade, the se-
lected option was highlighted by a grey frame around the chosen op-
tion, which remained on screen for 3.5 to 6 s until the outcome was
revealed for 1 s. The outcome (reward or non-reward) was indicated
by the bars turning green or red, respectively. On every trial, the out-
comes of both options were revealed. The outcome was followed by
an intertrial interval (blank screen) of 3.5 to 6 s. Short, middle and
long trials were administered in alternating blocks of 10 trials. After
10 trials of one condition were completed, a precue with the message
short, middle or long appeared on screen for 1 s. 70 trials of each condi-
tion were completed. Thus, trials in the three conditions were identical,
except for the timing manipulation, which lead to different decision
times (median decision time = 793, 1180 and 3366 ms, for the short,
middle and long conditions, respectively).

In each condition,we searched for twopossible neural signals,which
are argued to represent different aspects of valuation and choice. An
fMRI signal that correlates with the sum of available values is argued
to represent a stimulus valuation stage that comes before a decision
process (Hare et al., 2009, 2011a, 2011b; Hunt et al., 2012; Plassmann
et al., 2007, 2010). By contrast, an fMRI signal that correlates with the
difference between chosen and unchosen values is argued to reflect
the outcome of the decision process itself (Basten et al., 2010;
Boorman et al., 2009; FitzGerald et al., 2009; Hunt et al., 2012; Jocham
et al., 2012; Kolling et al., 2012), as it requires the computation of
which option has been chosen and which option remains unchosen. In-
deed, if decision-related activity is imaged at millisecond resolution, a
clear transition from value sum to value difference correlations can be
seen as the decision unfolds (Cai et al., 2011; Hunt et al., 2012). Network
models of decision making imply that this transition occurs because
over time, the representation of the unchosen option changes. Thus,
while initially, network activity correlates positively with the value of
both options, it is the unchosen option which becomes suppressed,
thereby resulting in a positive correlation between unchosen value
and network activity. Our tests therefore focus on the effects of
unchosen value.

Here, by simply manipulating the amount of time that subjects
spendmaking decisions, we are able to change the types of value coding
that can be seen in vmPFC and PPC. We find that under time pressure
vmPFC encoded value sum, whereas PPC encoded value difference.
Without time pressure, vmPFC encoded value difference, whereas cod-
ing of value-related parameters completely disappeared from PPC.
ials. Every 10 trials, a precue signalled the condition for the next 10 trials. In the short and
dition, there was a fixed viewing period of 3 s before the central question mark appeared,
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Under time pressure, behaviour was guided primarily by PPC, whereas
it came under control of vmPFC without time pressure.

MRI data acquisition

MRI data were acquired on a 3 T Siemens Verio system equipped
with a 32 channel phased array head coil (Siemens, Germany). First,
a high-resolution T1-weighted scan was acquired using an MPRAGE
sequence. For functional imaging, 45 slices with a voxel resolution of
3 mm isotropic were obtained (no gap) using a sequence optimized
for the orbitofrontal cortex (Deichmann et al., 2003), with TR =
3000 ms, TE = 30 ms, flip angle = 87°, a slice angle of 15° and a local
z-shim applied around the region of the orbitofrontal cortex. Field
maps were acquired using a dual echo 2D gradient echo sequence
with TR = 488 ms and TE of 7.65 ms and 5.19 ms on a 64 × 64 × 40
grid. A total of 881 volumes were acquired on average, depending on
subjects' reaction times, thus resulting in a total task duration of about
44 min. We used Presentation (Neurobehavioural Systems, USA) to
present the task and record subjects' behaviour.

Behavioural data analysis

Prospect theory (Tversky and Kahneman, 1992) has demonstrated
that humans do notweightmagnitudes and probabilities in a statistical-
ly optimal way. We derived the subjective reward magnitudes and
probabilities by fitting utility functions according to prospect theory:

rS ¼ rO
α

pS ¼ pO
γ
= pO

γ þ 1 – pOð Þγ� �1=γ

where rO and pO are the objective reward magnitude and probability
that are transformed into the subjective magnitude and probability, rS
and pS, respectively. These values can then be used to calculate subjec-
tive expected values as

sEV ¼ rS � pS

The modelled probability to choose either of the two options was
then given by a softmax choice rule:

P C¼Kð Þ ¼ exp sEVK � τð Þ= exp sEVL � τð Þ þ exp sEVR � τð Þð Þ

where K is the choice made by the subject (left or right), n is the
number of options available, and τ is the softmax temperature that
expresses the degree of stochasticity in subjects' behaviour. We
used a Bayesian estimation procedure custom-implemented in
MATLAB (The Mathworks, USA) to obtain the free parameters α, γ
and τ that best describe subjects' behaviour. The parameter space
was set up as a three-dimensional grid in log space with 150 points
in each dimension. The joint posterior distribution of the unknown
model parameters is then given by the product of choice probabili-
ties over trials under each possible parameter combination in the
grid. The marginal posterior distributions on each parameter were
then obtained by marginalizing (numerical integration) over the re-
maining two dimensions of the grid. The optimal parameters were
then taken as the distribution means of those marginal posterior dis-
tributions. For the analysis of fMRI data, we used sEV, rather than the
objective pascalian values, as the former have been found to provide
a better fit to neural data in reward-guided choice tasks (Hsu et al.,
2009).
MRI data analysis

Analysis of fMRI data was performed using tools from the Functional
Magnetic Resonance Imaging of the Brain (FMRIB) Software Library
(FSL (Smith et al., 2004)). Functional data were motion-corrected
using rigid-body registration to the central volume (Jenkinson et al.,
2002), corrected for geometric distortions using the field maps and an
n-dimensional phase-unwrapping algorithm (Jenkinson, 2003), high-
pass filtered using a Gaussian-weighted lines 1/100 Hz filter and spatial
smoothing was applied using a Gaussian filter with 6 mm full-width at
half maximum. Conservative independent component analysis was
carried out using MELODIC (Damoiseaux et al., 2006) to identify and
remove obvious artefacts. EPI images were registered with the high-
resolution brain images and normalized into standard (MNI) space
using affine registration (Jenkinson and Smith, 2001). A general linear
model was fitted into prewhitened data space to account for local
autocorrelations (Woolrich et al., 2001). To investigate activity related
to the value difference between the chosen and unchosen options, we
set up a single GLM that contained the following seven regressors:
value difference, value sum, outcome value (reward vs. no reward
obtained), one regressor for the main effect from stimulus presentation
to response, one regressor for the main effect of outcome phase, and
two stick functionsmodelling left and right button presses, respectively.
In addition, the six motion parameters from the motion correction
were included in the model. A second GLM was set up to decompose
the effects of value sum and value difference into their constituent
terms, chosen value and unchosen value. To this end, the second
GLM was identical to the first one, except that the regressors
for value sum and value difference were replaced by regressors
coding for the chosen and unchosen values. Contrast images from
the first level were then taken to the group level using a random
effects analysis. Results are reported at a threshold of p b 0.001,
uncorrected.

Our analyses focused on two regions of interest (ROI), the vmPFC
and a region in the PPC, the posterior superior parietal lobule (pSPL),
as those had been shown to be related to key decision variables in a
previous study usingMEG (Hunt et al., 2012). In order to obtain inde-
pendent regions of interest (ROIs) that were not subject to selection
bias, we selected ROIs on the basis of a previous study using an ex-
perimental paradigm that was identical to the current study
(Jocham et al., 2012), except for the variations in the allowed deci-
sion time. From this study, we thresholded the contrast for value dif-
ference at p b 0.001 and used the resulting activation in the vmPFC as
ROI. To obtain an ROI for the pSPL, we used the same contrast, but set
the inclusion threshold to be more liberal at p b 0.01. This resulted in
ROI sizes of 648 mm3 (vmPFC) and 1288 mm3 (pSPL). We think that
the sub-threshold activation of pSPL observed in this and other pre-
vious studies from our lab is exactly a consequence of pSPL only be-
coming recruited when choices are made very quickly. Note that the
above-described whole-brain analyses serve a merely descriptive
purpose to highlight that we can detect activations in our present
study that overlap with our independently defined ROIs. In agreement
with previous studies (Boorman et al., 2009, 2011; Hunt et al., 2012),
we find a value difference correlate in the vmPFC (MNI x = −2, y =
28, z = −18, z-max = 4.03) and bilaterally in the pSPL (MNI x =
16, y = −48, z = 56, z-max = 3.15 and x = −12, y = −52, z = 60,
z-max= 3.14, Fig. 4). Note the very close correspondence of these acti-
vations with both our independent ROI and with the coordinates of
other studies reporting an overall value signal (Hare et al., 2009;
Plassmann et al., 2007, 2010) and value difference signal (FitzGerald
et al., 2009; Kolling et al., 2012) in vmPFC. In addition to these a priori
ROI, we also find activation in the posterior cingulate cortex (PCC, MNI
x = −6, y = −46, z = 34, z-max = 3.72). We report the data from
this PCC ROI in the supplementary material, along with a fourth region,
the midcingulate cortex (MCC), which was found in the previous, but
not in the current study.
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ROI analyses

We extracted raw BOLD signal timecourses from the above ROI. The
timeseries of each volunteer was then cut into trials with a duration of
16 s, where options were presented at 0 s, the response was made at
0.77, 1.41 or 3.4 s (for short,middle and long) and the outcomewas pre-
sented at 5.56, 6.21 or 8.24 s (for short, middle and long), which corre-
sponds to the mean onsets of these events across subjects and trials.
Timeseries were resampled to a resolution of 300 ms using cubic spline
interpolation in MATLAB. A GLM containing the parameters of interest
was then fitted at each time point for each volunteer. The two GLM
used here are the same as described above for thewhole-brain analysis.
In addition, reaction time was added as a covariate of no interest. This
resulted in a timecourse of effect size for each regressor in the design
matrix and for each volunteer. These timecourses were then averaged
across participants. For statistical testing, a hemodynamic response
function was then fit to these effect size timecourses from each partici-
pant (Behrens et al., 2008; Boorman et al., 2011). This resulted in one
parameter estimate per effect size timecourse and participant. These pa-
rameter estimates were tested for statistical differences from zero and
between conditions.

Results

Behaviour

As expected, reaction times were faster in short (median= 793ms)
compared tomiddle (median= 1180ms, t27= 8.3, p b 0.0001). In long,
reaction times were by definition longer (median = 3366 ms) due to
the imposed 3 s waiting period. We found that choice accuracy
depended on the time allowed for a choice (Fig. 2A). The percentage
of choices of option with the higher objective value was significantly
higher in long compared to short and middle (t27 N 4.54, p b 0.00015)
and higher in middle compared to short (t27 = 4.04, p b 0.0004). We
used prospect theory (Tversky and Kahneman, 1992) to characterize
Fig. 2.Behavioural results for the three conditions. A) Percent choices of the higher value option.
probability (γ), and softmax temperature (τ). C) Plotting the objective versus subjective magn
magnitudes in the middle and long, but not short condition. D–F) Regression of experimental
the probability to select the option. RP: reward probability, RM: rewardmagnitude, pO: outcom
ability and reaction time, RM × RT: interaction between reward magnitude and reaction time.
subjects' behaviour in this task. Whereas optimal behaviour on the
task would be to multiply magnitude and probability and to choose
the option with the highest Pascalian value, the model has two param-
eters that warp probability and reward space to match subject behav-
iour. A third parameter, the softmax temperature, τ, reflects the
accuracy of subject decisions on difficult trials (trials with low
value difference). τ was higher in short compared to middle and
long (t27 N 2.6, p b 0.015), and higher in middle compared to long
(t27 = 2.57, p= 0.016). This means that in short, subjects performed
particularly poorly compared to middle and long on trials where the
value difference between options was small. Notably, the parameter
that describes subjective distortions of reward magnitude (α) also
differed between conditions (Fig. 2B and C). In short, α did not differ
from 1 (p N 0.96), indicating that subjects' subjectively distorted re-
ward magnitudes were identical to the objective magnitudes. In
contrast, there was pronounced under-weighting of reward magni-
tudes (α b 1) in middle (t27 = 2.06, p = 0.049) and long (t27 = 5.08,
p b 0.0001). Between-condition comparison also showed that α was
higher in short compared to long (p = 0.007) and, by trend compared
tomiddle (p= 0.075). No such differences were found for the parame-
ter that describes the distortion of reward probability (γ). To investigate
this pattern in more detail, we performed a regression of different pa-
rameters that could influence participants' decisions against their
choices. The above results suggest that subjects' decisions are guided
to an equal extent by probability and magnitude in short, whereas in
middle and long, they appear to base their choices primarily on reward
probability while tending to neglect reward magnitudes. If this is the
case, the regression coefficients for probability should be equal to
those for magnitudes in short, but higher in middle and long. Fig. 2D–F
shows exactly such a pattern. The regression coefficients for probability
were significantly larger than those for magnitude in middle (t27 =
3.39, p = 0.002) and long (t27 = 7.76, p b 0.0001), while they did
not differ in short (p N 0.4). The differences between the probability
and magnitude regression coefficients also differed between short
and middle (t27 = 5.39, p b 0.0001) and short and long (t27 = 6.67,
B) Parameters fromprospect theory for subjectiveweighting of rewardmagnitude (α) and
itudes using the weighting parameter displayed in (B) shows underweighting of reward
parameters against subjects' choice. Positive values indicate that the parameter increases
e on previous trial, pC: choice on previous trial, RP × RT: interaction between reward prob-

image of Fig.�2


Fig. 4.Whole-brain results andmasks used for ROI analyses. A) Effect of value difference at
p b 0.001 in the vmPFC and posterior cingulate (left) and, at lower threshold (p b 0.01) in
the pSPL (right). B) Regions of interest selected from a previous study showing activity re-
lated to value difference in the vmPFC (green), midcingulate cortex (yellow), posterior
cingulate cortex (blue) and pSPL (red).
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p b 0.0001). Further to these differences between conditions, we
also found that within both short and middle, there was a positive
interaction effect of probability and reaction time on choice (t27 =
5.6, p b 0.0001). This means that even in short, with increasing deci-
sion times, subjects put more weight on reward probabilities. As ex-
pected, no such interaction with reaction time was found in long, due
to the imposed pre-response waiting period.

However, we questioned whether this behavioural pattern could
be due to the specific way the task was presented. In our experiment,
reward magnitudes were displayed as rectangular bars, whereas
probabilities were displayed as percentage numbers. It is possible
that the bars can be processed faster than the numbers at a perceptu-
al level. This would imply that the behavioural effect is simply due to
the fact that subjects did not have enough time to process probabil-
ities in short. We performed a behavioural control experiment in
which the option display was reversed, such that probabilities were
now shown as bars and magnitudes were shown as numbers.
Under these conditions, we find that in short, subjects' choices are
governed by both reward probability and magnitude, but to a much
larger extent by probability (t27 = 8.18, p b 0.0001). This dominance
of probability, while still present in middle and long, was reduced
compared to short (comparison of the difference between the prob-
ability and magnitude weights: t27 = 3.62 p b 0.003 for short versus
middle and long, and middle versus long, Fig. 3). Furthermore, the re-
ward magnitude distortion parameter α now also showed the reverse
pattern: α was lower than 1 in short andmiddle (t27 = 4.1 p b 0.0015,
but not in long (p N 0.67). This additional data suggests that the differ-
ential weighting of decision variables across conditions is primarily
driven by choices being governed by the options' perceptual features
(bar width) under time pressure.

Cortical value correlates

Our analyses focused on two regions of interest (ROI), the vmPFC,
a region in the PPC, the posterior superior parietal lobule (pSPL) as
those had been shown to be related to key decision variables in a pre-
vious study using MEG (Hunt et al., 2012). We report two additional
areas in the supplementary materials, the midcingulate cortex
(MCC) and the posterior cingulate cortex (PCC), which showed
value-related activity in a previous study but about which we had
no a priori hypothesis. We first performed a whole-brain analysis in-
vestigating the effects of value difference across conditions (see
Methods). We found a value difference correlate in the vmPFC
(MNI x = −2, y = 28, z = −18, z-max = 4.03), in posterior cingu-
late cortex (PCC, MNI x = −6, y = −46, z = 34, z-max = 3.72) and
bilaterally in the pSPL (MNI x = 16, y = −48, z = 56, z-max = 3.15
and x = −12, y = –52, z = 60, z-max = 3.14, Fig. 4). Note that this
Fig. 3. Results for the behavioural control experiment. Bars represent regression coefficients
choices. Positive values indicate that the parameter increases the probability to select the option
on previous trial, RP × RT: interaction between reward probability and reaction time, RM × RT
whole-brain analysis primarily serves display purposes. The relevant
statistical tests are performed directly on the ROI data.

Next, we extracted rawBOLD signal timecourses from the above ROI,
divided it up into trial epochs and regressed designmatrices containing
the value-related parameters of interest against the BOLD signal at each
timepoint in each trial (see Methods and materials), separately for the
short,middle and long conditions. A first analysis tested for the presence
of representations of either value sum or value difference in the two ROI
in the different conditions by running separate t-tests on value sum and
value difference. Next, to directly test our assumption that vmPFC and
pSPL were differentially engaged in coding value-related parameters
across conditions, we performed a two-way ANOVA with the within-
subjects factors brain area (vmPFC, pSPL) and condition (short, middle,
long) for the chosen andunchosen value effects. For the unchosen value,
we found an effect of brain area (F1,27 = 5.72, p = 0.024) and a brain
area × condition interaction (F2,54 = 3.94, p = 0.025), but no effect of
condition alone (p = 0.30). We followed this up by post-hoc tests. We
expected that in short, vmPFC activity would be positively correlated
with both the value of the chosen and unchosen options, thus giving
rise to a correlation with value sum. In contrast, in middle and long,
we expected a positive correlation with chosen value, but a negative
correlation with the unchosen value, thus giving rise to a correlation
with value difference. Note that the crucial statistical test is on the ef-
fect of the unchosen value, as the key prediction of the biophysical
(mean ± SEM) obtained from a regression of experimental parameters against subjects'
. RP: reward probability, RM: rewardmagnitude, pO: outcome on previous trial, pC: choice
: interaction between reward magnitude and reaction time.

image of Fig.�3
image of Fig.�4
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model is that the unchosen valuewill be changed over time to correlate
positively with vmPFC activity initially but then change to correlate
negatively as the competition is resolved. In contrast, the correlation
with the chosen value is not expected to change significantly over
time. Hence, because value sum and value difference reflect both
chosen and unchosen value effects, testing on the unchosen value is a
more sensitive test for our hypothesis.

In vmPFC, we found exactly such a pattern. In short, there was an
effect of value sum (t27 = 1.91, p = 0.033), but not of value differ-
ence (p N 0.1). In contrast, inmiddle and long, there wasn't any effect
of value sum (p N 0.38) but instead vmPFC now encoded value dif-
ference (t27 = 2.19, p b 0.02, Fig. 5). According to our hypothesis,
this should be due to the different effects of the unchosen value:
While we expected a positive correlation with the chosen value in
all three conditions, the unchosen value was hypothesized to be pos-
itively correlated with vmPFC activity in short, but negatively in
middle and long. Direct pre-planned comparisons between condi-
tions showed that the effect unchosen value was indeed more posi-
tive in short compared to middle (t27 = 2.05, p = 0.025) and, by
trend, long (t27 = 1.54, p = 0.068).

This pattern of results contrasted with the pSPL. There was robust
coding of value difference in the pSPL in short (t27 = 5.0, p b 0.0001)
Fig. 5. Timecourse of value-related effects in the ventromedial prefrontal cortex (vmPFC) over th
sumon BOLD activity in vmPFC. Right column: Effects of chosen and unchosen option value on v
areas are standard error of the mean.
and middle (t27 = 2.34, p b 0.015), but this was absent in long
(p N 0.27, Fig. 6). Focussing again on the unchosen value, we found
that a negative effect was present in both short and middle
(t27 N 3.25, p b 0.0015), but not in long (p N 0.29, Fig. 6). Again, direct
pre-planned comparisons revealed a stronger negative unchosen
value effect in short compared to long (t27 = −2.72, p = 0.011),
and a stronger negative effect in short compared to middle (t27 =
2.05, p = 0.025). Thus, pSPL showed a pattern opposite to that of
vmPFC, with representation of value difference being pronounced
under time pressure, but gradually diminishing as subjects were
allowed more time to decide.

Relationship between cortical value coding and performance

The above data suggest that at short decision times, choices are
governed by pSPL whereas they come under control of the vmPFC
at longer decision times. To test this, we set up (for each condition)
a general linear model that contained the chosen and unchosen
value effects from vmPFC and pSPL as regressors to predict choice
performance (% choices of the higher-value option). In each of the
three models, we set up one contrast for the effect of chosen value
in both regions and one contrast directly comparing the effect of
e course of a trial in the three conditions. Left column: effects of value difference and value
mPFC BOLD activity. Solid lines representmean effect sizes across participants, and shaded
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Fig. 6. Timecourse of value-related effects in the posterior superior parietal lobule (pSPL) over the course of a trial in the three conditions. Left column: effects of value difference and value
sum on BOLD activity in pSPL. Right column: Effects of chosen and unchosen option values on pSPL BOLD activity. Solid lines represent mean effect sizes across participants, and shaded
areas are standard error of the mean.
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the chosen value between vmPFC and pSPL. In the short condition,
decision accuracy tended to correlate positively with the pSPL cho-
sen value signal (t27 = 1.32, p = 0.099), but not with the vmPFC
chosen value signal (t27 = −0.99, p N 0.16). Likewise, direct com-
parison between pSPL and vmPFC further showed that behaviour
was, by trend, related more to the chosen value signal in pSPL than
in vmPFC (t27 = 1.471, p = 0.076). This pattern reversed in the
middle condition. Here, decision accuracy tended to correlate positively
with the chosen value signal in vmPFC (t27= 1.532, p= 0.069) but not
in pSPL (t27 = −0.69, p N 0.75). Direct comparison between pSPL and
vmPFC showed that, in contrast to the short condition, behaviour was
now more related to the chosen value signal in vmPFC than in pSPL
(t27 = 1.74 p = 0.047). A similar pattern as in middle emerged
in the long condition. Decision accuracy was positively related
to the vmPFC (t27 = 1.94 p = 0.031), but not to the pSPL chosen
value signal (t27 = −0.195, p N 0.4). Again, direct comparison be-
tween vmPFC and pSPL showed, by trend, a stronger relationship of
decision accuracy with vmPFC than with pSPL (t27 = 1.33 p =
0.097). Thus, overall it appears that value-guided choice is under
stronger control by parietal rather than prefrontal cortex when sub-
jects have to make very fast decisions, whereas prefrontal cortex
seems to take a more important role when subjects do not face
time pressure.
Discussion

A number of neuroimaging studies have found correlates of value in
the vmPFC. Yet, there has been disagreement about the computation
supported by this region. Some of the studies found vmPFCBOLD to cor-
relate with the value of the available options (Hare et al., 2009, 2011a,
2011b; Plassmann et al., 2007, 2010), whereas others found it to be cor-
related with either the value of the chosen option only (Wunderlich
et al., 2009, 2010), or with the value difference between chosen and
unchosen options (Boorman et al., 2009; Jocham et al., 2012). This is a
fundamental difference, as the former would reflect a signal that serves
as an input to a decision process, whichmight then be implemented by
some downstream brain structure. In contrast, a correlation with cho-
sen value, or value difference, reflects a signature of a decision process
itself, i.e. a categorical choice.

According to network models of decision making, neuronal pools in
vmPFC initially reflect value-related inputs, thus giving rise to an overall
value signal, i.e. a correlation with the value of both options. Neuronal
competition then results in one pool ending up in a high-firing state
(the neurons representing the option that is chosen), whereas activity
in the other pool is suppressed (the neurons representing the unchosen
option). Thus, depending on the time at which the network dynamics
are observed, it is possible to find a correlate of either overall value or
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value difference within the same brain area.We have recently provided
evidence for such a competition mechanism in the vmPFC. Neural dy-
namics in both vmPFC and pSPL recorded with MEG matched with
these model predictions (Hunt et al., 2012). Furthermore, across-
subject variations in the vmPFC levels of the major neurotransmitters
GABA and glutamate predicted decision accuracy and the dynamics of
the vmPFC value difference signal in a pattern as predicted by a network
model (Jocham et al., 2012). However, this competition requires time to
be resolved. If a choice is made very quickly, either because no integra-
tive value comparison is required (as when deciding between a pre-
ferred and non-preferred food or on no-brainer trials) or because
subjects are put under time pressure, the network still represents the
overall value (Hunt et al., 2012). Our present results provide support
for such a mechanism.When subjects are forced to respond very quick-
ly, the competitionwithin the vmPFC has not been resolved andhence it
still represents value sum. In contrast, when more time for a decision
was allowed, the competition has already been resolved and the net-
work no longer represents overall value, but instead hasmade the tran-
sition to a correlation with value difference.

If the vmPFC represents value under time pressure, but does not
transform these inputs into a choice, then the decision must be
made by another brain region. A candidate region for this is a region
in the PPC, the pSPL. We show that under time pressure, activity in
pSPL correlates with value difference. As the value difference signal
begins to emerge in vmPFC at longer decision times, correlates of
value-related parameters entirely disappear from pSPL. This is in
line with recent findings suggesting that vmPFC is not involved in
choice in situations where decisions are made very quickly, on the
basis of perceptual features. We recently showed that vmPFC coding
of value difference disappeared over the course of an experiment as
subjects' responses became incrementally faster. This was paralleled
by increasing recruitment of the pSPL (Hunt et al., 2012). Likewise, a
value difference correlate in vmPFC was not observed on so-called
no-brainer trials, where both reward probability and magnitude dic-
tated the same choice (Hunt et al., 2012). In other words, vmPFC was
only involved when the trial required subjects to integrate probabil-
ities and magnitudes into a combined value estimate. If no such inte-
gration is required, or if choices are highly overtrained, vmPFC
appears not to be involved. Further to this, we recently showed
that vmPFC levels of GABA and glutamate were predictive of sub-
jects' choice performance. Importantly however, rather than corre-
lating with overall choice accuracy, neurotransmitter levels were
most predictive of subjects' propensity to select the higher-value op-
tion on difficult trials with low difference in the options’ values
(Jocham et al., 2012). On the other hand, those fMRI studies finding
a correlate of overall value rather than value difference either in-
volve only a valuation process, as in willingness to pay studies
(Plassmann et al., 2007, 2010; Sokol-Hessner et al., 2012), or again
decisions that are likely very automated and hence can be made very
quickly, such as when choices have to be made between food items
(Hare et al., 2009, 2011a, 2011b), where subjects have clear preferences
and hence need not rely on an effortful value comparison mechanism.

Our data thus offer a mechanistic explanation for the discrepant re-
sults across studies. They also suggest complementary roles for vmPFC
and pSPL in decision-making. While pSPL affords the ability to respond
quickly in the face of time pressure, or in situations that do not require
much cognitive effort, vmPFC seems to be recruited when choices de-
mand more time, possibly as a result of computing an integrated
value. Apparently, and as suggested by biophysical models, this process
is more time-consuming and hence does not dominate choice at very
short response times. However, network models also suggest an alter-
native explanation. The models can be modified to allow faster deci-
sions by increasing the degree of recurrent excitation. Under these
conditions, the network still makes a decision, but activity primarily
represents value sum rather than value difference (Hunt et al., 2012).
This would suggest that vmPFC is involved in comparison in all three
conditions, but that the signature of this comparison changes from
short to long. Arguing against this interpretation, we find that choice ac-
curacy was relatedmore to value-related activity in pSPL than in vmPFC
in the short condition, whereas this relationship reversed in themiddle
and long conditions. This varying correlation with behaviour, albeit not
very pronounced, suggests that choices are indeed under differential
control of the two brain regions under the differing experimental de-
mands. However, despite the pronounced representation of chosen
and unchosen value in the pSPL, there was only a rather weak rela-
tionship between value coding in pSPL and choice accuracy in the
short condition. This hints at a likely involvement of additional brain re-
gions in decision making under time pressure. It is also important to
note that we do not know why the value representations change be-
tween pSPL and vmPFC across conditions. It is possible that time pres-
sure enhances levels of stress or attention, and the resulting increase
in release of acetylcholine and norepinephrine (or other stress-related
neuromodulators or neurohormones) drives the change in neural rep-
resentation. This will be a topic for future research in both theoretical
and experimental studies.

It has to be noted that pSPL is located in a region of parietal cortex
that has been involved in attentional mechanisms and in the control
of hand and eye movements. Because eye movements and force of but-
ton presses were notmeasured in our study, it might be argued that our
findings of value-related activity in pSPL are confounded by these fac-
tors. However, several points argue against such an interpretation. First-
ly, we are not reporting differences in main effects between conditions
and instead report only value correlates. Therefore, any differences
that can simply be ascribed to different time pressure will not affect
our results, only the interaction of time pressure with value will be af-
fected. However, since we have included reaction times as covariates
in all of our GLM analyses, the value correlates we report are orthogonal
to reaction times. Secondly, attention and saccades are tightly linked to
value comparison. There is evidence that the value comparison process
is indeed guided by visual fixations (Krajbich et al., 2010) and explicitly
manipulating participants' attention to one option made them more
likely to select that option, independent of its value (Lim et al., 2011).
Furthermore, the force of hand movements is directly related to an
option's expected value (Pessiglione et al., 2007). Thus, attention, visual
fixation and fervency of hand movements likely represent different
facets of a value comparison process. Further to this, our pSPL ROI lies
in an area slightly dorsal to what would correspond to primate LIP and
ismore likely equivalent to themonkey parietal reach region, and there-
fore likely more related to hand and arm rather than eye movements
(Fearnley and Lees, 1991; Shiner et al., 2012). As stated above, the ef-
fects we report are orthogonal to reaction time, and hence likely to dif-
ferences in movement speed.

Wehave reported differences between two brain regions involved in
decisionmaking. Onemight argue that such direct comparison between
brain regionsmay be problematic because of potential differences in the
hemodynamic response. However, it is crucial to note that we do not
compare the absolute magnitude of the BOLD response. Instead, we
compare the modulation of the BOLD signal by value, over and above
the mean hemodynamic response. Furthermore, we show that vmPFC
represents value difference when there is no time pressure, but not
under time pressure, while the opposite pattern is found in pSPL. Such
a double dissociation could not occur if one of the twobrain regions sim-
ply had an overall lower neurovascular response. In such a case, this re-
gion would generally show reduced responding unter either condition.

It is notable that longer decision timeswere not only paralleled by an
increase in decision accuracy, but also by differential weighting of re-
ward magnitudes and probabilities. Our control experiment indicated
that this was due to perceptual characteristics of the task. Apparently,
under time pressure, decisions can be performed primarily by parietal
cortex if the choices can bemade on the basis of the options' perceptual
features, either spatial or numerical (Hubbard et al., 2005; Pinel et al.,
2004), such as the size of reward bar or the magnitude of the presented
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number. Only with more time, allowing for the calculation of internal
subjective values, vmPFC comes to dominate the decision process.

In summary, we have demonstrated that the precise value correlate
found in vmPFC depends on the network dynamics, which in turn are
subject to the specifics of the experimental setup. Furthermore, our
data point to complementary roles for vmPFC and pSPL in value-
guided decisionmaking.While pSPL enables rapid choices, vmPFC is im-
portant in more time-consuming decisions, possibly on the basis of
more abstract value computations.
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