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Abstract

Donor-specific alloantibodies (DSA) mediate hyperacute and acute antibody-mediated rejection

(AMR), which can lead to early graft damage and loss, and are also associated with chronic AMR

and reduced long-term graft survival. Such alloantibodies can be generated by previous exposure

to major histocompatibility (MHC) antigens (usually via blood transfusions, previous allografts or

pregnancy) or can occur de novo after transplantation. Recent studies also suggest that non-MHC

antibodies, including those recognising major histocompatibility complex class I-related chain A

(MICA), MICB, vimentin, angiotensin II type I receptor may also have an adverse impact on

allograft outcomes. In this review, we consider how the dose, route and context of antigen

exposure influences DSA induction and describe factors which control the generation,

maintenance and survival of alloantibody-producing plasma cells. Finally, we discuss the

implications of these variables on therapeutic approaches to DSA.

Introduction

Donor-specific HLA alloantibodies (DSA) mediate hyperacute, acute and chronic antibody-

mediated rejection (AMR) [1,2] and remain a major problem in the field of transplantation.

Their presence is associated not only with humoral rejection which can lead to early graft

damage and loss, but also with reduced long-term graft survival. Such alloantibodies can be

generated by previous exposure to major histocompatibility (MHC) antigens (usually via

blood transfusions, previous allografts or pregnancy) or can occur de novo after

transplantation. New, sensitive assays for the detection of DSA in the serum of solid organ

transplant recipients have implicated antibodies in adverse graft outcomes in many more

patients than was previously thought. In particular, chronic microvascular injury mediated

by DSA is emerging as a leading cause of progressive loss of function and failure of kidney

transplants [3,4•]. The ability to diagnose AMR has been significantly enhanced by the use

of anti-C4d staining of allograft biopsies [5], which identifies antibody-associated

complement deposition on endothelium, though recent evidence suggests that C4d negative

humoral rejection may also occur [6].
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An understanding of the variables which alter the likelihood of the development and

maintenance of serum DSA is needed in order to develop a logical approach to preventing

alloantibody generation, transplanting sensitised patients and treating humoral rejection. In

this review we will consider these variables in detail, after first providing an overview of the

B cell response to protein antigen. We will consider how the dose, route and context of

antigen exposure influences DSA induction. We will then describe factors which control the

generation, maintenance and survival of alloantibody-producing plasma cells, and then

factors that control the rate of production and half-life of such antibodies in the serum.

Finally, we will discuss the implications of these variables on therapeutic approaches

directed against DSA.

Overview of the B cell response to protein antigen

B cell activation is a multistep process which starts with B cell recognition of its cognate

antigen, and leads to formation of antibody secreting cells or plasma cells. This process

relies on the coordinated interaction and migration of different cell types in the secondary

lymphoid organs (SLOs).

Antigen transport and recognition

The first step of B cell activation depends on the interaction between the B cell receptor

(BCR) and its cognate antigen. The structure of SLOs plays a crucial role in this encounter,

providing a platform in which tissue-derived antigens and cells in lymphatic fluid may

interact with blood-derived cells, including naïve B cells, from the circulation.

The route of antigen delivery to SLOs and, more precisely, to the B cell follicle is function

of the size and nature of the antigen. Direct diffusion of small soluble antigens through the

pores of the subcapsular sinus (SCS) of lymph nodes (LNs) has been previously reported

[7]. Alternatively, small antigens can reach the B cell follicle via the conduit system, which

emerges from the SCS and extends throughout the LN. Afferent lymph circulates through

the conduits, which are formed from a network of collagen fibres covered with stromal cells.

[8,9••]. B cells can sample antigen from conduits and be directly activated. Alternatively,

dendritic cells (DCs) and follicular dendritic cells (FDCs) can take up antigen and present it

to B cells.

Large particulate antigens like immune complexes cannot cross the SCS floor nor pass

through the conduits and thus need capturing and presenting by accessory cells. FDCs are

restricted to the B cell follicle and are closely associated with conduits. They retain antigen

on their surface for long periods of time via interaction with complement receptors [10,11]

and the inhibitory receptor FcγRIIB [12]. Large antigens are shuttled from the blood to the

FDCs in a cell-mediated manner. Marginal zone (MZ) B cells are involved in this process in

the spleen. They bind blood-derived antigen in the MZ and then shuttle between the MZ and

the follicle. Moreover, blockade of this shuttling leads to a defective antigen loading of

FDCs, supporting the importance of MZ B cells in antigen delivery to the FDCs [13•]. In the

spleen and the lymph nodes, transport of lymph-derived antigen from the SCS to the follicle

relies on the sampling of the SCS and uptake of antigen by specialised macrophages.

Cognate B cells can be directly activated by these SCS macrophages and migrate to the T/B
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border whereas non-cognate B cells uptake antigens from the SCS macrophages and transfer

them to FDCs [14-16].

B cells can also interact with antigen presented by resident or newly emigrant DCs in the

paracortex following their entrance in the LNs via the high endothelial venules (HEV) [17].

Indeed, immune complex binding to FcγRIIB expressed on DCs leads to recycling in non-

degradative compartments and thus presentation of native antigen to B cells [18].

B cell migration to the T/B border

Once activated, B cells need to migrate to the interface between the B follicle and the T-cell

zone to receive T cell help (Figure 1). SLOs are highly organized structures characterised by

the segregation of T cells and B cells in distinct zones. This segregation is maintained by

chemokine gradients and specific stromal cells [19]. B cell compartmentalization is

dependent on the interaction between the chemokine receptor CXCR5 and its ligand,

CXCL13, which is mainly secreted by FDCs. In the T-cell zone fibroblastic reticular cells

(FRCs) are wrapped around the conduits and bind CCL19 and CCL21 promoting the

homing and migration of CCR7-expressing T cells. Upon antigen stimulation B cells up-

regulate CCR7 whilst maintaining CXCR5 expression, which leads to their migration to the

T/B border where they present antigen in the context of MHC class II molecules, stimulating

cognate CD4+ T cells. Subsequently, CD4 T cells provide help to B cells by direct cell-cell

interaction via costimulatory molecules such as CD40/CD40-L and by cytokine secretion

inducing clonal expansion of antigen-experienced B cells and further differentiation (Figures

1).

B cell differentiation

Following T-dependent activation, B cells can undergo two different fates; they may

differentiate into extrafollicular plasmablasts which are still dividing, and maintain the

ability to migrate or they may enter germinal centres where they undergo somatic hyper

mutation and class switch recombination (Figure 1c). Mutated clones with higher affinity for

antigen are positively selected and differentiate into either memory B cells (which can be

reactivated quickly following a second encounter with antigen) or plasma cells.

Most plasma cells are short-lived and die by apoptosis in a matter of days. These short-lived

plasma cells are usually generated after a primary immune response and secrete class

switched, low-affinity antibodies. They are generated quickly after antigenic challenge and

form a first line of defence against pathogens.

A small proportion of plasma cells arising from the germinal centre and enriched for high

affinity variants migrate to the bone marrow where they become fully differentiated long-

lived, plasma cells responsible for maintaining antibody titres [20]. The survival of these

long-lived plasma cells depends entirely upon their microenvironment as detailed below.

Plasma cells have also been described in inflamed tissues for example, in the joints of

patients with rheumatoid arthritis, the thymi of those with myasthenia gravis and the kidneys

of those with SLE, suggesting that inflammatory lesions may provide supplementary

survival niches. Similarly, plasma cells have also been described in renal and cardiac

allograft [21-23].
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In the context of transplantation, pre-existing donor-specific memory B cells or antibodies

could lead to acute rejection. DSA can also be generated following transplantation. Graft-

specific antigens may be transported via lymphatics to draining LNs, inducing B cell

activation. Moreover, host DCs may infiltrate the graft following transplantation and

transport graft antigen to the draining lymph nodes inducing B cell activation. Furthermore,

lymphoid neogenesis and formation of tertiary lymphoid organs (TLOs) have been observed

in several animal allograft models [21,24] and in human renal and cardiac allograft [21-23]

suggesting that B cell activation could occur directly in the graft.

Antigen and alloantibody formation in transplantation

Antigen specificity

Antigens against which antibodies are commonly raised in solid organ transplantation

include highly polymorphic molecules which may significantly differ between donor and

recipient (for example, human leucocyte antigens (HLA)) as well as non-polymorphic

molecules (for example, vimentin). The best-studied targets of alloantibodies are MHC class

I and II antigens. Class I HLAs (A, B and C) are expressed on all cells (including graft

endothelium) whilst class II (DP, DQ, DR) expression is limited to antigen presenting cells

(such as dendritic cells, macrophages and B cells), and may also be variably found on renal

endothelial cells. HLA molecules are not equally immunogenic, and some are more likely to

initiate a humoral rather than a cellular immune response [25]. The relative immunogenicity

is not an intrinsic property of a particular donor HLA molecule, but must be considered in

the context of recipient HLA [26,27]. HLA epitopes recognised by alloantibodies are

composed of three amino acids (triplets). The likelihood of developing antibodies to HLA

class I molecules (either during pregnancy or following transplantation) is directly related to

the number of non-self triplets present in antibody accessible sites of the Class I molecule

[28,29]. The immunogenicity of an HLA alloantigen depends not only on the number of

non-self triplets but also on their physiochemical characteristics. Differences in

hydrophobicity and electrostatic charge between mismatched HLA class I molecules

strongly influence the likelihood of class I-specific alloantibody formation post-

transplantation [30].

The demonstration that higher panel reactive antibody was associated with reduced allograft

survival in HLA identical sibling transplants emphasised the potential importance of non-

HLA antibodies [31]. Endothelial cells express a number of antigens not found on

leucocytes, some of which are polymorphic, for example, major histocompatibility complex

class I-related chain A (MICA) and major histocompatibility complex class I-related chain B

(MICB). Around 60 MICA alleles have been described and alloantibodies binding MICA

have been identified in 11% of transplant recipients [32,33•], can be eluted from kidneys

undergoing rejection [34], and their presence before transplantation is associated with an

increase in allograft failure and with early graft loss [33•]. MICB is less polymorphic and

antibodies directed against MICB have also been identified in the serum of patients awaiting

transplantation and in rejecting kidneys [35].

Other non-HLA alloantibody targets include vimentin [36] and angiotensin II type I receptor

[37•]. These molecules are not highly polymorphic, hence antibodies binding to them may
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be considered to be autoantibodies, rather than alloantibodies. In addition, anti-endothelial

cell antibodies (of unknown precise specificity) have also been identified in transplant

recipients and appear to be associated with worse outcomes [38]. More recently, protein

microarrays have been used to identify novel antibody targets in paediatric transplant

recipients, including protein kinase Ctζ [39] and a variety of autoantibodies in adult renal

transplant recipients with chronic humoral rejection [40•]. In the latter study, there was

minimal overlap in antigenic targets between patients, suggesting that each patient had

developed autoantibodies to a unique set of antigens. These data imply that patient with

chronic AMR may have widespread B cell dysregulation [40•].

Thus, alloantobodies against donor HLA, particularly MHC class I molecules, are well

known, widely measured and correlate with rejection and with graft outcome. An increasing

number of alloantibodies and autoantibodies are being described in transplantation, and

more will no doubt follow. Anti-MHC antibodies will remain the major DSA of concern in

transplantation until the functional and pathological importance of antibodies against these

more recently described antigenic targets is determined.

Route of antigen exposure

There are three main stimuli which are thought to induce alloantibody production;

pregnancy (through exposure to paternal, non-self antigens in the foetus), blood

transfusions, and previous transplants (occasionally, following skin grafts, but more usually

following solid organ transplantation). Of note, some patients develop HLA antibodies in

the absence of any sensitising event [41,42], most likely in response to cross reactive

epitopes on microorganisms, ingested proteins, and allergens [43].

Pregnancy—Previous pregnancy is one of the major causes of sensitisation due to

exposure to foeto-paternal antigens at the matero-placental interface [44]. In addition, foetal

cells enter the maternal circulation [45]. Studies suggest that 30% of single or multiparous

women develop antibodies against foeto-paternal HLA during pregnancy [46,47].

Antibodies usually transiently appear in the third trimester [47] and at the time of delivery

[48]. In most women, these antibodies disappear soon after delivery but can persist for many

years [48]. The mechanisms underlying this variability in initial antibody response and

subsequent persistence are unclear. Studies do not show any relationship between number of

pregnancies and antibody appearance or persistence [47,48]. One factor which may play a

role in maintaining antibody production is the ongoing presence of foeto-paternal antigens

due to the persistence of foetal cells in the mother (microchimaerism). Foetal progenitor

cells have been found in maternal peripheral blood decades after childbirth, and a third of

parous women were found to have some peripheral blood mononuclear cells expressing

foetopaternal HLA antigens long after pregnancy [49]. In a study of patients awaiting

transplantation, there was evidence of microchimaerism in 66% of sensitised patients versus

25% of non-sensitised patients, suggesting that the presence of non-recipient HLA may

drive antibody production in this group [50]. Other possible mechanisms for the persistence

of antibodies to foeto-paternal antigens include the sequestration of such antigens by

follicular dendritic cells within germinal centres, as has been demonstrated for model

antigens [51].
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The Class II genotype of the mother has been shown to play a role in determining whether

antibodies will be formed against a foeto-paternal HLA class I molecules [52]. Presumably

this effect occurs because these class II molecules are involved in the presentation of class I

antigens to CD4 T cells, which subsequently provide help to B cells.

In conclusion, MHC class I genotype is the most important factor in determining

sensitisation in association with pregnancy. Factors influencing the risk of foeto-maternal

sensitisation have not been well defined, and this will be necessary before strategies to

reduce risk can be out in place for those likely to subsequently need a transplant.

Blood transfusion—Patients who have received blood transfusions before transplantation

have long been known to have worse graft survival [53]. By contrast, peri-operative

transfusions (within 10 days of transplantation) do not adversely affect allograft survival,

and indeed, may be associated with improved outcomes [54]. Blood transfusions given in

the first few months after transplantation also do not appear to effect alloantibody formation

[55]. Thus, the timing of antigen exposure appears important in this context. In terms of pre-

transplant transfusions, sensitisation is infrequent and usually transient, occurring in around

10% of males who received up to 20 transfusions [56]. However, one or a few blood

transfusions can induce broad and persistent HLA sensitisation in patients who have been

previously exposed to HLA antigens through pregnancy, prior transplants, or massive

transfusions [56,57]. It is therefore prudent to minimise blood transfusion in patients

awaiting transplantation.

Previous transplants—Following renal transplantation, a proportion of non-sensitised

patients develop HLA alloantibodies for the first time. The reported frequency is very

variable, ranging from 1.6 to 60% [58,59]. Non-donor-specific antibodies appear earlier (1–

5 years post-transplant) compared with donor-specific antibodies (5–10 years post-

transplant) [59]. In larger studies, the development of HLA antibodies was associated with

HLA-DR mismatch, pre-transplantation immunization, and acute rejection. In addition, the

recipient HLA class II genotype plays a role in determining whether they will develop

antibodies against certain donor class I molecules; for example, antibody formation against

the HLABw4 epitope occurs more frequently in HLA-DR1 and DR3 positive recipients than

in those of other DR genotypes [60]. This suggests that indirect recognition of allopeptides

in the context of self-Class II molecules is important in the induction of alloantibody post-

transplant.

Following transplant nephrectomy there is an increase in both alloantibody and autoantibody

titres [61,62]. It has been suggested that this may be in part due to alloantibody absorption

by the failing allograft and in part due to the reduction in immunosuppression which usually

accompanies transplant nephrectomy. Whatever the mechanism, the rise in alloantibodies

appears more pronounced in patients who have been minimally sensitised before

nephrectomy (PRA <20%), and in cases in which nephrectomy was performed within six

months of transplantation. In a small study, patients who were highly sensitised (PRA

>80%) before nephrectomy had a statistically significant but modest reduction in PRA post-

nephrectomy [62].

Clatworthy et al. Page 6

Curr Opin Immunol. Author manuscript; available in PMC 2014 August 29.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



The adjuvant effect of danger signals

Infections may potentially contribute to the development of alloimmune response through

the stimulation of pattern recognition receptors, such as Toll-like receptors (TLRs) on B

cells or other antigen presenting cells, such as DCs, leading to the upregulation of co-

stimulatory molecules and increased antigen presentation to T cells. CMV is one of the

major infections encountered posttransplant, increases the risk of acute cellular rejection,

and has been associated with an increase in IgM alloantibody levels [63]. Aielo et al.

compared histological changes in transplant biopsies in patients with acute rejection, with

and without a history of CMV or EBV infection. They noted an increase in plasma cell

infiltrates and C4d staining in those with viral infections [64]. CMV infection has also been

temporally associated with the development of anti-endothelial cell antibodies in cardiac and

renal allograft recipients, with biopsy-proven humoral rejection [65] and with the

appearance of anti-islet cell antibodies in pancreas transplant recipients [66]. In addition to

the effects of CMV and EBV, Hepatitis C infection has also been associated with an

increase in PRA and hence the risk of antibody-mediated rejection posttransplant [67].

More recently, Locke et al. observed an increase in both breadth and strength of HLA

antibodies following systemic inflammatory events, such as bacteraemia and myocardial

infarction, in sensitised renal transplant recipients [68•]. Given that the majority of renal

transplant recipients develop an infection in the first year post-transplant, this may be a

significant factor in enhancing alloantibody production in sensitised patients. It is currently

unclear whether this would also apply to non-sensitised patients.

It has been appreciated for more than a decade that the ischaemia-reperfusion injury (IRI)

observed following organ transplantation can initiate an alloimmune response [69,70]. The

mechanism of this appears to require tissue resident dendritic cells and appears to involve

TLR signalling [71,72]. There is little data examining the specific effect of IRI on B cell

activation and antibody production; in a rat model of cardiac allograft vasculopathy (a

process thought to involve antibody), ischaemia appeared to accelerate progression of

vasculopathy, although alloantibody titres were not assessed [73].

To summarise, it is likely that both pathogen-associated and self-associated danger signals

can augment an alloantibody response.

Recipient factors affecting alloantibody production

In autoimmunity both environmental and genetically determined host factors confer risk of

autoantibody production, and similar factors may influence alloantibody production, though

they have not been extensively investigated in the context of transplantation. Some risk

factors will be transplant-specific (such as the effect of recipient class II genotype on

alloantibody production in pregnancy and post-transplant, as described above) but many are

likely to overlap with those driving B cell activation in antibody-mediated autoimmune

diseases, for example systemic lupus erythematosus (SLE). Recent genome-wide association

studies have implicated more than 40 genetic variants in the development of SLE [74] and

many of these are clearly directly implicated in humoral immunity.
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B cells can be activated by ligation of surface IgM (the BCR) and the threshold of BCR

activation can be modulated by other receptors, both activatory and inhibitory. B cell

inhibitory receptors include FcγRIIB, CD22, CD72, programmed cell death gene-1

(PDCD1) (or PD-1 as it is known in mice), PIR-B, CD5, CD66a, LAIR-1, and ILT-2 [75].

Overall, mice deficient in these molecules have hyperactive B cells and produce

autoantibodies. Polymorphisms in these receptors may well effect alloantibody production in

humans, although this has not yet been demonstrated. FcγRIIB is of particular interest in the

context of alloantibody production, because it controls BCR activation via IgG immune

complexes, cross-linking of FcγRIIB on plasma cells leads to plasma cell apoptosis [76•],

and polymorphisms that reduce its function are associated with SLE in both mice and

humans [77,78]. Genome-wide association studies in SLE have also implicated other genes

involved in signalling downstream of the BCR, including the kinases B-lymphoid tyrosine

kinase (BLK) and Lyn, and B cell scaffold protein with ankyrin repeats (BANK1) [74].

Genetic variants in these molecules might also alter alloantibody production.

B cell activity factor (BAFF, also known as BLyS, TALL-1 and THANK) is a member of

the TNF ligand super-family and an important co-stimulator of B cell survival and

expansion. Transgenic animals over-expressing BAFF in lymphoid cells develop

autoantibodies and high levels of BAFF have been identified in patients with lupus and

appear to be associated with autoantibody production [79,80]. There is also some data

linking BAFF with both acute rejection and chronic decline in human renal allograft

function. Xu et al. demonstrated the presence of BAFF by immunohistochemistry in renal

transplant biopsies taken from ten patients with acute rejection. BAFF staining appeared to

correlate with C4d staining [81]. Furthermore, in a small study of patients who were five or

more years post-transplantation, surface expression of BAFF on CD4 T cells was associated

with abnormal renal function. Elevated serum BAFF levels have also been noted in

transplant patients following alemtuzumab treatment, and may partially explain the

increased incidence of humoral rejection observed in these patients [82]. The human BAFF

gene contains a number of single nucleotide polymorphisms (SNPs) which affect gene

expression and might well alter susceptibility to alloantibody production.

Interleukin (IL-6) is a cytokine which can promote TH2 cell differentiation and the

development of a humoral immune response. A SNP (rs1800795) at position 174 within the

promoter region of the IL-6 gene has been associated with autoimmunity and altered plasma

levels of IL-6. Martin et al. observed a significant association between this SNP and the

development of donor-specific HLA antibodies post-transplant [83]. The same group also

showed that an SNP in the gene encoding Class II transactivator, a master regulator of class

II expression is also associated with alloantibody production post-transplant [83].

Many other host genetic factors are likely to drive risk of alloantibody production — for

example those promoting increased T cell impact on the B cell response such as

abnormalities of the CD40–CD40L pathway or increased T follicular helper cell function,

both of which have been associated with SLE. Determination of these factors, which may be

one benefit to come from the GWAS studies now under way in transplantation, may

eventually allow us to more accurately define individual risk, allowing targeting
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preventative measures and immunosuppression strategies, and perhaps discovering novel

pathways for therapeutic intervention.

Maintenance of alloantibody titres

Most serum antibody is made by long-lived bone marrow plasma cells, thus factors

influencing the rate of plasma cell generation and plasma cell survival will be important in

determining IgG titre [20]. Plasma cell survival relies on a combination of soluble survival

factors including IL-6, CXCL12, and the TNF superfamily members TNFα, BAFF and

APRIL [20,84] (Figure 2). Cross-linking of the inhibitory receptor FcγRIIB induces plasma

cell apoptosis [76], while adhesion molecules CD44 and VLA-4 promote plasma cell

survival [20], suggesting a role for cell-cell interaction in this process. Several aspects of

the ’cellular niche’ in which plasma cells are thought to reside have been described. In the

spleen and lymph nodes plasma cells are associated with different sub-populations of

myeloid cells [85,86], with APRIL-secreting neutrophils in the mucosa [87], and some with

megakaryocytes in the bone marrow although other cells, such as CXCL12-expressing

stromal cells, are also likely to be involved [88,89].

Plasma cells have also been identified in cardiac [23] and renal allografts where they are

associated with poor prognosis [90,91•,92]. Formation of tertiary lymphoid organs (TLOs)

may support the formation of HLA specific plasma cells directly in the graft (Figure 2). In

an aortic allograft model in the rat, there was some evidence that more alloantibodies were

generated by the graft than by draining nodes [21]. While specificity of bone marrow-

derived plasma cells correlated with that of serum alloantibody [93], this may not be the

case for graft-derived alloantibodies [91•,93], and analysis of their kinetics, longevity,

antigen specificity and ’niche’ of the latter is required.

The maintenance of alloantibody titre will also depend on the production rate per plasma

cell, and on antibody half-life once in the circulation. Very little is known about the control

of the rate of antibody production per cell over time, though TLR ligands have been reported

to activate antibody production by human plasma cells [94], and CCL2 produced by

mesenchymal stromal cells can block antibody production [95] (Figure 2).

Alloreactive B cell memory — a requirement for antigen?

Germinal centres produce both long-lived plasma cells and memory B cells. The latter are

often isotype-switched, and have undergone somatic mutation and selection resulting in

affinity maturation. They are thought to comprise between 40 and 50% of circulating

peripheral B cells in humans, and it is likely that as yet undescribed sub-populations of

memory B cells may be present in secondary lymphoid organs and other tissues. It would be

expected that in any patient with detectable DSA there would be alloantigen-specific

memory B cells. This supposition has recently been confirmed by the directed detection of

alloantigen-specific memory B cells in transplant patients, using HLA tetramers [96,97].

The maintenance of memory B cells in the circulation has been elegantly shown not to

require continual antigen exposure [98], though ongoing contact with antigen may determine

the relative size of different antigen-specific memory cell populations [99,100]. Reports that
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memory B cell reactivation and differentiation to plasma cells might be caused by TLR-

driven ’bystander activation’, rather than by specific antigen [94], have not been confirmed

[76•] and specific memory cell reactivation upon transplantation is likely to be a major

source of increased DSA. This likelihood requires careful consideration when designing

therapies for the transplantation of sensitised patients (for example, as a proportion of

memory B cells may not express CD20, Rituximab may not be an effective agent in this

context).

Although B cells can induce antibody formation and support T-cell immune responses, a

sub-population may, in certain circumstances, act as inhibitory cells. This was first

demonstrated in the mouse [101], and it has also been suggested that these cells may be

found in humans and be important in controlling autoimmune disease [102]. Whether these

cells represent a distinct lineage analogous to FoxP3 positive regulatory T-cells, and whether

or not they are of relevance to transplantation, remains to be determined.

Therapeutic implications

Current standard of care in renal transplantation includes HLA antibody monitoring by solid

phase assay both before and after transplantation, and for cytotoxic and flow cytometric

cross-match testing before transplantation [103,104]. Patients with graft dysfunction

undergo allograft biopsy, now routinely assessed for C4d deposition [5]. Such intensive

DSA monitoring and the emergence of DSA as important mediators of acute and chronic

graft damage [3,4•,105] have highlighted the need for effective therapies, particularly in

three clinical situations:

• Prophylactic therapy against AMR in patients with DSA against a potential live

donor (desensitisation) [106]

• Treatment of acute AMR [107]

• Treatment of chronic antibody-mediated graft damage

Currently available therapies are targeted at DSA removal and prevention of DSA synthesis.

Antibody removal

Plasma exchange (PEX) has been widely used to remove DSA before transplantation [108]

and to treat AMR [109,110]. PEX removes DSA from the circulation, but does not prevent

ongoing DSA synthesis by plasma cells. Consequently there is a high incidence of AMR

(40%) once PEX is discontinued, and emerging evidence of chronic DSA-mediated graft

damage leading to reduced graft survival in many patients [111], emphasising the need for

therapies designed to prevent ongoing DSA synthesis.

Intravenously immunoglubulin (IVIG) has been used as an adjunct to PEX, or in place of

PEX. Low dose IVIG (100 mg/kg) is often given at the end of each PEX treatment in the

hope of preventing DSA re-synthesis [108]. High dose IVIG (2 g/kg), administered without

PEX, effectively reduces DSA titre when administered before transplantation [112], and has

been used as treatment for AMR [113,114]. The mechanisms by which IVIG reduces DSA

titre are unclear, but may include plasma cell apoptosis induced by FcγRIIB ligation and
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cross-linking [76•] (reviewed in [115]). The efficacy of IVIG is enhanced if co-administered

with Rituximab [112].

Prevention of DSA re-synthesis

Until recently, and with the possible exception of IVIG, there have been no therapies

targeted against plasma cells. Rituximab effectively depletes B cells and thus may block the

development of new DSA-secreting plasma cells. Rituximab has been used for the treatment

of AMR [116], in patients with steroid resistant rejection [117], and in conjunction with

IVIG for the prevention of AMR [112]. It has also been used as part of the conditioning

regimens before ABO blood group incompatible kidney transplantation [118,119], although

recent reports suggest no additional benefit of Rituximab when added to PEX-based

protocols [120]. Anti-thymocyte globulin (ATG) contains antibodies which can bind

syndecan (CD138), a plasma cell-specific molecule [121], although in vivo ATG treatment

is not associated with a reduction in either splenic or bone marrow plasma cells [93,122]

Clinical studies suggest that ATG may reduce the risk of AMR in patients with preformed

DSA [123].

Future therapies (Figure 3)

A promising new therapy is the proteasome inhibitor Bortezomib, which kills alloantibody-

producing plasma cells in vitro [124•], may reduce anti-HLA antibodies in sensitised

patients and has been used in a small number of cases to treat antibody-mediated rejection.

An alternative to antibody elimination is to block antibody-mediated graft injury.

Eculizumab is an antibody directed against the complement component C5 and is effective

in preventing complement-mediated red cell lysis in patients with paroxysmal nocturnal

haemoglobinuria. Unpublished reports suggest that Eculizumab is also effective in

preventing AMR in renal transplant recipients transplanted despite a positive XM.

Whether or not Bortezomib or Eculizumab proves effective, there is no question that new

therapies for acute and chronic DSA-mediated graft damage are required. PEX or IVIG-

based protocols effectively reduce DSA titre to permit transplantation despite preformed

DSA, but with an unacceptable 40% incidence of AMR, a predictor poor graft survival. As

yet no therapy has proven effective in treating chronic DSA-mediated graft injury. A greater

understanding of the factors controlling alloantibody production will be required to achieve

this goal.
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Figure 1.
B cell activation and alloantibody production. (a) Alloantigen exposure occurs via

pregnancy, blood transfusions and previous transplants. B cell activation occurs within

secondary lymphoid organs (spleen and lymph nodes) and also possibly within tertiary

lymphoid organs within allografts. The first step of B cell activation depends on the

interaction between the B cell receptor (BCR) and its cognate antigen (A). Once activated, B

cells migrate to the interface between the B follicle and the T-cell zone where they present

antigen in the context of MHC class II molecules to cognate CD4+ T cells. Activated CD4 T

cells provide help to B cells via co-stimulatory molecules such as CD40/CD40-L and by

cytokine secretion. After T-dependent activation B cells can undergo two different fates;

either they can migrate out of the B cell follicle and form extrafollicular plasmablasts

responsible for the early production of low affinity antibody (b), or they enter the germinal

centre where they undergo somatic hypermutation and class switch recombination (c).

Mutated clones with higher affinity for antigen are positively selected and differentiate into

memory B cells or plasma cells. (d) A small proportion of plasma cells arising from the

germinal centre migrate to the bone marrow where they become long-lived plasma cells

responsible for maintenance of antibody titres.
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Figure 2.
Factors affecting alloantibody production - Alloantibodies are produced by plasma cells.

Alloantibody titres will therefore by determined by: (a) The provision of plasma cell

survival factors by stromal cells within bone marrow niches, for example cytokines such as

IL-6 and BAFF. (b) The rate of alloantibody production by plasma cells, which may be

increased by TLR stimulation and blocked by CCL2. (c) The provision of additional, ectopic

plasma cell niches within rejecting, inflamed allograft. (d) Factors affecting memory B cell

activation.
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Figure 3.
Current (shown in black) and potential (shown in red) alloantibody-targeted therapies in

transplantation. Current management strategies include: (a) antibody removal, using plasma

exchange (PEX) or intravenous immunoglobulin (IVIG). (b) the prevention of DSA re-

synthesis by depleting B cells using rituximab, depriving B cells of T cell help through T

cell depletion using ATG, or depleting plasma cells with bortezomib. (c). Prevention of

antibody mediated complement activation (eculizumab). Potential future therapeutic targets

include blockade of survival factors for plasma cells and B cells, particularly those provided

via BAFF or APRIL, blockade of T cell costimulation using belatacept or CD40L

antagonist, or cross-linking of FcyRIIB on plasma cells to induce apoptosis.
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