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Breast cancer is a heterogeneous disease, divisible into a variable number of clinical subtypes. A fundamental question is 
how many etiological classes underlie the clinical spectrum of breast cancer? An etiological subtype reflects a grouping 
with a common set of causes, whereas a clinical subtype represents a grouping with similar prognosis and/or prediction. 
Herein, we review the evidence for breast cancer etiological heterogeneity. We then evaluate the etiological evidence with 
mRNA profiling data. A bimodal age distribution at diagnosis with peak frequencies near ages 50 and 70 years is a funda-
mental characteristic of breast cancer for important tumor features, clinical characteristics, risk factor profiles, and molecular 
subtypes. The bimodal peak frequencies at diagnosis divide breast cancer overall into a “mixture” of two main components 
in varying proportions in different cancer populations. The first breast cancer tends to arise early in life with modal age-at-
diagnosis near 50 years and generally behaves aggressively. The second breast cancer occurs later in life with modal age near 
70 years and usually portends a more indolent clinical course. These epidemiological and molecular data are consistent with 
a two-component mixture model and compatible with a hierarchal view of breast cancers arising from two main cell types of 
origin. Notwithstanding the potential added value of more detailed categorizations for personalized breast cancer treatment, 
we suggest that the development of better criteria to identify the two proposed etiologic classes would advance breast cancer 
research and prevention.
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Clinically, breast cancer is widely recognized as a heterogeneous 
disease. In this commentary, we focus instead upon the etiological 
perspective of breast cancer heterogeneity. By etiological hetero-
geneity, we mean breast cancer subtypes (components, classes, or 
groupings) that share common sets of causes. This is distinct from 
a clinical subtype, which refers to tumors with common prognos-
tic characteristics and/or predictive features (response to targeted-
treatment) (1).

As efforts proceed to improve the taxonomy of clinical breast 
cancer, a fundamental question persists; how many etiological sub-
types actually exist? Clinical taxonomic systems have defined mul-
tiple classes in an effort to optimize therapeutic management. At its 
extreme, this approach translates into “precision” or “personalized” 
medicine, with a view that each person’s tumor is unique.

We propose a more parsimonious view for breast cancer etiol-
ogy, which we believe is consistent with a hierarchal view of breast 
cancer derived from two main cell types of origin (2–9). We show 
that any given breast cancer molecular or clinical category dem-
onstrates a mixture of two stereotypical age-specific incidence 
patterns with bimodal peak frequencies near ages 50  years and 
70 years. We hypothesize that the consistency of this pattern sup-
ports a two-component mixture model, where different molecular 
and/or clinical categorizations represent variable combinations of 
two etiological subtypes. In this model, it is the difference in the 
relative distributions of the two putative subtypes that endows any 

given breast cancer categorization with its distinguishable biologi-
cal features.

Historical Developments in the 
Understanding of Breast Carcinogenesis 
and Pathogenesis From an epidemiological 
Perspective
Multistage (Log-Linear) Cancer model
More than 50 years ago, Armitage and Doll noted that cancer rates 
rise exponentially with advancing age for a number of epithelial 
malignances (10–12), thus providing the theoretical foundation 
for multistage tumor initiation, promotion, and progression (13–
15). An epidemiological prediction of the multistage cancer model 
is a log-linear (or log-additive) relationship between cancer inci-
dence and chronological age with a linear (or steady) rise in the 
logarithm of cancer rates as a function of the logarithm of age at 
diagnosis.

However, breast cancer incidence does not demonstrate an 
exponential increase with advancing age. Incidence rates slow 
before age 50  years (Figure  1A). The change point in incidence 
has been termed “Clemmesen’s hook” after its discoverer, Johannes 
Clemmesen (16,17). Clemmesen’s hook is characteristic of female 
breast cancers worldwide (18–20), coincides with the female cli-
macteric, and is not found among male breast cancers (21).
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To account for the distinctive incidence rate pattern for breast 
cancer, Pike et al. introduced the concept of “breast tissue age” as a 
better marker of risk than chronological age (22). In his model, key 
reproductive events affect the shape of the age-specific incidence 
rate curve. Specifically, risk factors accelerate and protective factors 
attenuate breast tissue aging, with Clemmesen’s hook representing 
the net effect. Others have refined the Pike model (23–26); how-
ever, a key feature of all of these models is that all breast cancers 
share a common pathogenesis, reflected in a single, age-specific 
incidence rate curve.

Two-Component Cancer Model
Lilienfeld (27) and de Waard (28–30) pioneered the concept that 
breast cancers develop by two distinct pathways (rather than 
one), each with a different age-specific incidence rate curve. The 
first pathway results in mainly premenopausal tumors with peak 
occurrence early in life, similar to estrogen receptor (ER)–nega-
tive cancers in the general US population (Figure 1A). The sec-
ond pathway results in predominantly postmenopausal cancers 
with peak incidence later in life, similar to late-onset ER-positive 
cancers (Figure 1A). In this model, Clemmesen’s hook can be seen 
as the confluence or superimposition of the age-specific incidence 
rate curves for the early-onset and late-onset subtypes of breast 
cancer (31,32).

Descriptive epidemiology
Age-Specific Incidence Rates
The menopause transition was predicted to affect incidence rates 
of ER-positive more than ER-negative breast cancers, given the 
presumed greater role of sex-steroid hormones in the pathogenesis 
of hormone sensitive cancers (33,34). Nonetheless, and somewhat 
paradoxically, menopause [or rather its surrogate, age 50  years 
(35,36)] is associated with greater impact upon ER-negative than 
ER-positive cancers (31,33,34) (Figure 1A). ER-negative rates rise 
rapidly early in life then flatten or fall soon after menopause (37), 

whereas ER-positive rates rise continuously irrespective of meno-
pause, albeit more slowly after age 50 years.

The different incidence rate patterns by ER expression rep-
resent an age interaction or effect modification. Under the null 
hypothesis of no interaction, the age-specific incidence rates for 
ER-positive and ER-negative cancers would be parallel on the log 
scale (38–40), yielding a constant incidence rate ratio (IRR) irre-
spective of age at diagnosis (IRRERneg to ERpos = constant for all ages). 
We also make a distinction between quantitative (noncrossover) 
and qualitative (crossover or reversing) age interactions (37–40). 
A quantitative age interaction varies in magnitude but not direc-
tion, whereas a qualitative interaction differs in both magnitude 
and direction. At the extreme ages in Figure 1A, the incidence rate 
ratio of ER-negative to ER-positive cancer is 2.3 during ages 20 
to 24 years (IRRERneg to ERpos > 1.0) and the incidence rate ratio of 
ER-negative to ER-positive cancer is 0.10 during the ages 80 to 
84 years (IRRERneg to ERpos < 1.0). True qualitative or reversing inter-
actions are considered rare (40–42) but, when found, can be statisti-
cal surrogates for age-dependent etiological heterogeneity. In the 
context of a qualitative age interaction, Clemmesen’s hook can be 
further seen as the crossover in falling ER-negative rates and rising 
ER-positive rates.

Bimodal Age Distributions at Diagnosis
If breast cancer followed the log-linear incidence curve described by 
Armitage and Doll (10–12), breast cancer cases in the general pop-
ulation would be predicted to show a unimodal age distribution at 
diagnosis. In contrast, breast cancer overall demonstrates a bimodal 
pattern, with the modal ages near 50 and 70 years representing the 
central tendencies for the early-onset and late-onset breast cancers 
(Figure 2A). Density plots are constructed with 1-year increments 
using a “smoothing” method for the corresponding age distribu-
tions at diagnosis (31,43), where the area under the curve includes 
all of the breast cancer cases in a given population.

Crossing ER-positive and ER-negative age-specific rates 
(Figure  1A) also shows bimodal age distributions at diagnosis 

Figure 1. Breast cancer case and population data were obtained from 
the National Cancer Institute’s Surveillance, Epidemiology, and End 
Results 9 Registries Database from 1990 through 2010 among women 
with invasive estrogen receptor (ER)–positive and ER-negative breast 
cancer. The dataset included thirteen 5-year age groups (ages 20–24, 
25–29, …, 80–84 years) and four 5-year time periods (1991–1995 1996–
2000, 2001–2005, 2006–2010), spanning 16 partially overlapping 10-year 
birth cohorts, referred to by mid-year of birth (1911, 1916, …, 1986). We 

used the age–period–cohort framework to obtain the fitted or longitu-
dinal age-specific incidence rate curve for the mid-cohort, adjusted for 
period effects (A) and the fitted temporal trends (B). A) Age-specific inci-
dence rates for ER-negative cancers rise rapidly early in reproductive 
life and then flatten or fall. Rates for ER positive cancers rise rapidly 
early in life and then continue to rise at a slower pace. B) ER-positive 
and ER-negative temporal trends have diverged over time. ER-positive 
rates have risen, whereas ER-negative rates have fallen.
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(Figure 2B) (31,43), as do many other important breast cancer 
features such as tumor size, lymph nodal status, and histological 
grade (44,45). Although the modal ages of 50 and 70 years have 
been robust irrespective of breast cancer characteristic, the rela-
tive distributions (or mixtures) for the early-onset and late-onset 
breast cancer subtypes can vary by specific stratifying factor, pro-
viding that class with distinguishable features. In general, high-risk 
tumors such as ER-negative cancers have bimodal breast cancer 
patterns with a predominant early-onset peak (Figure 2B). Lower-
risk tumors, such as ER-positive cancers, have bimodal breast can-
cer patterns with a more dominant late-onset peak (Figure 2B).

Age-Adjusted Secular Trends
Recent studies in the United States show an unexpected diver-
gence of ER-positive and ER-negative breast cancer trends 
(46–48); ER-positive cancers have risen over the long term, 
whereas ER-negative breast cancers have declined (Figure 1B). 
Theoretically, divergent ER trends in the United States could 
have resulted from statistical anomalies (49), changes in assay 
methodology or application of lower thresholds for classify-
ing ER tests as positive (50), and/or the implementation of 
organized screening mammography (51,52). However, secular 
trends in other countries with better control of these poten-
tially confounding factors (eg, Denmark) showed similar trends 
as in the United States (53), consistent with the hypothesis that 
divergent ER-positive and ER-negative trends might be due 
to changes in different risk factor profiles by ER subtype over 
time (47,48,54).

Biostatistical models
Our group has leveraged the application of biostatistical models to 
complement descriptive epidemiology. First, we used two-compo-
nent mixture models to determine whether bimodal age distribu-
tions at diagnosis fitted the data better than a single density (55) 
(Figure 2, A and B). Then, to confirm qualitative age interactions (eg, 
Figure  1A), we used age–period–cohort (APC) models to evaluate 
age-specific effects independent of calendar-period effects (that relate 
to screening, changing diagnostic and/or practice patterns) and/or 
birth-cohort effects (generational and/or exposure factors) (56,57).

Two-Component Mixture Models
We initially identified three distinct age-specific incidence rate 
patterns that were closely associated with seven histopathologi-
cal breast cancer subtypes (58). Incidence rates of infiltrating duct, 
tubular, and lobular carcinomas rose rapidly until age 50  years, 
then increased more slowly, similar to rates for breast cancer 
overall. Rates for medullary and inflammatory breast carcinomas 
increased rapidly until age 50 years, then flattened or fell, similar to 
ER-negative rates (Figure 1A). Finally, rates for papillary and muci-
nous carcinomas increased steadily with age, similar to ER-positive 
rates (Figure 1A) and much like cancers at many other organ sites 
such as colorectal cancer (12).

Notwithstanding the three distinct incidence rate patterns, 
two-component mixture models demonstrated that six of the his-
topathological subtypes had bimodal age distributions at diagno-
sis with early-onset and/or late-onset peak frequencies around the 

Figure 2. Invasive female breast cancer case data were obtained from the 
National Cancer Institute’s Surveillance, Epidemiology, and End Results 
9 Registries Database from 1990 through 2010 database overall and for 
estrogen receptor (ER)–positive and ER-negative cancers. Bimodal breast 
cancer populations have fluctuated over time likely because of complex 
interactions between age-related biologic, risk factor, and screening 
phenomena, as previously described (186). For illustration, this figure 
has been restricted to the 1995 to 1998 period, during which a bimodal 
female breast cancer population was evenly distributed between early-
onset and late-onset subtypes. Age distributions at diagnosis (or density 
plots) with 95% confidence intervals were constructed in 1-year age incre-
ments using a kernel density estimator applied to the corresponding age-
at-diagnosis frequency histogram. The area under the curve represents 
100% of the cancer records. The vertical axis shows the smoothed distri-
bution (or proportion) with the frequency value × 100 = percentage distri-
bution. A) Density plot for breast cancer overall demonstrates a bimodal 
age distribution at diagnosis with the modal ages near 50 and 70 years 
representing the central tendencies for early-onset and late-onset breast 
cancers. B) Density plot for ER-negative tumors also shows a bimodal 
age distribution at diagnosis with a dominant early-onset mode near 

age 50 years and a minor mode around age 70 years. Density plot for 
ER-positive tumors shows bimodal age distributions at diagnosis with a 
dominant late-onset mode near age 70 years and a minor mode around 
age 50 years. C) The risk for breast cancer–specific death can be expressed 
as an annual hazard rate, which describes the instantaneous rate of dying 
from breast cancer in a specified time interval (ie, percentage dying per 
year) after diagnosis among women who are alive at the beginning 
of that time interval. Nonparametric hazard function estimators were 
applied that modeled the hazard profile of ER-positive and ER-negative 
cancers, allowing both the shape and magnitude to be estimated free of 
ad hoc mathematical assumptions. Specifically, the hazard rate curves 
were generated using cubic splines with joinpoints selected by Akaike’s 
information criteria and 95% confidence intervals applied with bootstrap 
resampling (187–189). Bimodal age distributions at diagnosis among 
women (B) are associated with two very different cancer-specific out-
comes. ER-negative hazards for breast cancer death peak near 7.5% per 
year approximately 2 years after initial diagnosis and then decline rapidly. 
ER-positive hazards lack a sharp peak but are relatively constant at 1% to 
2% per year. Falling ER-negative and constant ER-positive hazards cross 
over approximately 8 years after breast cancer diagnosis.
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stereotypical ages of 50 and 70 years (45). The one notable excep-
tion was medullary carcinoma, which showed a unimodal age dis-
tribution with mode close to age 50 years. Medullary carcinomas 
are linked to the loss of BRCA1 function (59–61), which we propose 
may represent the closest known approximation to an etiologically 
pure early-onset subtype of breast cancer.

Similar to ER-positive and ER-negative breast cancers 
(Figure 2B), the bimodal peaks for different histopathological cat-
egories do not sharply divide cancers into pure groups, but rather 
reflect central tendencies of what we propose are two fundamental 
etiological classes. Breast cancers that develop at extreme ages are 
likely to be highly enriched for one etiological class, but both of 
these classes span the entire lifespan, with substantial mixing dur-
ing the middle years, when many cancers occur. The mixing frac-
tion or proportion of each etiological group varies within a class of 
breast cancers depending on its definition; however, the peak ages 
remain near ages 50 and 70 years.

APC Models
A useful APC function is the fitted (or longitudinal) age-specific 
incidence rate curve (37,62) (Figure 1A). The fitted curve stitches 
together the age-specific incidence rates from a collection of birth 
cohorts, each one observed over a limited and variable age span (ie, 
younger cohorts are observed at younger ages and older cohorts at 
older ages). The resulting curve estimates the age-specific rates of 
the middle or reference cohort over the entire age range. In con-
trast with the typical cross-sectional, age-specific incidence rate 
curve that may be confounded by period and cohort effects (63,64), 
the fitted curve is conditioned upon cohort and adjusted for period 
changes.

Clemmesen’s menopausal hook for breast cancer overall was 
once dismissed as a birth-cohort artifact (65), where the progres-
sive increase in breast cancer risk from one generation to the next 
gave the appearance of falling incidence rates among older per-
sons (64). This view is refuted by APC models (37), which dem-
onstrate that the Clemmesen’s phenomenon is a true age-related 
event that persists in the fitted age-specific incidence rate curve 
(Figure 1A). Similar modeling approaches confirm that the qualita-
tive age interaction remains for the fitted curves for ER-positive 
and ER-negative breast cancers, respectively (37).

analytic epidemiology
Consistent with descriptive epidemiology and biostatistical mod-
els, analytic epidemiology also supports a two-component breast 
cancer mixture model based upon the identification of major risk 
factors and genetic susceptibility.

Risk Factor Epidemiology
Despite the well-established protective effect of full-term preg-
nancy for breast cancer overall (22,66,67), it has been suggested, 
albeit without total agreement (68,69), that parity is associated with 
an early increase in risk, followed by long-term protection (70–86). 
Alternatively, the early risk and late protection for parity could reflect 
another qualitative (crossover or reversing) age interaction for breast 
cancer (40), where parity increases risk of early-onset subtypes and 
reduces risk of late-onset ones (37). Indeed, parity and multiple live 

births are associated with reduced risk for ER-positive and luminal 
A  intrinsic breast cancer subtypes (Table 1) and increased risk of 
ER-negative tumors (specifically, ER-negative basal-like or triple-
negative intrinsic breast cancer subtypes) (87–91). The combined 
effect of early age at first birth and lack of breast feeding appears 
to impart an especially high risk for basal-like (triple-negative and 
BRCA1) cancers (88,89,92–98), particularly among some specific 
ethnic groups.

Obesity is another risk factor with dual effects by age at diag-
nosis and ER status (90,99,100), which are possibly mediated 
through the cholesterol metabolite 27-hydroxycholesterol (101–
103). Body weight has a direct association with postmenopausal 
breast cancer and an inverse relationship with premenopausal 
cancer (104–109). Obesity also has a stronger positive association 
with hormone receptor–positive than hormone receptor–nega-
tive cancers (101,102,110), although obesity may also increase 
the risk of basal-like, triple-negative, and inflammatory breast 
cancers (88,90,111,112). Rising ER–positive cancers among older 
women and falling ER–negative tumors among younger women 
(Figure 1B) are consistent with rising obesity and declining par-
ity in the United States (113) and Denmark (114), as well as many 
other parts of the world (115). Other studies have also found dual 
risk factor associations by ER status [reviewed in (54)].

Genetic Susceptibility
Many genetic loci are known to contribute to the risk of familial breast 
cancer, including highly penetrant deleterious germline mutations in 
the BRCA1 and BRCA2 tumor suppressor genes. Of note, BRCA1 and 
BRCA2 breast cancers are distinct in their expression of hormone 
receptors (116–118). Roughly 75% of BRCA1 breast cancers are ER 
negative and 25% are ER positive. On the other hand, 75% of BRCA2 
breast cancers are ER positive and 25% are ER negative, similar to 
breast cancer in the general population. Recent genome-wide associ-
ation studies also have identified more than 75 low-penetrant suscep-
tibility loci with evidence for specificity by tumor subtype (119–129). 
For 13 loci (119), there is greater relative risk for ER-positive than 
ER-negative cancers. For two notable exceptions (single nucleotide 
polymorphisms rs6828523 and rs7072776), the relative risk is oppo-
site for ER-positive and ER-negative tumors (119), consistent with 
risk factor differences by ER expression. Lastly, there are a number of 
susceptibility loci only for ER-negative but not ER-positive tumors 
(eg, the hTERT loci) (130, 131).

molecular Class Discovery and Prognosis
Analyses of gene-expression profiling data reveal that ER-positive 
and ER-negative tumors are fundamentally distinct diseases in 
molecular terms (132). There are two predominantly ER-positive 
intrinsic molecular subtypes (ie, luminal A and luminal B) and two 
predominantly ER-negative intrinsic subtypes (ie, HER2-enriched 
and basal-like) (Table  1). The intrinsic molecular subtypes are 
largely distinguished by the expression of genes involved in luminal 
epithelial differentiation (eg, ER and PR genes), proliferation (eg, 
Ki67 gene), human epidermal growth factor receptor 2 pathway 
(eg, HER2 gene), and basal differentiation (133–136).

The intrinsic molecular signatures are robust across multiple 
genomic platforms (137,138), apply to both carcinoma in situ and 
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invasive breast cancers (139–141), and are identifiable within dif-
ferent racial groups (142–144). Although the intrinsic gene set was 
originally developed through agnostic profiling, the power of this 
approach reflects its ability to define molecular subtypes that vary 
with respect to prognosis and treatment (134,136,137,145–156). 
The intrinsic subtypes have been variously approximated with 
immunohistochemical staining algorithms (Table  1); however, 
there can be considerable discordance between the gene-based and 
immunohistochemical-based expression profiles for the intrinsic 
subtypes (157–159).

Luminal breast cancers are the most heterogeneous intrinsic 
subtypes, with the luminal A  tumors distinguished by the high 
expression of luminal epithelial genes, low expression of the Ki67, 
and the best prognosis (160,161). The difference between the lumi-
nal A and luminal B gene patterns is less distinct than the differ-
ence between the luminal A and basal-like subtypes, which appear 
to be anticorrelated (88,146,162–165). Among the intrinsic sub-
types, the basal-like tumors have the most unique and distinctive 
genomic profile (132,166–169); they are in many ways more simi-
lar to squamous cell carcinomas of the lung and high-grade serous 
ovarian carcinomas than to all other subtypes of breast cancer 
(9,170). Basal-like tumors are enriched with BRCA1-mutated and 
triple-negative breast cancers but also include some special histo-
pathological subtypes such as medullary and adenoid cystic tumors 
(138,157,158,171). Finally, the HER2-enriched (HER2E) subtype 
shows a global gene signature that lies more closely to the luminal 
than basal-like cancers (172), with HER2 cell surface expression 
possibly playing an important role in regulating the luminal cancer 
stem cell population (5–7).

If every molecular subtype was a unique biological entity, one 
might anticipate that each would demonstrate a distinct age-spe-
cific incidence rate curve and unimodal age frequency distribu-
tion at diagnosis (45,58). Unfortunately, incidence rate data are 
not readily available for the intrinsic molecular signatures because 
gene-expression analyses have mostly been limited to case series 
and/or small observational studies from convenience and/or 
hospital-based samples. Nonetheless, in an early study that used 
the National Cancer Institute’s Surveillance, Epidemiology, and 
End Results (SEER) Residual Tissue Repository (164,173), we 
estimated the age-specific incidence rates for the molecular sub-
types with immunohistochemical staining of breast cancer tissue 
microarrays and imputed population data. Luminal A (defined as 
ER positive and HER2 negative) incidence rates rose continuously, 
although more slowly after age 50  years (similar to ER-positive 

cancers) (Figure 1A). Basal-like rates (defined as ER negative and 
HER2 negative) increased rapidly early in life then flattened or 
fell (similar to ER negative cancer) (Figure  1A). These patterns 
are consistent with subsequent studies from the California Cancer 
Registry (174–177) and emerging data from SEER’s large-scale 
population-based database (178).

Given the limited availability of population-based incidence 
rate data, we applied the intrinsic gene set classification algo-
rithm (147) to approximately 2000 breast cancer cases reported by 
METABRIC Group (179,180). Although METABRIC described 
10 distinct groups based primarily upon copy number data, the age 
distribution patterns by gene expression–defined intrinsic molecu-
lar subtypes are reminiscent of the bimodal patterns defined by ER 
protein expression (Figure 2B). Luminal A and luminal B cases had 
bimodal age distributions with predominant late modes near age 
70  years and minor modes near age 50  years (Figure  3A), simi-
lar to ER-positive cancers in SEER (Figure 2B). Basal-like cancers 
had an early-onset mode around age 50 years (Figure 3, A and B), 
similar to ER-negative cancers in SEER (Figure 2B). The HER2-
enriched age distribution lay midway between the luminal and 
basal-like cancers (Figure  3A). Combining the HER2-enriched, 
luminal A, and luminal B cases into a single non-basal-like group 
did not appreciably alter the bimodal shape of the molecular sub-
types (Figure 3B).

In METABRIC, hazard rates for breast cancer–specific death 
for basal-like, HER2-enriched, and luminal B tumors peaked near 
7.5% per year approximately 2 years after initial breast cancer diag-
nosis then declined (Figure  3C), similar to ER-negative cases in 
SEER (Figure  2C). Luminal A  hazard rates lacked a sharp peak 
and were relatively constant at 2% to 2.5% per year (Figure 3C), 
similar to ER-positive cases in SEER (Figure 2C). Overlaying the 
hazard rate curves for non-basal-like and basal-like cancers demon-
strated crossing hazard rates approximately 8 years after diagnosis 
(Figure  3D), similar to ER-positive and ER-negative cancers in 
SEER (Figure 2C).

Directions for Future research
We present the hypothesis that breast cancer comprises two fun-
damental etiological components, classes or subtypes; which, as 
of yet, are not specifically defined but which induce bimodal age 
distributions at diagnosis irrespective of the classification applied. 
The two putative main etiological subtypes are characterized by 
sharply contrasting tendencies related to age-specific incidence 

Table 1. Immunohistochemical staining for the intrinsic breast cancer molecular subtypes*

IHC subtype (%)† ER and/or PR HER2 Ki67 Intrinsic subtype

Luminal A (73%) Positive Negative Low Luminal A
Luminal B (10%) Positive Negative or positive Low or high Luminal B
HER2 positive, nonluminal (5%) Negative Positive Not needed HER2-enriched
Triple-negative (12%) Negative Negative Not needed Basal-like

* There are two predominantly hormone-positive (estrogen receptor [ER] and/or progesterone receptor [PR]) intrinsic molecular subtypes (luminal A and luminal  
B) and two predominantly hormone-negative intrinsic subtypes (human epidermal growth factor receptor 2 [HER2] enriched and basal-like) (133–136). Additionally, 
there are two predominantly HER2-positive intrinsic molecular subtypes (luminal B and HER2 enriched) and two predominantly HER2-negative intrinsic subtypes 
(luminal A and Basal-like). Adapted from Goldhirsch et al. (157). IHC = immunohistochemical.

† Estimated percentage distribution for IHC-derived subtypes among women with breast cancer and known ER, PR, and HER2 expression in the general population 
of the United States in 2010, provided by the National Cancer Institute’s SEER database (178).
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rates, clinical prognosis, risk factor profiles, and somatic gene and 
protein expression. ER expression by age at diagnosis provides an 
epidemiologically useful correlate for our two-component breast 
cancer mixture model, but it is not a perfect surrogate.

From the molecular perspective, multianalyte genomic profil-
ing has revealed many novel breast cancer subtypes with distin-
guishable, if not distinctive, clinical tendencies. We speculate that 
these categorizations also may reflect varying mixtures of two main 
etiological components, as demonstrated by a ubiquitous bimodal 
age distribution at diagnosis. Presently, the luminal A and basal-like 
molecular signatures are the most clearly distinguishable subtypes 
(Figure 3A) and appear to be polar opposites at most every level 
(3,6,163,181).

Furthermore, emerging molecular evidence shows that across 
different types of cancer, breast cancer is one of the few cancers 
with two major divisions. One division consists of basal-like tumors 
and the other is composed of luminal A, luminal B, and HER2-
enriched cancers (9,170), which we have conceptualized with a car-
toon in Figure  4. These data, together with the epidemiological 

findings reported herein, suggest that breast cancer overall may be 
viewed as a hierarchal disease derived from two main cell types of 
origin (ie, basal/myoepithelial vs luminal cellular compartment) (2–
9). Basal-like breast cancers arise from the basal/myoepithelial cell 
compartment, whereas non-basal-like cancers (ie, HER2-enriched, 
luminal B, and luminal A) emerge from a more luminal-like cell 
compartment.

Data in this commentary also suggest themes for future etiolog-
ical and clinical research. Large-scale and population-based epide-
miological studies could stratify etiological analyses by molecular 
subtypes such as basal-like vs non-basal-like or luminal. Our cur-
rent thinking is that there are two main etiological subtypes for 
sporadic breast cancers, but there could be a few more, potentially 
including rare subtypes such as inflammatory breast cancer (112). 
Given the challenges in molecular subtyping in large-scale pop-
ulation-based studies, it would be helpful to further develop and 
validate parsimonious robust marker panels for studies that merge 
individual-level molecular and clinical data in populations within 
well-defined catchment areas (173,182,183).

Figure  3. MEATBRIC case data for approximately 2000 breast tumors 
(179). Global gene expression was assessed with the intrinsic gene set. 
A) Density plots for age at diagnosis of basal-like cancers had an early-
onset mode near age 50 years. Luminal A and luminal B cases showed 
bimodal age distributions with predominant late-onset modes near age 
70  years and minor modes near age 50  years. The human epidermal 
growth factor receptor 2–enriched (HER2E) age distribution at diagnosis 
lies in between the density plots for the luminal and basal-like cancers. B) 
Combining HER2E and luminal cases into a single non-basal-like group 
did not appreciably alter the shape of the bimodal age distribution plots 
shown for molecular subtypes. C) Hazard rates of breast cancer–specific 

death for basal-like, HER2E, and luminal B cancers peaked near 7.5% 
per year approximately 2 years after initial breast cancer diagnosis then 
declined, similar to estrogen receptor (ER)–negative cases in the National 
Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) 
database (Figure 2C). Luminal A hazard rates lacked a sharp peak and 
were relatively constant at 2% to 2.5% per year, similar to ER-positive 
cases in SEER (Figure 2C). D) Combining the HER2E and luminal cases 
into a single non-basal-like group resulted in a hazard plot that was inter-
mediate between the basal-like and luminal A hazard rates. Hazard rates 
crossed over approximately 8 years after breast cancer diagnosis, similar 
to ER-positive and ER-negative cancers in SEER (Figure 2C).
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Understanding the etiological heterogeneity of breast cancer, 
whether it is fundamentally bimodal as proposed herein or more 
complex, would have critical implications for breast cancer preven-
tion. For example, selective ER modulators are effective in reduc-
ing breast cancer incidence among women at higher risk overall 
(184), but the means for identifying women specifically at elevated 
risk for hormonally driven cancers are lacking. Furthermore, 
ER-positive status is only a surrogate of hormone dependence; 
selective ER modulators do not prevent all ER-positive cancers nor 
do all ER-positive tumors respond to adjuvant endocrine therapy 
(4,185). If the hormone-responsive phenotype is linkable to a risk 
factor profile (eg, the etiological class of breast cancers enriched, 
but not exclusively within the late onset peak), then identifying this 
subtype more specifically would represent an advance with trans-
lational potential for both prevention and treatment. Similarly, 
understanding the basic biology of tumors enriched within the 
early-onset age distribution at diagnosis might offer analogous 
opportunities for BRCA1-related, basal-like, and/or triple-negative 
breast cancers.

As a final thought, although a two-component mixture model 
may seem too simplistic for breast cancer clinical heterogeneity, 
it is not too simple for etiology. Much of the clinical heterogene-
ity for breast cancer may result from tumor promotion and pro-
gression, which is very likely far downstream of tumor initiation 
(31). Therefore, breast cancer etiology (tumor initiation) may be 
less complex than subsequent tumor promotion and progression. 
Additionally, although parsimonious, the complexity of mixture 
models should not be underappreciated. The potential for an infi-
nite number of mixtures of just two main components is compli-
cated enough to account for much of the observed breast cancer 
heterogeneity.
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