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Synopsis An organism’s ability to maintain a desired physiological response relies extensively on how cellular and

molecular signaling networks interpret and react to environmental cues. The capacity to quantitatively predict how

networks respond to a changing environment by modifying signaling regulation and phenotypic responses will help

inform and predict the impact of a changing global enivronment on organisms and ecosystems. Many computational

strategies have been developed to resolve cue–signal–response networks. However, selecting a strategy that answers a

specific biological question requires knowledge both of the type of data being collected, and of the strengths and

weaknesses of different computational regimes. We broadly explore several computational approaches, and we evaluate

their accuracy in predicting a given response. Specifically, we describe how statistical algorithms can be used in the

context of integrative and comparative biology to elucidate the genomic, proteomic, and/or cellular networks responsible

for robust physiological response. As a case study, we apply this strategy to a dataset of quantitative levels of protein

abundance from the mussel, Mytilus galloprovincialis, to uncover the temperature-dependent signaling network.

Introduction

Regulatory systems are ubiquitous in biology and

span all physical levels from genomic regulation to

signal transduction and ecological networks.

Emergent phenomena are a property of biological

systems and are, by definition, responses that

cannot be deduced from the sum of all parts; emer-

gent behavior is fundamentally non-intuitive

(Funtowicz and Ravetz 1994). Integration of experi-

mental data with systems-level computational models

enables greater understanding of emergent proper-

ties. For example, inference of a directed regulatory

protein network can reveal emergent properties by

uncovering dynamics through feedback and crosstalk

(Bhalla and Iyengar 1999). Systems approaches have

been rapidly embraced by many cellular and molec-

ular biologists and have become commonplace in

understanding high-volume datasets across a variety

of experiments (Janes et al. 2004; Tong et al. 2004;

Purvis et al. 2012). Similarly, the field of integrative

and comparative biology is primed for the integra-

tion of computation with quantitative experimental

data for the purpose of understanding regulation

within and among organisms subject to different en-

vironmental perturbations. (Many systems

approaches require understanding linear algebra; we

encourage readers to familiarize themselves with the

works of Gilbert Strang (2003) and Carl Meyer

(2000)). In this study, we take a stepwise approach

to observe emergent phenomenon by deriving a di-

rected protein network in the organism, Mytilus

galloprovincialis.

Cue–Signal–Response

Computational models can be used to resolve/

elucidate complex relationships among observed

system components, or state variables, and predict

responses to unknown conditions. Such predictive
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models require quantitative data that sample a

specified number of variables (p) under a specific

number of conditions (n). Any condition that stim-

ulates or perturbs a system is defined as a cue.

Conditions vary in nature and include external

stimuli or perturbations (e.g., different temperature

conditions or the addition of a small molecule).

Other conditions can reflect the number of replicate

experiments or observed time points. Biological and

technical replicates are necessary to quantify confi-

dence and account for biological variance as well as

instrument error. Additionally, sampling the p vari-

ables in time provides unmatched insight into

dynamic regulation. Hence, the number of condi-

tions, n, encompasses the number of perturbations,

replicates, and time points for a given experiment.

The final outcome of the experiment, often phe-

notypic, is defined as the response. The intermediate

variables that aim to explain a specific response are

signals. From these experimental data, we can define

a cue–signal matrix, X, of n� p dimensions and a

response vector, y, of n� 1 dimensions. While there

is no hard rule for how many variables and condi-

tions are necessary to produce a computational

model, the general relationship between explanatory

variables, conditions, and type of model is shown in

Fig. 1. In general, increasing p can expand the like-

lihood of finding relevant variables that can accu-

rately describe a given response. However, when

p>> n, it is challenging to infer regulation, and al-

gorithms often are limited to ascribing association.

Increasing n by sampling diverse conditions can in-

crease the variance of the data facilitating the iden-

tification of first-order regulation, or architecture, in

systems such as cell signaling or ecological networks.

Increasing n by the inclusion of replicates can add

confidence to a given hypothesis (e.g., determining

whether two proteins have significantly different

abundance between conditions). Depending on the

research question, it can be desirable to sample mul-

tiple replicates under a given condition, increase the

search space by including diverse conditions, or a

combination of both. If the signals are sampled at

many unique time points, it is possible to gain in-

sight into higher-order, dynamic regulation such as

feedback and crosstalk (Zheng et al. 2013).

Therefore, the size and structure of the experimental

data can significantly impact the utility and applica-

tion of computational strategies.

All models are based on assumptions and there-

fore flawed; they provide an imperfect representation

of the complexity inherent in biological systems.

However, computational methods can be useful in

guiding our understanding of the underlying

complexity and predicting unknown responses.

Selecting an informative model to answer a specific

biological question requires balancing the strengths

and limitation of each technique. Here, we discuss

two broad categories of predictive modeling: associ-

ation and network-architecture. Depending on the

nature of the dataset, one or more of these methods

can be useful. For each category, we discuss and

apply representative algorithms that have been suc-

cessfully implemented for other biological datasets

(Jong 2002).

Temperature-mediated protein abundance and

regulation in mussels

As filter-feeders, mussels are a keystone of the coastal

ecosystem (Gosling et al. 1992). Mytilus galloprovin-

cialis is a mussel of Mediterranean origin that over

the past century has replaced the native Mytilus tros-

sulus from southern California to the San Francisco

bay (Braby and Somero 2006, 1). While M. gallopro-

vincialis has been shown to be the more heat-

resistant species (Braby and Somero 2006, 2), the

effects of increased temperature and climatic

change on this invasive species are still unknown.

Modeling how protein abundance (signals) within

this species respond to temperature (cue) can aid

our understanding of how the coastal ecosystem

can continue to change within a dynamic

environment.

Fig. 1 Relating data type and dimension to modeling strategies.

Association, architecture, and regulation are three broad para-

digms for mathematical modeling of biological systems. When the

number of observed variables is significantly greater than the

number of experimental conditions, computational strategies that

inform association and correlation are most applicable. As the

number of experimental conditions increases, one can begin to

infer network topology and architecture. Regulation is best un-

derstood in the context of time, when system dynamics are ap-

propriately evaluated.
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Through computational modeling, we seek to

identify proteins that are most affected by changes

in temperature. We use M. galloprovincialis as a

model organism in a case study to demonstrate

how the integration of experimental and computa-

tional techniques allows understanding of an

organism’s responses to environmental cues. It is im-

portant to note that despite the focus of our study,

the following methods are highly extensible and can

be applied at different physical scales across cellular,

organismal, and ecological levels.

Results

Mytilus galloprovincialis was subtidally collected. The

animals were acclimatized to 138C for 4 weeks and

gradually exposed to 138C, 248C, 288C, and 328C (at

a rate of 68C/h). After a 1-h incubation at these

temperatures, mussels were given time to synthesize

proteins for 24 h at 138C before gill tissue was dis-

sected and analyzed for changes in protein abun-

dance (Tomanek and Zuzow 2010). The gill tissue

was solubilized and quantified by 2D electrophoresis.

Each spot on the gel was identified using mass spec-

trometry. These data, outlined in Table 1, were pre-

viously published (Tomanek and Zuzow 2010). The

study included 47 proteins (p) and 3 non-reference

conditions (n). The cue in this example is tempera-

ture at 248C, 288C, and 328C; proteins were normal-

ized to measurements at 138C.

Association

Associations can inform the type of relationship or

interaction among input variables and output vari-

ables. Variables with similar functions, upstream reg-

ulators, or stimuli can respond similarly and cluster

together in a dataset. Clustering techniques are used

to identify variables that exhibit similar characteris-

tics within the scope of the data. Figure 2A displays

the z-scored data on protein abundance in a clus-

tered heat map. Hierarchical clustering, on the left of

the heat map, identifies proteins that are statistically

similar. Clustering was performed by mean-centering

and scaling each variable (protein abundance) to unit

variance and identifying pairwise linkages using

Ward’s method of minimum variance (Ward 1963).

There are various methods of preprocessing data that

can affect the corresponding results and interpreta-

tion. We z-scored the data in order to identify qual-

itatively similar clusters across conditions instead of

identification of quantitatively similar clusters based

on the magnitude of the variance. The Ward method

was chosen among other possible multiple-linkage

methods because studies have shown that it reflects

Table 1 Protein identifications (using MS/MS) of spots changing

with temperature treatment in Mytilus galloprovincialis

ID Protein name

Average protein levels
(relative to 138C)

24 28 32

P1A Hsp70 1.23 3.45 2.25

P2 Hsc70 3.41 1.69 1.67

P1B Hsp70 2.06 2.44 13.25

P1C Hsp70 0.95 2.97 5.80

P1D Hsp70 1.64 0.74 2.30

P3 Hsp90 2.40 2.29 1.22

P4A Alpha-crystalline-Hsp23 1.35 1.70 2.77

P4B Alpha-crystalline-Hsp23 1.02 1.54 2.62

P4C Alpha-crystalline-Hsp23 2.17 2.16 1.94

P5 Hsp27 0.73 3.17 3.74

P6 Proteasome-alpha-type_1 1.18 0.84 0.43

P7 Proteasome-alpha-type_6 0.64 0.74 0.73

P8 Proteasome-beta-type_3 0.65 0.53 0.46

P9 Proteasome-beta-type_2 0.81 0.49 0.49

P10 Proteasome-beta-type_6 0.80 1.27 2.38

P11 Arginine_kinase 0.79 0.40 0.32

P12 Pyrophosphatase 0.71 0.60 0.67

P13 Nucleoside_diphosphate_kinase 0.86 0.65 0.49

P14 Aspartate_amino_transferase 0.90 0.60 0.43

P15 Phosphoenol_pyruvate_carboxykinase 0.21 0.36 0.44

P16 Cytosolic_malate_dehydrogenase 0.99 0.96 0.72

P17A Isocitrate_dehydrogenase_(NADP) 0.72 0.75 0.76

P17B Isocitrate_dehydrogenase_(NADP) 2.11 2.43 3.41

P17C Isocitrate_dehydrogenase_(NADP) 0.56 0.49 0.52

P18A Cu-Zn_Superoxide_dismutase 1.02 0.19 0.24

P18B Cu-Zn_Superoxide_dismutase 1.24 5.88 9.66

P19 Thiamine_pyrophosphate_transketolase 1.56 1.04 1.20

P20 6-Phospho-glucono_lactonase 0.80 1.96 3.56

P21A Alpha-tubulin 1.29 1.56 1.00

P21B Alpha-tubulin 1.23 1.50 0.84

P21C Alpha-tubulin 1.25 0.64 0.25

P21D Alpha-tubulin 0.58 0.48 1.10

P22A Beta-tubulin 1.20 2.32 1.79

P22B Beta-tubulin 1.37 1.36 1.08

P22C Beta-tubulin 1.28 0.54 0.62

P22D Beta-tubulin 1.01 1.32 0.65

P22E Beta-tubulin 1.52 1.93 0.79

P23 Gelsolin 1.20 0.95 0.73

P24A Actin 0.64 0.89 1.08

P24B Actin 0.42 0.48 1.20

P25A G-protein_beta-subunit 1.36 1.13 0.35

P25B G-protein_beta-subunit 1.14 0.87 0.70

P26 Ras-like_GTP-binding_protein_RhoA 0.54 2.05 2.42

P27A Major_vault_protein 1.17 0.68 0.45

P27B Major_vault_protein 1.15 0.75 0.65

P27C Major_vault_protein 0.37 1.13 2.16

P28 Ribosomal_protein_2S 2.09 1.87 3.03

Source: Table reproduced from data in Tomanek 2010.
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the highest accuracy in separating randomly gener-

ated bivariate data when the number of members in

each group are relatively equal (Ferreira and

Hitchcock 2009).

Treating replicates as separate conditions can val-

idate the computational analysis. If replicates do not

have a close linkage, it is possible that the algorithm

is inappropriate for the structure of the data or that

there are extrinsic sources of variance. These sources

can include technical error, biological variance, or

other factors outside of the scope of experimental

design and control. In addition, comparison of anal-

ysis results with prior biological knowledge further

validates the results. Since our data are without bio-

logical replicates, we can only validate the clustering

method on prior knowledge.

We observed the clustering of closely related pro-

teins in the tubulin family supporting validity of the

computational method. In addition, many of the

proteins cluster into canonical cytoskeletal, energy

metabolism, and molecular chaperone functional

groups.

Principal component analysis

Principal component analysis (PCA) transforms a

high-dimensional dataset, through linear projection,

into a lower dimensional space (Smith 2002). The

first principal component (PC) is the latent or

hidden variable, a linear combination of measured

variables, that captures the most variance in the

data. The second PC explains the most variance re-

maining after the first PC has been removed from

the dataset, and so forth. Each PC exposes an under-

lying source of variance within the data, which can

correspond to a condition such as a biological pro-

cess or molecular function. While the actual meaning

Fig. 2. (A) Heatmap of protein abundances in M. galloprovincialis. Protein abundances are normalized by taking the z-score of each

predictor variable across conditions. Columns represent protein abundances at the given temperature in 8C relative to those at 138C.

This figure was produced from data in Tomanek and Zuzow (2010). Protein names are followed by the ID number to differentiate

similar proteins. Ward hierarchical clustering reveals that proteins in similar functional groups exhibit similar protein expression data.

Tight clustering of the tubulin family shows that the experimental design and clustering method capture most of the variance in the

data. PCA of relative protein abundances in M. galloprovincialis at 138C, 248C, 288C and 328C. The scores (B) and loadings (C) from PC

decomposition are shown with the inclusion of the first two PCs. The scores show that the data at 138C and 248C have the most

similarity. The loadings are colored according to their putative functional group. Both �-tubulin and �-tubulin proteins are labeled and

cluster tightly together.
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of each PC cannot be validated, it can be inferred

from information outside of the numerical model.

The scores show the relationship between condi-

tions (in this case, temperature) and the loadings

show the relationship among variables (in this case,

specific proteins). Variables with similar scores and

loadings tend to cluster more tightly than less similar

variables. Figure 2B shows the scores of the dataset.

Figure 2C shows the loadings of the mussel dataset

projected onto the first two PCs.

Each column of the cue-signal matrix, X, as well

as the response vector, y, can be scaled to reflect

unit-variance before PC decomposition. This is

useful if the quantified experimental variables reflect

significantly different scales or meanings. In this

analysis, we did not normalize the data to unit-

variance as each column measured a similar prop-

erty, protein abundance, within the same organism

and tissue. Examination of the scores plot can be

used to determine appropriateness of the pre-

processing of the data as well as the employed algo-

rithm. For example, if replicates are treated as

separate conditions, their projections on the scores

plot should cluster closer in space than that of non-

replicated conditions (see Tomanek and Zuzow 2010,

fig. 12, for an example). If the replicates do not clus-

ter closely relative to other perturbations, it may be

indicative of sources of variance outside of the con-

trol of the experimental design. In the absence of

published replicates, we examine the average abun-

dance at the four (temperature) conditions. Data

corresponding to the 138C and the 248C tempera-

tures cluster closely together, suggesting that they

contain similar data and possibly similar predictive

capacity.

Examination of the loadings plot shows that many

proteins within the same functional group cluster

together, as expected. From inspection, energy me-

tabolism and cytoskeletal proteins pack along the

PC1 axis. This suggests that the first PC may capture

the variance associated with changes in temperature.

We anticipated this outcome as many of these pro-

teins are known to change abundance in response to

temperature. Conversely, molecular chaperone pro-

teins are not tightly clustered, reflecting the diversity

of their roles within the organism. In addition, small

heat shock proteins might not cluster tightly due to

the fact that they are modified through post-transla-

tional modifications, specifically, acetylation and

phosphorylation (Tomanek and Zuzow 2010).

(Many unsupervised clustering methods are available

to quantify specific clusters of variables in principal

component space as well as without transformation;

for more information, we refer the reader to James

et al. (2013) and Murphy (2012).)

Regression

Regression is the mathematical formalization of an

association relationship (James et al. 2013). Linear

regression is the simplest form of regression where

an output vector, y, of dimension n� 1 is repre-

sented as a linear combination of the columns of

an input matrix, X, of dimension n� p. If the

input variables are mean-centered with unit-variance,

the equation is given by the following, where b is the

vector of weights with dimension p� 1:

y ¼ X � b ¼ x1�1 þ x2�2 þ � � � þ xn�n: ð1Þ

The resulting coefficients in b provide information

on the contribution of each explanatory variable to

the response. For example, a negative �1 suggests the

first variable, x1, negatively contributes to the re-

sponse. If �1 is positive, it suggests that x1 positively

contributes to the response. If �2 has a greater mag-

nitude than �1 (i.e., j�2j > j�1j), then the second

protein is believed to have greater impact than the

first on the overall response of the system when the

input data are standard normal. Choosing informa-

tive predictors from prior knowledge can increase the

probability of developing a useful model.

Assessing fit

A common metric for assessing the fit of data to a

model is the coefficient of determination, R2

(Hawkins et al. 2003), defined as:

R2 ¼ 1�

Pn
i¼1 ðyi � ŷiÞ

2

Pn
i¼1 ðyi � �yÞ2

, ð2Þ

where n is the number of observations, yi is an ob-

served output response, ŷ is the model-predicted re-

sponse, and �y is the expected value, or mean, of the

output based on experimental observation. The nu-

merator represents the sum of squared error, while

the denominator quantifies the biological variance as

the total sum of error.

A perfect fit is denoted by an R2 of 1, where R2

ranges between �1 and 1. This definition accounts

for variance in the biological observations, as shown

in the denominator; when the variance is high, the

sum of squared error is weighted less than if the

variance is low. By definition, the denominator

would tend to 0 as the variance of the data tends

to 0. This means we cannot develop an informative

model when the data have little variance, i.e., the

different experimental conditions have no effect on

the system.
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The problem is that the R2 value does not account

for whether a model is overfit, that is, having more

parameters than are necessary to be useful in pre-

dicting unknown responses from the input data. R2

increases with the addition of explanatory variables

so a matrix with a sufficiently large number of ex-

planatory variables can almost always produce an R2

near 1. The inclusion of these unnecessary variables

in the model, though, often reduces the predictive

power of the model—the ability of the model to

predict the output from new conditions. For this

reason, overfit models often predict the training

data perfectly, but fail to accurately predict test or

validation data. A method called cross-validation is

better suited to assessing the predictive utility of a

model.

Cross-validation

Cross-validation involves separating the data into a

training and a test set. The data can be separated in

various ways; for simplicity we use leave-one-out

cross-validation. This method omits one condition

(now the test set) and fits a model to the remaining

data (the training set); the resulting model is then

used to predict the test set. The utility of the model

can be assessed by observing how far the prediction

varies from the experimentally observed data point.

This is performed by sequentially omitting one con-

dition at a time, in this case, each of the three tem-

peratures. Then, we quantitatively assess the

predictive capacity of the model. One method of

doing this is using the predicted residual sum of

squares (PRESS) statistic (Holiday et al. 1995), de-

fined as:

PRESS ¼
Xn

i¼1

ðyi � ŷðiÞÞ
2, ð3Þ

where ŷðiÞ is the predicted y from a model that is not

trained on that particular condition. When choosing

among multiple potential models, one should select a

model that minimizes the PRESS function. Another

statistic, the cross-validated goodness of fit, Q2

(Hawkins et al. 2003), is often used because of its

interpretability and similar structure to R2. Q2 is

defined as:

Q2 ¼ 1�
PRESSPn

i¼1 ðyi � �yÞ2
: ð4Þ

A model with perfect predictive capacity has a Q2 of

1, and similarly to R2, Q2 can range between �1

and 1. When selecting between two potential models,

the one with the higher value of Q2 may be indica-

tive of a model with higher predictive power.

Multiple linear regression

Multiple linear regression is a type of regression that

uses multiple signals to describe a response. To solve

for the weights of explanatory variables we can use

ordinary least squares (OLS) regression, defined as:

bfit ¼ argmin� y � Xb
�� ��2

2
: ð5Þ

This equation solves for the set of parameters, bfit,

that minimizes the value of the contained function.

Values in the calculated bfit vector represent the pre-

dicted weights of variables in X on explaining y. It is

impossible to know the true values of b, therefore bfit

represents the estimated values, of the weights. As an

example, we defined the protein P20, 6-phosphoglu-

conolactonase, from Table 1 as the response variable

and the other proteins as the signal, X. To model the

contribution of explanatory variables on multiple

outputs, each variable can be iteratively defined as

the response, y, and regression performed in a sim-

ilar manner. Cross-validating the b-values with P20

as the output generated a Q2 of �10.8. As the Q2 is

far from the ideal value of 1, we can safely assume

that the model is overfit. We therefore need a

method to select only relevant variables needed to

create a useful model to explain the abundance of

6-phosphogluconolactonase.

Variable selection

One method to reduce the number of parameters in

OLS is to provide a penalty for b-values that are non

zero, thus reducing overfitting. This strategy can be

performed with backward selection, forward selec-

tion, or the least absolute shrinkage and selection

operator (LASSO) (Tibshirani 1997). LASSO pro-

vides the constraint that most b-values are zero, re-

sulting in a sparse solution. This particular addition

to the OLS optimization is known as the L1 penalty

(Zou and Hastie 2003), which penalizes according to

the L1 norm, also known as the Manhattan distance,

and is the sum of absolute differences:

bfit ¼ argmin� y � Xb
�� ��2

2
þ� b
�� ��

1
: ð6Þ

LASSO contains one tuning parameter, �, that deter-

mines the strength of the penalty and therefore spar-

sity of the �-vector. To determine the best predictive

model, � can be varied to give the maximal Q2. A

similar approach, Ridge regression, employs the

Euclidean, or L2 norm (Zou and Hastie 2003) to

penalize b-values with a large absolute value and

is useful for regression with few perturbations

relative to the number of variables being sampled

(i.e., p� n) (Hoerl and Kennard 1970). Elastic net

is an additional regression technique that combines
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both the L1 and L2 penalties (Zou and Hastie 2003)

and has been useful in large datasets such as those

common in genomic studies (Cho et al. 2010).

We start by solving for the optimal � that predicts

6-phosphogluconolactonase from the other 46 pro-

teins. We utilized lasso() with cross-validation in

Matlab R2013a (Mathworks) yielding an optimal

cross-validated parameter of � ¼ 0.01. We input

this value again into lasso() to provide a sparse set

of predictors that explain the protein abundance of

6-phosphono-gluconolactonase. In this case, the rel-

evant predictors are Hsp70 and Cu-Zn superoxide

dismutase. Using this L1 penalty, the Q2 has in-

creased from �10.8 to 0.23, indicating that the

model has more predictive power than simple OLS

regression.

We find these results compelling; Cu-Zn superox-

ide dismutase might be indicative of oxidative stress,

while 6-phosphogluconolactonase, a member of the

pentose-phosphate pathway, provides NADPH and

thereby reducing equivalents for glutathione. This

reduction is subsequently used to scavenge reactive

oxygen species. Furthermore, reactive oxygen species

damage proteins and therefore require molecular

chaperones such as Hsp70 (Tomanek and Zuzow

2010).

Architecture

Associations are useful in integrative and compara-

tive biology for predicting certain desired variables

from a series of predictors. However, another level

of understanding can be derived by observing how

each of the test variables interacts with each other

within a specified system topology, or network archi-

tecture. The process of reverse engineering these net-

works from variable data under a set of conditions is

known as network inference. Network inference is

one method of finding relationships (edges) between

variables (nodes) in complex biological systems.

Nodes can represent diverse biological components

such as genes, proteins, or organisms as well as a

related pertinent variable such as a drug intervention,

environmental stimulus, or cell phenotype. Edges can

represent relationships such as physical interactions

between nodes, which are represented as lines be-

tween nodes. Networks can also show dependence

of one variable on another represented as a directed

arrow between the explanatory (parent) node and

the dependent (daughter) node. By assaying the

value of measured variables under diverse conditions,

the functional connections between the variables can

be inferred using various computational algorithms.

Network inference has shown significant impact in

analyzing biological systems as it is able to identify

novel connections among variables as well as offering

predictive insight into how a system will respond

under new conditions (Hecker et al. 2009).

Types of networks

Networks fall into two general categories: undirected

and directed. Undirected networks indicate whether

two variables interact in some manner and are often

represented by lines connecting different nodes.

These can be useful in understanding the underlying

structure of life systems such as protein–protein in-

teractions or cooperation in ecological networks.

Directed networks describe how information flows

from one node to another and is often represented

with arrows connecting the nodes. Directed networks

are able to elucidate the sequence of signaling events

that govern a defined response. Elucidating interac-

tions and upstream regulators can help identify novel

control inputs and inform perturbation strategies to

enforce a desired response. In the context of cell

signaling, potential control inputs or perturbations

can reflect novel drugs aimed to prevent proliferation

of cancer; in organismal biology, the perturbation

can be an environmental condition that contains

an invasive species or pathogenic organism.

Directed networks have been used to gain insight

into intracellular signaling cascades (Sachs et al.

2005), as well as predator–prey models in ecosystems

(Winemiller 1990).

Correlation networks

A correlation network is a simple means of identify-

ing undirected connections among variables. Here,

we use pairwise Pearson correlation coefficients (r)

of all 47 proteins and 1 variable for the cue, temper-

ature. The equation for r is given by the following:

r ¼

Pn
i¼1 ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðxi � �xÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðyi � �yÞ2
q , ð7Þ

where xi and yi represent the two observed variables

at observation i, and �x and �y represent the expected

values for x and y, respectively. Since the Pearson

correlation coefficient normalizes each variable

intrinsically, the value of r is invariant to scaling of

the data, making it a consistent metric for

comparison.

In order to display the data, we arbitrarily retained

48 edges, the same number as nodes. The analysis of

determining the optimal threshold of edges is outside

the scope of this study. The resulting undirected net-

work is shown in Fig. 3A. Positive correlations are

displayed with a solid line and negative correlations
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with a dashed line. This type of analysis provides

informed hypotheses of proteins that can lie within

the same pathway or can be coregulated.

The resulting network architecture suggests that

the cue variable, temperature, may have an interac-

tion with P23 (gelsolin), which then may interact

with P13 (nucleoside diphosphate kinase), P18B

(Cu-Zn superoxide dismutase), and P24A (actin).

We find it compelling that gelsolin, an actin severing

protein, may interact with actin and superoxide dis-

mutase, since it is established that oxidative stress

leads to modifications of the actin cytoskeleton

(Dalle-Donne et al. 2001).

Regression-based networks

Regression networks offer another level of analysis by

iteratively treating each variable as the response, al-

lowing all other signaling variables to serve as the

predictors or explanatory variables (Myers 1990).

To infer the structure of the network between vari-

ables we also applied the GENIE3 (for GEne

Network Inference with Ensemble of trees) algo-

rithm, which employs a network inference technique

called Random Forests (Irrthum et al. 2010).

GENIE3 was chosen because of its top performance

in inferring network structure with high accuracy

using benchmark in silico and in vivo datasets. The

high quality of this algorithm in comparison to

others is described in the DREAM5 (Dialogue for

Reverse Engineering Assessments and Methods:

Challenge 5) network inference challenge (Marbach

et al. 2012). We therefore chose this algorithm to

examine the protein abundance network in mussels

after perturbation with several temperatures.

GENIE3 was performed using the same 48 vari-

ables (47 protein abundances þ temperature) and we

specified two parameters as previously described

(Irrthum et al. 2010), the number of trees (500),

and the number of randomly selected variables for

each node of a tree (
ffiffiffiffiffi
48
p

). The edge confidences

were ordered by the importance metric assigned to

each potential edge as defined in the GENIE3 algo-

rithm (Irrthum et al. 2010). For comparison, we

applied an arbitrary threshold to retain 48 edges, as

shown in Fig. 3B.

This type of analysis shows a tractable flow of in-

formation within the mussel protein network under

various temperatures. While the Pearson correlation

network shows proteins that may share a functional

relationship through an undirected network, the

GENIE3-derived network shows how information

about the abundance of one protein may affect the

abundance of another protein.

While inferring the directionality of a system’s in-

formation flow in the absence of time-resolved data

might seem counterintuitive, directionality can be

inferred by comparing the amount of variance that

is explained in one variable by another. Knowledge

of the state of variable A may give information on

the state of variable B, whereas knowing the state of

variable B may give very little information on the

state of variable A. In a classic example, knowing

that it is raining informs whether grass (outside) is

wet. However, knowing that the grass is wet offers

less information on the state of the weather, since

wet grass can result from a variety of sources. In this

way, we can hypothesize the directionality that rain

causes the grass to be wet and not vice-versa.

Both inferred networks in this study offer useful

insight into the network architecture and address

distinct biological questions. The GENIE3 network

differs from the correlation network because different

inference methods resolve different types of interac-

tions. Integrating multiple networks usually increases

accuracy of network inference (Marbach et al. 2012).

Additional inference methods

Several types of network inference methods are avail-

able, and fall into four broad categories: regression

(Haury et al. 2012), mutual information (Margolin

et al. 2006), correlation (Stuart et al. 2003), and

Bayesian (Yu et al. 2004; Ciaccio et al. 2010). Each

type of inference method has its own strengths, and

selecting the appropriate one is context specific and

depends both on the available data and on the ques-

tion being posed (Marbach et al. 2012).

Conclusions

Network inference is a particularly powerful strategy

that quantitatively defines network structure and the

impact of environmental perturbations to specific

signaling variables. Understanding the systems-level

properties that emerge from complex networks can

elucidate associations among network variables, as

well as between these variables and their

environment.

We highlighted methods that identify similarities,

find associations, and determine interactions between

different proteins in mussels’ gill tissue. Our results

imply novel regulatory mechanisms, highlight the

effect of temperature on proteins, and provide

hypotheses suggesting potential proteins responsible

for temperature resistance in the invasive mussel,

M. galloprovincialis, in the southern Californian

coastal region.

Systems approaches to integrative biology 303

3.2.3  
3.2.4  
 &amp; 
4  
Mytilus 


F
ig

.
3
.

(A
)

U
n
d
ir

e
ct

e
d

p
ro

te
in

re
gu

la
to

ry
n
e
tw

o
rk

in
M

.
ga

llo
p
ro

vi
nc

ia
lis

.
P
e
ar

so
n

co
rr

e
la

ti
o
n

co
e
ff
ic

ie
n
ts

ar
e

u
se

d
to

id
e
n
ti
fy

n
o
d
e
s,

o
r

p
ro

te
in

s,
th

at
ar

e
si

m
ila

rl
y

re
gu

la
te

d
an

d
su

b
se

q
u
e
n
tl
y

cl
u
st

e
re

d
.

Te
m

p
e
ra

tu
re

,
h
ig

h
lig

h
te

d
in

th
e

sh
ad

e
d

su
b
n
e
tw

o
rk

,
is

sh
o
w

n
to

in
te

ra
ct

w
it
h

P
2
3

(g
e
ls

o
lin

),
w

h
ic

h
in

te
ra

ct
s

w
it
h

P
1
3

(n
u
cl

e
o
si

d
e

d
ip

h
o
sp

h
at

e
ki

n
as

e
),

P
1
8
B

(C
u
-Z

n
su

p
e
ro

x
id

e

d
is

m
u
ta

se
),

an
d

P
2
4
A

(a
ct

in
).

P
o
si

ti
ve

co
rr

e
la

ti
o
n
s

ar
e

sh
o
w

n
w

it
h

a
so

lid
lin

e
an

d
n
e
ga

ti
ve

co
rr

e
la

ti
o
n
s

w
it
h

a
d
as

h
e
d

lin
e
.
T

h
e

d
is

co
n
n
e
ct

e
d

n
e
tw

o
rk

s
su

gg
e
st

th
at

m
o
st

p
ro

te
in

s
in

te
ra

ct
w

it
h

a

cl
o
se

n
e
ig

h
b
o
rh

o
o
d

o
f

p
ro

te
in

s,
ra

th
e
r

th
an

m
o
re

gl
o
b
al

ly
ac

ro
ss

th
e

n
e
tw

o
rk

.
(B

)
D

ir
e
ct

e
d

p
ro

te
in

re
gu

la
to

ry
n
e
tw

o
rk

in
fe

rr
e
d

u
si

n
g

th
e

G
E
N

IE
3

al
go

ri
th

m
.

D
ir

e
ct

e
d

n
e
tw

o
rk

s
ill

u
st

ra
te

in
fo

rm
at

io
n

fl
o
w

as
d
e
sc

ri
b
e
d

b
y

th
e

ar
ro

w
s

am
o
n
g

n
o
d
e
s.

T
h
is

n
e
tw

o
rk

su
gg

e
st

s
th

at
P
2
1
A

(�
-t

u
b
u
lin

)
an

d
P
6

(p
ro

te
as

o
m

e
-�

-t
yp

e
-1

)
ar

e
u
p
st

re
am

re
gu

la
to

rs
o
f

P
4
B

(�
-c

ry
st

al
lin

e
-H

sp
2
3
).

304 M. F. Ciaccio et al.



The methods and principles described in this

study are applicable across a diverse range of exper-

iments and datasets. Studies of association and net-

work architecture can be applied to identify hidden

relationships among observed variables. We seek to

uncover the complex regulatory mechanisms to pre-

dict biological responses under various unknown en-

vironmental conditions. Ultimately, predicting

responses closes the gap between understanding reg-

ulation and controlling complex biological systems

(Bagheri et al. 2007; Cowan et al. 2014). Further in-

sight into the complexity inherent in biological reg-

ulation can be derived by sampling the system at

different times post-stimuli. The resulting dynamic

data support the development of more sophisticated

mechanistic models, such as series of differential

equations (Bagheri et al. 2011). Integrating such

computational strategies with quantitative data will

allow the biological community to gain greater in-

sight into the regulatory structure of complex sys-

tems at different temporal and physical scales.
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