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Abstract

Cells use messenger RNAs (mRNAs) to ensure the accurate dissemination of genetic information

encoded by DNA. Given that mRNAs largely direct the synthesis of a critical effector of cellular

phenotype, i.e., proteins, tight regulation of both the quality and quantity of mRNA is a

prerequisite for effective cellular homeostasis. Here, we review nonsense-mediated mRNA decay

(NMD), which is the best-characterized posttranscriptional quality control mechanism that cells

have evolved in their cytoplasm to ensure transcriptome fidelity. We use protein quality control as

a conceptual framework to organize what is known about NMD, highlighting overarching

similarities between these two polymer quality control pathways, where the protein quality control

and NMD pathways intersect, and how protein quality control can suggest new avenues for

research into mRNA quality control.
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INTRODUCTION

Cells use polymers to direct nearly all critical functions, including those that establish

inheritance, environmental adaptation, and, for more evolved organisms, multicellularity.

Genetic information encoded by the DNA polymer is transferred to mRNA polymers by

transcription before ultimately being converted into polypeptides via translation. Owing to

their vital functions, all three polymers must meet strict quality control standards. For both

mRNA and protein, the cell has put in place multiple pathways to ensure fidelity. Efficiency

and economy for these two quality control pathways are maximized bytightly coupling the
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recognition of defective products to their biosynthesis and/or stability (147, 157, 158).

Among the detrimental features for proteins is a failure to attain the proper fold and thus an

inability to properly function. Proteins may fail to properly fold for various reasons:

mistaken amino acid incorporation or altered amino acid incorporation rate during protein

synthesis, inability to locate a partner protein, or even changes that affect general cellular

homeostasis. The critical function of mRNA is related to the primary sequence of its protein-

coding region, and thus this is subject to inspection by the cell. In particular, creation of a

premature termination codon (PTC) generally activates the nonsense-mediated mRNA decay

(NMD) pathway. PTCs can be introduced as a result of genetic or somatic mutations,

mistakes during transcription, or mistakes during splicing. For both proteins and mRNAs,

the defective polymer must be first recognized, subsequently earmarked for degradation, and

finally destroyed.

MECHANISMS

Although the methods utilized to achieve quality control are diverse, protein quality control

and mRNA quality control as exemplified by NMD can be conceptually divided into three

basic steps: detection, tagging, and destruction (Figure 1). Much is known about the

molecular mechanism governing NMD activation, and this is the subject of recent extremely

detailed reviews (20, 74, 75, 88, 114, 124, 128, 134, 146, 158, 162). We provide only a brief

overview of the mechanism, focusing on mammalian cells, with the purpose of underscoring

its similar design principles to protein quality control.

Step 1: Detection

In order to carry out their essential functions, proteins must be folded into the proper three-

dimensional shape and further assume the proper quaternary structure. Terminally misfolded

proteins are eliminated, but what distinguishes an unfolded protein from a nascent protein in

the process of folding remains a key question in protein quality control. Mammalian cells

contain a complex network of chaperones that promote folding (148), among them the heat

shock protein Hsp70. Hsp70 uses cycles of ATP hydrolysis to repeatedly bind, protect, and

release hydrophobic regions (normally located in the interior of proper folds) in client

proteins, facilitating the opportunity to fold and preventing aggregation. Molecular

chaperones bind nascent polypeptide chains as they are synthesized on the ribosome,

ensuring a temporal window compatible with folding. In the case of proteins ultimately

deemed to be misfolded, presumably at some point a decision is made that further folding

cycles are of little utility toward achieving proper folding, and the protein is partitioned to

degradation. Hsp70 can interact with ubiquitin E3 ligases (see Figure 1, Step 2) (3) that link

detection to tagging. Thus, chaperone complexes make the key decision as to whether a

protein is terminally misfolded and must be destroyed (28, 66).

In contrast to proteins, it is most often the protein-encoding potential of mRNAs that

critically determines whether they fail to meet cytoplasmic quality control standards.

Generation of a PTC can involve as little as a single nucleotide change. How such a subtle

alteration can be detected as aberrant has led to several models and, for the sake of

simplicity, we first discuss the best-documented model before layering on additional

complexity. In all models, detection is intimately connected to translation termination that
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takes place during an initial pioneer round of translation (114). Newly synthesized

cytoplasmic mRNAs are bound by the cap-binding protein heterodimer CBP80–CBP20,

which constitutes their cap-binding complex (CBC), and if derived from intron-containing

pre-mRNA, they are also bound by multiprotein assemblies called exon-junction complexes

(EJCs), each deposited <20–24 nucleotides (nts) upstream of exon-exon junctions as a

consequence of pre-mRNA splicing (100, 101). Translation termination, which involves

eukaryotic release factor 1 (eRF1) and eRF3, provides the first signal necessary for

activation of NMD. If assembly of eRF1–eRF3 at a termination codon occurs ≥50–55 nts

upstream from an exon-exon junction, the footprint of the terminating ribosome is

insufficient to physically remove the EJC, and signal two is engaged. Given that normal

termination codons are usually located in the last exon, the presence of an EJC downstream

of a termination codon generally constitutes an aberrant situation.

Much is known about the molecular choreography that takes place during PTC detection.

NMD is mediated by a core set of conserved up-frameshift proteins: UPF1, UPF2, UPF3

(also called UPF3a), and UPF3X (also called UPF3b) (75, 128, 143). UPF3 and UPF3X

have partially redundant functions (see below). In multicellular organisms, NMD is aided by

suppressors with morphological effects on genitalia proteins: SMG1, SMG5, SMG6, SMG7,

SMG8, and SMG9 (83, 86, 132, 203). Among these proteins, UPF1 is the principal

orchestrator of NMD. It is an ATP-dependent RNA helicase that initially interacts with

mRNA cap-bound CBP80 and with eRF3 on the terminating ribosome. Remodeling of the

pioneer translation initiation complex involves replacement of the CBC with eukaryotic

translation initiation factor (eIF)4E, and this has been shown to render the remodeled mRNP

an inefficient NMD target, in part because CBP80 is lost (see below) (22, 111, 153). UPF1

also associates with SMG1, a phosphatidylinositol 3-kinase-related serine/threonine kinase

that forms the SURF (SMG1, UPF1, eRF1, and eRF3) complex (86). SMG1 activity in the

SURF complex is silenced by SMG8 and SMG9 (202). Signal two of NMD is orchestrated

by the EJC, whose core components include the RNA helicase eIF4A3, which serves as the

EJC anchor, as well as the Y14–MAGOH heterodimer, which inhibits eIF4A3 ATPase

activity (4, 130), and Barentsz (BTZ, or MLN51, or CASC3), which enhances eIF4A3

helicase activity (131). These core components are decorated with additional factors

including RNA-binding protein S1 (RNPS1), Acinus, Sin3A-associated protein 18 (SAP18),

Pinin, S6K1 Aly/REF-like substrate (SKAR), serine/arginine (SR)-related nuclear matrix

protein 160 (SRm160), the DEAD-box protein UAP56, the mRNA export factor Aly/REF,

and, importantly, UPF2, which is bound to the EJC via either UPF3 or UPF3X (9). The

majority, but not every exon-exon junction, receives an EJC, and EJC composition is

exceedingly complex and heterogeneous (52, 94, 154, 155, 164, 184). Other recently

identified trans-effectors, such as the DEAH-box protein 34 (Dhx34) and neuroblastoma

amplified gene (NAG), have been shown to function in human NMD, but their precise

molecular roles remain to be determined (106).

Step 2: Tagging

Once misfolded proteins are identified, they are marked for destruction (27, 63). This mark

takes the form of ubiquitylation, which is a covalent posttranslational modification. The C

terminus of the 76–amino acid protein ubiquitin is covalently joined to the ε-amine of lysine
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residues in substrate proteins, forming an isopeptide bond. Ubiquitin addition proceeds via

the ATP-dependent generation of a thioester bond between the C terminus of ubiquitin and a

cysteine residue in an E1 enzyme. Ubiquitin is next transferred to one of more than twenty

E2 ubiquitin-conjugating enzymes, which associate with E3 ubiquitin ligase enzymes. E3s

transfer the ubiquitin moiety either directly to the substrate protein [in the case of RING

(really interesting new gene) domain–containing E3s] or first to itself and then to the

substrate [in the case of HECT (homologous to the E6-AP carboxyl terminus) domain–

containing E3s]. Ubiquitin contains several internal lysine residues that can be targets of

ubiquitylation, generating ubiquitin chains. Generally, Lys48-linked ubiquitin chains signal

degradation by the protea-some.

Regarding NMD, once PTC-containing mRNPs are identified, their destruction also

involves protein modifications and rearrangements. On substrates where both signal-one and

signal-two requirements have been met, the complex of CBP80 and SMG1-UPF1 of the

SURF complex associate with the UPF2-UPF3X (or UPF2-UPF3) complex located as part

of the EJC, forming the decay-inducing complex (DECID) (76, 202). How are UPF1 and

associated factors able to traverse the often considerable distance between the SURF

complex and EJC? A recent model suggests that UPF1 may use its own helicase to “reel in”

the mRNA that exists between the SURF complex and the EJC (160). UPF1 certainly

associates with the 3′ UTRs of NMD targets in a way that is augmented by SURF and the

presence of a 3′ UTR EJC (65, 73, 96, 209). In an incompletely understood but rate-limiting

step, SMG1 kinase activity is stimulated (2, 82, 203), and UPF1 is phosphorylated at

residues in its N- and C-terminal domains (86, 133). Phosphorylation of UPF1 triggers a

critical step of translational repression that is required before the mRNP can be degraded

(80). This step involves an interaction between phosphorylated UPF1 and eIF3 that is part of

the 43S ribosomal complex at the initiation codon of an NMD target. This interaction

inhibits 60S ribosomal subunit joining to form a translationally active 80S ribosome and

thus further translation initiation events on the mRNP.

Step 3: Destruction

Proteins tagged with ubiquitin, i.e., those that are slated to be destroyed, are delivered to the

proteasome for degradation (71, 174, 201). Collectively, the ubiquitin conjugation

machinery and proteasome are referred to as the ubiquitin proteasome system (UPS). The

26S proteasome is composed of a barrel-shaped 20S core particle with two 19S regulatory

cap complexes at either end. Polyubiquitylated substrates are recognized by one of the two

19S caps, either directly or by adaptor proteins, and fed into the interior of the core particle.

The core particle is composed of seven different α subunits and seven different β subunits

arranged into four stacks of rings. The outer two stacks, which abut the 19S cap, are

composed of α subunits, and the inner two rings are composed of β subunits, of which β1,

β2, and β5 are proteolytically active. It is here that terminally misfolded proteins that fail to

meet quality control standards are recycled into their component amino acids.

During NMD, mRNAs decorated with phosphorylated UPF1 are similarly committed to

destruction. Phosphorylated UPF1 recruits SMG6, which has endonucleolytic activity in its

PIN (PilT N-terminal) domain (36, 72) and displaces UPF3 or UPF3X at the EJC (85).
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Irreversible endonucleolytic cleavage by SMG6 generates a 5′ cleavage product that

includes the PTC and a 3′ cleavage product that contains the EJC and NMD components.

The 5′ cleavage product is subject to 3′-to-5′ decay, possibly by the exosome (156). The 3′

cleavage product must meanwhile be stripped of its protein components in order to be

accessible to nucleases, and this is the job of UPF1 (46). UPF1 activity is normally auto-

inhibited by its own N- and C-terminal domains (43), but when UPF1 binds to UPF2, it

undergoes a large conformational change that activates its helicase activity (15, 16). UPF1

helicase activity disassembles proteins bound to the 3′ cleavage product, recycling NMD

factors and facilitating 5′-to-3′ exonucleolytic degradation by the exoribonuclease XRN1

(46), possibly consistent with cryoelectron microscopy structures showing UPF1 at the 3′

edge of the EJC (119). Phosphorylated UPF1 also recruits SMG5, an adaptor that binds

either proline-rich nuclear receptor 2 (PNRC2) or SMG7 (24, 26, 83, 180), each of which in

turn recruits activities that result in mRNA decapping followed by 5′-to-3′ degradation,

deadenylation followed by 3′-to-5′ degradation, or both (49, 101, 180).

Because the events culminating in mRNA decay are preceded by a pioneer round of

translation, destruction of the nascent peptide must be considered. Although not described

for mammals, the UPS and NMD pathways likely converge in yeast (95, 173). The yeast

UPF1 cysteine-histidine-rich domain interacts with an E2 enzyme and, together with UPF3,

is sufficient to induce the autoubiquitylation of UPF1 in vitro, demonstrating the ability of

UPF1 to participate in an E3-like reaction. This could potentially be a mechanism for rapid

NMD-coupled degradation of the nascent peptide as a particularly effective means to

downregulate the production of a truncated protein.

Post-mRNA Destruction Nonsense-Mediated mRNA Decay Events

After destruction of the mRNA, NMD factors must be recycled for further rounds of decay.

As discussed, UPF1 helicase activity disassembles components of the NMD substrate for

future use. UPF1 itself, however, must be returned to its basal hypophosphorylated state.

This is accomplished by protein phosphatase 2A (PP2A), which is recruited by SMG5-

SMG7 (23, 132). Dephosphorylation of UPF1 is critical because failure to recruit PP2A

leads to an inhibition of NMD. Additionally, the ribosome must be recycled, but both the

timing of this step with regard to mRNA destruction and the identity of the factors

contributing to it are unknown (161).

Alternative Models for Nonsense-Mediated mRNA Decay Recognition

Although the EJC-dependent model for substrate recognition has been rigorously

experimentally validated, exceptions exist. NMD is a highly conserved mechanism and the

yeast Saccharomyces cerevisiae, which has few introns, can recognize aberrant termination

on the basis of the distance between the terminating ribosome and the poly(A) tail (1),

although there are exceptions to this faux 3′ UTR model (118), which has been difficult to

prove (89). Mammalian NMD substrates have also been identified that bear unusually long

3′ UTRs that are devoid of an EJC. In this so-called “fail-safe” mechanism (115, 207),

normal termination is, analogously to yeast, proposed to be prevented by an inefficient

interaction between poly(A)-binding protein (PABP)C1 decorating the poly(A) tail and

eRF3 at the PTC (37, 81, 165), although some data (10, 113, 115) indicate that efficient fail-
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safe NMD requires an EJC residing upstream of the 3′ UTR. In NMD substrates, an

inefficient interaction between PABPC1 and eRF3 allows UPF1 to gain access to the

mRNP. In support of this, manipulations that shorten the distance between the PTC and

poly(A) tail by either deletion in yeast and mammalian cells (1, 59, 137, 165), by tethering

PABPC1 within the 3′ UTR, or by formation of a secondary structure in mammalian cells

(37) protect the transcript from NMD. Aunified model posits that NMD is a consequence of

competition between 3′ UTR-bound factors that stimulate UPF1 recruitment to the

terminating ribosome (such as the EJC) and factors that antagonize recruitment of UPF1

(such as PABPC1) (165). Importantly for models that rely on distance arguments, eIF4E-

bound mRNAs are thought to circularize, and CBC-bound mRNAs may do likewise. This

may explain why PTCs located near the 5′ end in certain substrates are less efficient at

eliciting NMD (37, 136), although a role for translation reinitiation downstream of the PTC

and upstream of an EJC offers an additional, if not alternative, explanation (125, 206).

Alternative Nonsense-Mediated mRNA Decay Branches

Further complexity is added by the discovery that different mRNA substrates require

different combinations of NMD trans-effectors. The classical branch of NMD requires the

EJC and all of the UPF factors, whereas the fail-safe branch does not require that an EJC

reside in the 3′ UTR; however, it does need an EJC situated upstream of the 3′ UTR (208).

Through molecular tethering experiments, a UPF2-independent branch requiring the core

EJC components, but not RNPS1, and a pathway requiring UPF2, UPF3X, and RNPS1, but

not some of the core EJC components, have been described (52). Finally, a branch lacking

any UPF3 or UPF3X requirements has been reported (18, 53). How these different

dependences impact the molecular rearrangements that lead to NMD is unknown. However,

it is clear that EJCs can manifest differences in their composition (52, 94, 154, 155, 164,

184).

Subcytoplasmic Sites of Quality Control

The cytoplasm of mammalian cells contains Hsp70 and other chaperones that help

determine if their client proteins are properly folded (Figure 1, Step 1). In addition to nuclear

proteasomes necessary for nuclear protein quality control (185), the protein degradation

machinery is likewise cytoplasmically disposed. Thus, much of protein quality control takes

place in what is topologically the cytoplasmic portion of the cell. An interesting exception is

provided by proteins that traverse the secretory pathway and thus reside in what is

topologically outside the cell. Sensing misfolded proteins is the job of endoplasmic

reticulum (ER)-localized chaperones, some of which leverage glycan processing to decide

when a protein has become terminally misfolded (167). These misfolded proteins must be

ejected back into the cytoplasm, where they are ubiquitylated and degraded.

In contrast, the subcellular site where NMD takes place has been a matter of debate. Many

biochemical fractionation studies have shown that NMD activity is nucleus-associated (5,

14, 21, 90, 108, 163, 177, 181, 207). This led to the hypothesis that the NMD of most

mRNAs takes place during mRNA export and on mRNAs that have yet to be released into

the cytoplasm, although some NMD substrates are degraded within the cytoplasm after

release from an association with nuclei (123, 152). Alternatively, a nuclear surveillance
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pathway was invoked (12, 77, 195). Given that NMD is a process that is dependent on

translation and that the consensus view does not support nuclear translation (29), such a

nuclear surveillance model seems unlikely. Furthermore, recent evidence strongly supports

that nucleus-associated NMD is not nucleoplasmic: Single-RNA fluorescent in situ

hybridization (FISH) experiments that measured the NMD of PTC-containing mRNA in

intact single cells after the induction of PTC-containing gene transcription have revealed

that, for those substrates studied, NMD occurs not in the nucleoplasm but on the

cytoplasmic face of the nuclear envelope soon after the mRNA is accessible to translation by

cytoplasmic ribosomes so that the NMD target has a half-life of <1 min once in the

cytoplasm (178). The remainder is degraded with a half-life that is comparable to the half-

life of normal PTC-free mRNA. These results are consistent with early ensemble studies that

demonstrate the biphasic decay of NMD targets (5, 21). Recent studies show that eIF4E-

bound PTC-containing mRNAs may be subject to NMD (35, 68, 149); however, the fast

degradation kinetics observed may imply that, for a particular transcript, the bulk of its

degradation occurs before exchange of CBC for eIF4E. Although processing bodies (P-

bodies) have been implicated as the cellular site of NMD, so have polysomes. P-bodies are

cytoplasmic foci that are enriched in decapping enzymes and the 5′-to-3′ degradation

machinery (39, 42, 45). Although some studies have shown localization of NMD

components to P-bodies (26, 34, 180), depletion of Ge-1, an essential component of P-

bodies, does not inhibit NMD (170). P-bodies may therefore simply be a by-product of

extreme demand on the mRNA degradation machinery, manifested as visible mRNP

aggregates rather than a cause of mRNA degradation (39). Evidence for polysome-

associated NMD is derived from yeast (69), where decapped NMD substrates are detected in

the polyribosome fraction. The finding that translational repression is required for NMD in

mammals (80) also indicates that at least the first stages of NMD occur on polysomes (22).

BEYOND QUALITY CONTROL

Both the protein quality control pathway and NMD exert regulatory roles in the cell. These

functions are generally an adjunct to their roles in eliminating misfolded proteins and

transcripts that produce truncated proteins. Controlling protein and transcript levels after

biosynthesis via the UPS and NMD pathways, respectively, offers the cell a rapid means of

responding to acute insults. Here, we detail examples of these other functions and how they

are exploited for the benefit of the cell.

Regulation of Normal Proteins or Transcripts

In addition to its job of disposing misfolded proteins, the UPS is involved in the regulation

of properly folded proteins whose destruction yields a biological outcome. p53, the tumor-

suppressor protein that integrates inputs from a diverse array of cellular damages, is a

constitutive target of the UPS through its interaction with the mouse double-minute 2

homolog (MDM2) protein, which is an E3 ubiquitin ligase. In unstressed cells, p53 has a

short half-life, on the order of 5–30 min, and its steady-state levels remain low because of

ubiquitylation by MDM2 (122). During lethal insults to the cell, this interaction is disrupted,

leading to rapid accumulation of p53 and ultimately growth arrest, senescence, and
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apoptosis. Posttranslational degradation of p53 by MDM2 allows for a rapid response, and

provides a way by which nonlethal insults can be repaired.

As a second example, flux through the cholesterol biosynthesis pathway is regulated by

adjusting HMG-CoA-reductase (HMGR) levels in the mammalian ER. HMGR is the rate-

limiting enzyme in sterol biosynthesis. When levels of lanosterol, which is the first

intermediate in sterol production, accumulate because flux is too high, lanosterol binds to

HMGR and triggers an association with insulin-induced gene 1 (Insig1), another membrane-

embedded protein. This complex then binds to glycoprotein 78 (gp78), a polytopic RING-

finger E3 ligase via the Insig1 adaptor, and HMGR is degraded by the UPS (61, 168),

functionally lowering cholesterol production.

NMD similarly regulates the quantity of physiological transcripts. Several studies using

human cells have now shown that mRNAs encoding full-length, functional proteins are

subject to NMD (120, 200). Evidence for conservation of this function comes from

additional studies in Arabidopsis thaliana (67, 205), Drosophila melanogaster (145),

Caenorhabditis elegans (142), and Saccharomyces cerevisiae (56, 60, 102). Many of the

transcript lists produced in these studies must be interpreted with caution: Given that most

studies involve ablation of an NMD protein (e.g., UPF1 or UPF2) and measuring the

resultant changes in mRNA levels, not all of those mRNAs that are upregulated are direct

targets of NMD. If, for example, a transcript encoding a transcription factor is a direct target

(see below), downregulating this transcript will lead to additional indirect changes in the

abundance of other transcripts. How can a quality control mechanism that presumably

evolved to recognize aberrant transcription products recognize normal mRNAs? At least five

classes of NMD-inducing features have been described: (a) an upstream open reading frame

(uORF) in the 5′ UTR where the stop codon of the uORF is interpreted as a PTC relative to

the main ORF; (b) alternative splicing (AS), in which the resulting shift in the translational

reading frame generates a stop codon ≥50–55 nts upstream of an exon-exon junction; (c)

abnormally long 3′ UTRs; (d ) a normal termination codon ≥50–55 nts upstream of an exon-

exon junction (so that when translation terminates normally, the 3′ UTR EJC is not

removed); and (e) UGA codons within certain selenoprotein-encoding mRNAs that are

recognized as selenocysteine codons, depending on the cellular concentrations of selenium

and the presence of a selenocysteine insertion sequence (SECIS) in the mRNA 3′ UTR (33,

123, 169). The magnitude of NMD-induced downregulation of these un-mutated transcripts

is generally less than that of authentic PTC-bearing transcripts, leading to the idea that this is

a method for fine-tuning rather than eliminating gene expression.

Alternatively spliced transcripts represent an interesting class of NMD targets because

approximately 35% of AS events result in inclusion of an exon-bearing PTC (55, 103). AS-

coupled NMD (AS-NMD), which is also called regulated unproductive splicing and

translation (RUST), is likely a general strategy for fine-tuning the abundance of mRNA

species that can be used to produce physiological amounts of protein without altering

transcription levels (64, 103). Interestingly, among the AS-NMD targets are mRNAs that

encode components of the splicing machinery itself, such as polypyrimidine tract-binding

protein (PTB) and the SR protein SC35. When the levels of their encoded proteins become

too high, this is thought to provide an autoregulatory mechanism for controlling the levels of
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the splicing machinery: High levels of these splicing factors direct inclusion of a termination

codon into the mRNA from which each splicing factor is derived, triggering NMD and

splicing downregulation (98, 117, 127, 151).

Regulation of Quality Control Itself

Protein quality control activity as a whole is not constant but is instead subject to regulation

by the cell for several purposes. This is illustrated by a conserved form of feedback control

called the unfolded protein response (UPR), which buffers the cell against deleterious effects

that arise as a consequence of an increase in protein-folding load in the ER (187). When the

chaperones involved in detection (Figure 1, Step 1) of unfolded proteins in the ER are

overwhelmed by their client proteins, a suite of three sensors—inositol-requiring 1 (IRE1),

activating transcription factor 6 (ATF6), and protein kinase R-like ER kinase (PERK)—are

activated. The UPR takes a two-pronged attack to buffer against unfolded proteins. IRE1

mediates an unconventional post-transcriptional splicing event in the cytoplasm that

ultimately results in production of the transcription factor X box–binding protein 1 spliced

(XBP-1s) from the spliced mRNA (Figure 2), whereas ATF6 is cleaved by Site-1 protease

(S1P) and Site-2 protease (S2P) to yield a fragment that translocates into the nucleus. In the

nucleus, both XBP-1s and ATF6 activate a group of UPR target genes, among them the very

chaperones and ER quality control components that are used to sense the increased protein

load. This helps to match the folding capacity of the ER with an increase in demand.

Activation of PERK results in eIF2α phosphorylation (see below), which decreases overall

translation and thus protein-folding demand.

A second example of regulated protein quality control concerns the degradation step (Figure

1, Step 3). Nucleated cells exploit protein degradation as a warning to alert the immune

system of infection. Short peptide snippets that derive from proteasomal degradation

products are displayed on the cell surface in a process called antigen presentation (186). One

of the responses to infection includes the production of interferons, soluble cytokines that

mediate changes in gene expression through the Janus kinase-signal transducers and

activators of transcription ( JAK-STAT) signaling pathway. Among the interferon-induced

genes are three that encode alternative proteasomal subunits (β1i, β2i, β5i). These subunits

assemble with the remaining proteasomal α and β subunits to form immunoproteasomes.

Formation of immunoproteasomes increases the total proteolytic capacity of the UPS and

improves the quantity and quality of the peptides generated for antigen presentation (41,

140).

That normal nondefective genes are subject to NMD implies that the cell may modulate

NMD activity like it modulates activity of the UPS, possibly exerting control over the levels

of hundreds of transcripts at once. This concept is illustrated by several developmental

processes. Portions of mammalian myogenesis are modeled by the differentiation of cultured

mouse C2C12 myoblasts into multinucleated myotubes. During differentiation, the activity

of another related mRNA degradation pathway, Staufen-mediated mRNA decay (SMD), is

upregulated (91). UPF1 is essential for SMD and UPF1 binding to STAU1 is mutually

exclusive with UPF1 binding to UPF2 (53). During the transition from myoblasts to

myotubes, the level of STAU1 decreases less than the level of UPF2 decreases. Together,
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these observations imply that during myogenesis the activity of SMD is increased and the

activity of NMD decreases, predictions that were met by assaying the expression of both

endogenous and reporter SMD and NMD genes during myoblast differentiation. Why does

this occur? Myogenin mRNA, which encodes a transcription factor that coordinates the

myogenic program, is an NMD target bearing a uORF in its 5′ UTR. In contrast, the

antimyogenic paired-box 3 (PAX3) transcription factor is an SMD target, illustrating how

modulation of mRNA decay can achieve a physiological output. Additionally, the levels of

UPF3X are increased during myogenesis, and targets of a UPF2-independent NMD pathway

are suppressed. A similar competition between NMD and SMD occurs during adipogenesis

for the purpose of regulating pro- and antiadipogenic factor abundance (25).

NMD activity is also modulated by production of microRNAs (miRNAs) that target UPF1

during neural development (11). Highly expressed in the brain, miR-128 is transcribed from

two independent loci that are processed to yield the identical miRNA. This miRNA targets

and represses expression of both UPF1 and the EJC constituent BTZ, downmodulating

NMD activity, much like during myogenesis. miR-128 expression increases dramatically in

the mouse embryonic brain between days E9.5 and E14.5, and high levels are maintained

during adulthood. Transfection of miR-128 into murine neural stem cells normally devoid of

it revealed upregulation of hundreds of genes, many of which both bear the structural

features that would render them direct NMD targets and encode products that are necessary

for neural differentiation. Thus, it appears that through upregulation of a single miRNA that

targets the NMD apparatus, neural progenitors are able to coordinate upregulation of many

genes that direct differentiation, and this upregulation is at least partially the result of mRNA

stabilization. These findings fit nicely with other studies showing the importance of NMD,

in particular the study concerning the UPF3-dependent pathway that when defective results

in human intellectual disabilities (99, 176). Recently, deletions in the UPF2 gene were also

identified in patients with forms of intellectual disability, and UPF3, SMG6, eIF4A3, and

RNPS1 gene copy numbers were also aberrant in some of these patients (126).

These reports underscore the importance to gene expression of output from the NMD

pathway during development. As such, activity of the NMD pathway, like transcription (44),

should be buffered against insults that could inappropriately change its output. This is

indeed the case and was first shown for the UPF3-dependent branch of NMD (17).

Depletion of UPF3X protein augments the level of UPF3 protein, which partially

compensates for the loss of UPF3X function. The authors propose that UPF3X normally

outcompetes UPF3 for binding to UPF2, but when UPF3X is absent, UPF3 binds to UPF2,

is posttranslationally stabilized, and partially restores NMD activity. In support of this, cells

from patients with UPF3X loss (see above) have elevated levels of UPF3, and higher levels

of functionally compensating UPF3 result in less severe intellectual disability.

Additional NMD components are also subject to feedback control. For example, the mRNAs

encoding seven core NMD factors (UPF1, UPF2, UPF3B, SMG1, SMG5, SMG6, and

SMG7) have unusually long 3′ UTRs, and the mRNAs of five NMD factors (UPF2, SMG1,

SMG5, SMG6, and SMG7) have a uORF. Thus, in an elegant solution to buffer the capacity

of the NMD pathway, the main trans-effectors of NMD themselves are derived from NMD

targets (70, 204) (Figure 2). Huang et al. (70) found that various NMD factors are subject to
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feedback control via different NMD branches, and that different cell types have different

abilities to buffer NMD via these pathways. Furthermore, mouse embryonic stem cells

activate the UPF3X-dependent buffering mechanism during their differentiation into

embryoid bodies.

Does NMD activity change as a result of acute insults to the cell? The results of studies

investigating the stresses that cells encounter within the tumor microenvironment (hypoxia,

generation of reactive oxygen species, nutrient deprivation) indicate that NMD is

downmodulated in response to stress (51, 188, 189). The commonality among these stresses

is that they all lead to phosphorylation of eIF2α, a subunit of eIF2 that delivers initiator Met-

tRNAMet to the translational apparatus. Although the bulk of cellular translation is thus

attenuated, it appears that this is not the cause for a decline in NMD activity, as select NMD-

sensitive transcripts are still subject to ongoing translation in the face of eIF2α

phosphorylation. The cause of NMD downmodulation must be investigated further, but the

vital outcome is that transcripts encoding transcription factors involved in the integrated

stress response (ATF-4, ATF-3, CHOP) are upregulated. These transcription factors

ultimately direct a gene expression program needed to maintain cellular homeostasis and

promote tumor growth. In particular, stabilization of ATF-4 mRNA, which is an NMD

target, leads to induction of autophagy as a cellular method of coping with stress (194).

Viral Manipulation: Probes Designed by the Molecular Arms Race

Mammalian and viral genomes are in a constant state of flux, evolving mechanisms to

prevent infection (host) and to overcome these preventive barriers (pathogen). Such zero-

sum games or Red Queen genetic conflicts (“Now, here, you see, it takes all the running you

can do, to keep in the same place. If you want to get somewhere else, you must run at least

twice as fast as that!”- Red Queen, Lewis Carroll) (183) mean that viruses must constantly

deploy new tactics to overcome the immune system.

When viewed through this lens, viruses represent powerful probes with which to discern the

inner workings of the cell, and studying the effects of viruses on protein quality control has

led to great insights. Antigen processing and presentation are vital tactics that nucleated cells

use to report infection status to patrolling T lymphocytes. In this context, the cell makes use

of the protein quality control system, specifically the UPS, to generate peptides (derived

from both self-proteins and viral proteins) to be displayed on surface glycoprotein

complexes called major histocompatibility complex (MHC) molecules (which are composed

of an MHC heavy chain, the β2-microglobulin accessory protein, and an antigenic peptide)

(186). In an effort to evade detection, viruses hijack the UPS for their own purposes. Human

cytomegalovirus (HCMV) encodes two immunoevasins, US2 and US11, which bind to

MHC heavy-chain proteins during the course of MHC molecule biosynthesis in the ER,

dislocating them from the ER lumen and funneling them into the ubiquitin-mediated ER-

associated degradation (ERAD) pathway for cytosolic destruction. Because they make use

of host quality control processes, US2 and US11 represent useful probes to determine the

composition of cellular complexes that normally mediate disposal of misfolded proteins

from the ER lumen (104, 105, 107). Other examples are the Rubulavirus V proteins, which

direct assembly of an E3 ligase complex containing UV-damaged DNA-binding protein 1
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(DDB1) and cullin 4A (Cul4A). This complex functions to destroy the STAT proteins that

normally coordinate the host antiviral interferon response (179).

Although far less well-studied in this respect, NMD-mediated quality control represents yet

another barrier that viruses must overcome. Cricket paralysis virus (CrPV) is a picorna-like

virus whose host range includes field crickets and also D. melanogaster cell lines, where

EJCs are dispensable for NMD and long 3′ UTRs promote decay. The genome encodes a

dicistronic mRNA composed of two nonoverlapping ORFs separated by an intergenic

region. How does such an mRNA escape quality control when its translation termination at

the end of the first ORF would make the second ORF appear as an abnormally long 3′ UTR?

CrPV has elegantly solved this problem by providing the host translational apparatus access

to its ORFs through two independent upstream internal ribosome entry sites (IRESs).

Assembly of 80S ribosomes by the CrPV IRES appears to proceed in the absence of any eIF

(32), making the transcript resistant to UPF1-mediated translational repression, for which

eIF3 is a prerequisite, and thus NMD. In this context, the CrPV IRES was used as a tool to

demonstrate the requirement for eIF3 in UPF1-mediated translational repression in

mammalian cells, although whether this occurs in insect cells remains to be determined (80).

Pre-mRNA splicing poses a significant problem for viruses such as human

immunodeficiency virus-1 (HIV-1), which generates >30 unique mRNAs from a single

transcript by alternative splicing. Uncontrolled deposition of the EJC in mammalian cells

during the splicing of HIV-1 pre-mRNA would be expected to render many of these mRNAs

targets of NMD. HIV-1 therefore exerts tight control over splicing, which proceeds in 5′-

to-3′ order—intron excision depends on the complete removal of all upstream introns—and

fails to occur downstream of the 3′ most-active termination codon (8). A by-product of this

strategy is the generation of an abnormally long 3′ UTR for many transcripts, and how this

is dealt with by HIV-1 is unknown (50).

A similar problem is faced by the avian Rous sarcoma virus (RSV), whose RNA is

potentially targeted for NMD in the absence of splicing in avian cells (192). For the bulk of

translation initiation events, only the first gene, which encodes the capsid protein gag, is

translated, giving rise to a massive <7,000-nt 3′ UTR. If a specific sequence element in the

3′ UTR, called the RSV stability element (RSE), is deleted, the transcript half-life is

shortened in a way that requires UPF1 and translation. The RSE contains significant

secondary structure as well as a single-stranded region that may base pair with an element

upstream of the poly(A) tail (191, 199). Such fold-back constructs that shorten the physical

distance between the termination codon and poly(A) tail have proven resistance to NMD

(37), and this may be the method whereby RSV mRNAs escape detection by NMD.

Alternatively (but not mutually exclusively), the RSE may recruit unknown factors that

directly inhibit NMD (199), or it may prevent UPF1 accumulation on the 3′ UTR (96).

There is also evidence that some viral proteins directly target the NMD apparatus,

downregulating NMD activity in infected cells. Human T-lymphotropic virus type 1

(HTLV-1) encodes the protein Tax, which binds to the integration 6 (INT6, also called p48)

subunit of eIF3 (30). The authors of a recent study (121) observed a direct interaction

between Tax and UPF1, and formation of this complex excludes INT6. Tax binding to UPF1
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increases the amount of UPF1 phosphorylation and enhances localization of UPF1 to P-

bodies. It was hypothesized that tax inhibits NMD by two mechanisms: preventing the eIF3-

dependent UPF1-mediated translational block as well as preventing dephosphorylation of

UPF1, thus promoting UPF1 sequestration in P-bodies, where it cannot be recycled and

participate in further rounds of NMD. Combined, these inhibitory mechanisms stabilize both

viral transcripts and cellular NMD targets.

CLINICAL RELEVANCE

Because of their regulatory importance to the cell, a breakdown in the quality control

apparatus or escape from detection of the polymers they inspect can lead to human

pathologies. Methods for rectifying problems associated with protein quality control and

NMD are currently being tested for clinical use.

Quality Control: A Double-Edged Sword

Protein quality control can exert protective effects in some cases and detrimental effects in

others. It is increasingly clear that age-related pathologies result from a decreased capacity

in the quality control systems to handle the protein-folding load (6). Although this

breakdown in quality control illustrates its protective effect on cells, other pathologies result

from an overly exuberant quality control system that degrades or sequesters partially

misfolded proteins that could otherwise have some function and thus lessen the severity of

disease.

Overcoming the protein and mRNA quality control systems is a concept that has been

explored. For example, the most common cause of cystic fibrosis is a deletion of

phenylalanine (Phe)508 (LlF508) from the cystic fibrosis transmembrane conductance

regulator (CFTR) protein, causing a trafficking defect that traps the CFTRLlF508 protein

within the lumen of the ER as a folding intermediate. Depletion of the protein activator of

HSP90 ATPase 1 (Aha-1), a co-chaperone involved in the CFTR folding cycle, is able to

overcome the trafficking block imposed by the protein quality control system, leading to

delivery of the CFTRLlF508 variant to the cell surface and restitution of 50% of wild-type

halide conductance (190). Small-molecule modulation of the proteostasis network that

controls protein folding and, as a consequence, recognition (Figure 1, Step 1) of proteins as

misfolded holds promise in correcting many diseases (141).

NMD is similarly intertwined with the disease state in humans (7, 97). In fact, nearly 33% of

all inherited and acquired diseases result from acquisition of a PTC (48). It is noteworthy

that mammalian-cell NMD was first described in the context of β0-thalassemia, a condition

that illustrates its protective effect (19, 112). Hemoglobin is composed of two α subunits

and two β subunits. The stoichiometry of these subunits is tightly regulated by protein

quality control because unpaired α-globin subunits are rapidly degraded. Heterozygotes with

one wild-type allele and one allele bearing a PTC located within an NMD-competent region

of the transcript manifest no disease, whereas subjects with two PTC-bearing, NMD-

competent alleles show anemia. However, a dominantly inherited form of β-thalassemia

occurs when a PTC is located in the last exon of β-globin mRNA. Such a configuration

escapes NMD and generates a truncated, toxic protein that can only dimerize with α-globin
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(93). Given that the disease state is not the result of haploinsufficiency, NMD exerts a

protective effect in the case of patients harboring one normal and one NMD-susceptible

allele. The long list of other PTC-containing genes that are not targeted for NMD and thus

produce disease-causing truncated proteins includes those encoding truncated breast and

ovarian cancer susceptibility 1 (BRCA1) protein (40, 139, 172), p53 (13, 87, 110, 182, 196),

and Wilm’s tumor protein 1 (WT1) (38, 92, 144).

Analogous to the situation for protein quality control, many diseases result from depletion of

PTC-bearing transcripts that have the potential to encode partially functional proteins that

would lessen the severity of disease. Again, CFTR provides an illustrative example.

Approximately 5% to 10% of CFTR gene mutations result in NMD of product mRNA

because they contain a PTC. For those PTCs that are in-frame with the normal ORF,

aminoglycosides have been explored as potential read-through therapeutics.

Aminoglycosides are potent bactericidal antibiotics that bind in the ribosomal A-site to 16S

rRNA, distort the A-site, and cause a misreading of the genetic code so near-cognate

aminoacylated tRNAs are introduced into the growing peptide chain at stop codons. Owing

to their reduced affinity for eukaryotic (compared with prokaryotic) ribosomes (109), high

concentrations of aminoglycosides, such as gentamicin, have been explored as a method of

ameliorating the effects of PTC-induced disease in patients with cystic fibrosis.

Administration of gentamicin to the nasal epithelium for 14 days results in small increases in

CFTR-mediated chloride conductance as well as an increase in the appearance of CFTR at

the cell surface (198). However, the minimum threshold of corrected CFTR that must reach

the cell surface for amelioration of disease symptoms is unknown, and there are serious side

effects of prolonged aminoglycoside use that include kidney toxicity and, for unknown

reasons, damage to the cochlea. Because patients would presumably require toxic

administration of aminoglycosides for prolonged benefits, there is considerable interest in

finding small molecules that are able to promote PTC read-through without these side-

effects. PTC124 (Ataluren) (193), a small molecule bearing no structural similarity to

aminoglycosides, was identified using cell-based screens for compounds that promote UGA

read-through. Although the molecular target of PTC124 is unknown, it is currently in phase

III clinical studies for cystic fibrosis. The compound is well tolerated, is selective for

premature termination read-through as opposed to normal termination read-through, and

shows general promise for treating a variety of PTC-based diseases (138). However, this

drug is not without controversy: PTC124 activity has been attributed to off-target effects on

the firefly luciferase (Fluc)-based reporter assay used in its discovery and development

(116). Recently, Amlexanox, an anti-inflammatory drug used to treat asthma and ulcers, was

also identified as a compound that promotes read-through (54), but its mechanism of action

remains unknown. Targeting the process of NMD itself with small molecules has also been

explored with the compound NMDI-1 (34). NMDI-1 bears an indole-containing

pharmacophore and disrupts the interaction between SMG5 and UPF1. Although of

considerable utility to the research community as a small molecule probe for NMD function,

what relevance, if any, such compounds have to the clinic remains to be determined,

especially in light of the critical function that NMD plays during, for example, lymphocyte

maturation (see below).
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In an interesting twist on the modulation of NMD activity, Pastor et al. (135) found that it

was possible to coax tumor cells into producing neo-antigens by administrating a small

interfering RNA (siRNA) targeting SMG1 that is also conjugated to a tumor-specific

aptamer. Targeted tumor-cell ablation of SMG1 induces the immune system to attack the

tumor, presumably because it upregulates protein products that derive from NMD substrates

to a level that is above the threshold set by central and peripheral immune tolerance (i.e., the

mechanisms put in place by the immune system to avoid a response to self-antigens). It

should be noted that absolute precision in targeting the siRNA to the tumor is key in this

strategy: thymocytes in mice bearing a dominant-negative allele of UPF1 (an arginine-to-

cysteine mutation at amino acid 843) are unable to transit through the double-negative

(CD4− CD8−) stage of T-cell development because of defects in pre-T-cell receptor

signaling, for which a productively rearranged TCR β-chain is a requirement (47, 171). That

NMD (or the lack of NMD) can be involved in neo-antigen production also finds support in

studies showing that microsatellite instability-high (MSI-High) colorectal cancer cells

express mutated proteins when PTC-inducing frameshift mutations occur in areas of the

transcript that render them immune to NMD (197). The protein products of these mRNAs

have altered C termini that may make them vaccination targets, provided they are processed

by the antigen presentation machinery.

OPEN QUESTIONS

Many outstanding questions remain in the NMD field and are inspired by what is known

about protein quality control. How NMD is integrated with the systems governing co-

translational secretory protein biosynthesis remains to be determined. Eukaryotic cells are,

by definition, organized into membrane-enclosed compartments, each with their own unique

constituents and functions. Proteins traverse one compartment to another by virtue of

localization signals. In the case of the secretory pathway, this takes the form of N-terminal

signal peptides (for type I membrane proteins and soluble proteins) that are bound by the

signal recognition particle (SRP) during the course of biosynthesis, halting translation. This

block in translation is relieved when SRP-mediated delivery of the nascent polypeptide-

ribosome complex to the translocon occurs, after which cotranslational insertion of the target

protein ensues (159). Because the ER lumen is devoid of proteasomes, this presents a barrier

to protein quality control. Detection (Figure 1, Step 1) of misfolded proteins is topologically

separated from destruction (Figure 1, Step 3), and cells have evolved mechanisms for the

dislocation of misfolded proteins from the ER lumen to the cytosol, where ubiquitin-

mediated destruction takes place (105).

Secretory protein-encoding mRNAs are targets of NMD (5). As discussed, recent data

indicate that NMD occurs rapidly after export on the cytoplasmic leaflet of the nuclear

envelope (178). Does the SRP-mediated translational arrest of secretory protein-encoding

transcripts occur while the mRNA is bound to CBC (i.e., during the pioneer round of

translation)? If so, does the NMD of PTC-containing transcripts that encode secretory

proteins occur in association with the ER? Are secreted proteins encoded by NMD targets in

the class of proteins that are potentially degraded by the ubiquitin E3 ligase activity of

UPF1? If UPF1 does indeed degrade a nascent peptide as it enters the ER (95, 161, 173),

how is this conundrum resolved given that UPF1 is localized to the cytoplasm and the
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nascent peptide is partially localized to the lumen of the ER? Localization of particular

mRNAs to ER subdomains has been described in plants, yeast, and flies (62). Are there

specialized mRNA quality control subdomains, as has been hypothesized for ER protein

quality control (61, 84)?

As indicated by its name, the field of NMD has focused on mRNAs. However, recent

studies have generated catalogs of long noncoding RNAs (lncRNAs) (57) with demonstrable

cellular functions (58). On the basis of bioinformatic analysis, the consensus view is that

these lncRNAs have little protein-coding potential. Nevertheless, ribosomal footprinting

studies have shown that a class of lncRNAs (sprcRNAs) is decorated with ribosomes (79).

Given that lncRNAs can be cytoplasmic, polyadenylated, and spliced (129), at least some

would likely be subject to a pioneer round of translation and NMD. Steady-state levels of

one known noncoding RNA, Gas5, are subject to control by UPF1 (78, 175), and Gas5

lncRNA has long been known to associate with polyribosomes (166). How general is this

control mechanism? Is this a posttranscriptional mechanism for maintaining a low basal

steady-state level of certain lncRNAs?

Bortezomib (Velcade), a peptide-based inhibitor of the proteasome, is in clinical use for

treating multiple myeloma patients. Administration of Bortezomib likely has many effects,

but one of them is almost certainly a blockage in the clearance of misfolded proteins,

leading to tonic UPR activation and apoptosis (31). Selectivity for cancer cells maybe due to

their heightened metabolism and thus increased demand in protein folding. Could a small-

molecule NMD inhibitor be used to likewise increase the protein-folding demand through

production of aberrant proteins, and could such a molecule synergize its effects with

Bortezomib? Experiments in C. elegans indicate that this may be possible (150). This idea

would be subject to the same cautions outlined for NMD-I.

Are NMD factors subject to posttranslational modifications (i.e., phosphorylation,

monoubiquitylation, methylation, and proteolytic processing)? UPF1 is phosphorylated as a

consequence of the tagging step (Figure 1, Step 2) to promote mRNA destruction (Figure 1,

Step 3), and this occurs for every cycle of NMD. However, do other posttranslational

modifications exist that modulate the NMD activity of the cell as a whole? Such

mechanisms would be a way for the cell to respond to changing environmental conditions by

regulating whole swaths of the transcriptome with extreme temporal precision.

Although much is known about the mechanism of NMD, many mysteries still remain.

Discovery of new NMD trans-effectors and what role they play in regulating NMD activity

will likely be another important avenue of research. Taken as a whole, what is known about

NMD is likely just the tip of the iceberg, and much interesting territory that is ripe for

innovative research still remains.
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SUMMARY POINTS

1. Protein quality control and mRNA quality control, the latter as illustrated by

NMD, share similar design principles.

2. Protein quality control and NMD are both used for destruction of aberrant

targets, i.e., proteins and transcripts, respectively, and also for quantity control

of normal/nonmutated targets.

3. Protein quality control and NMD activities are highly regulated by the cell.

4. Pathogen manipulation of protein quality control and NMD provides biological

insight as well as molecular tools for dissecting these pathways.

5. Protein quality control and NMD can exert protective effects or detrimental

effects with regard to human disease.

6. Manipulation of protein quality control and NMD holds great promise for

correcting a variety of human diseases.
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FUTURE ISSUES

1. How secretory protein biosynthesis is coupled to NMD activity, which is largely

restricted to newly synthesized mRNAs, remains an open question.

2. Whether, and if so, how, additional RNA species, such as lncRNAs, are

regulated by NMD is unknown.

3. The possibility of synergism between small molecules targeting protein quality

control and others targeting the NMD apparatus in cancer therapy is an

important area for exploration.

4. Whether NMD activity can be acutely regulated on a cellular level by

posttranslational modifications to the NMD apparatus itself (i.e., by

phosphorylation, monoubiquitylation, methylation, proteolytic processing, etc.)

awaits discovery.

5. Identification of new NMD trans-effectors will further elucidate the mechanism

of NMD while also possibly providing important therapeutic targets.
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Figure 1.
Similar steps govern protein quality control and nonsense-mediated mRNA decay (NMD).

A general overview of protein quality control (left) and mRNA quality control, as

exemplified by NMD (right), can be separated into three distinct steps: detection, tagging,

and destruction. (a) Detection for protein quality control proceeds through ATP-dependent

cycles of chaperone binding, release, and rebinding to hydrophobic patches in unfolded

and/or partially folded proteins, providing the opportunity to fold (left). A decision is made

as to whether the client protein is terminally misfolded, and, if so, this leads to tagging. The

detection step for NMD relies on two signals (right). The first signal is provided by the

premature termination codon (PTC), which generally defines NMD substrates, and the

proteins that associate with the translation termination complex that assembles at the PTC,

including the terminating ribosome and the SURF complex (inset, upper right), which

consists of SMG1, UPF1, eRF1, and eRF3. The second signal often derives from an exon-

junction complex (EJC), which associates with mRNAs <24 nucleotides (nts) upstream of a

splicing-generated exon-exon junction whether or not they are NMD substrates. Other

signals, such as unusually long 3′ UTRs, also exist. The EJC (inset, lower right) is

composed of four core components (eIF4A3, Y14, MAGOH, BTZ) and associated NMD
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factors UPF3 or UPF3X and UPF2. If a PTC is located ≥50–55 nts upstream of an exon-

exon junction, the mRNA is recognized as aberrant and tagging proceeds. (b) (Left) Tagging

for misfolded proteins is governed by the ubiquitylation system. In an ATP-dependent

reaction, ubiquitin (Ub) is covalently transferred from an E1 enzyme to an E2 enzyme (not

shown). Ub can be transferred in covalent linkage to E3 enzymes containing a HECT

(homologous to the E6-AP carboxyl terminus) domain before transfer to the substrate

protein, or Ub can be directly transferred from the E2 enzyme to substrates by E3 ligase

enzymes containing a RING (really interesting new gene) domain. E3 ligases can mediate

ubiquitin transfer to misfolded proteins by binding to molecular chaperones. Mono-Ub is

elaborated into a Ub chain with linkages at lysine (K)48. This constitutes the tag that

identifies the attached protein for destruction. (Right) For tagging during NMD to occur, all

or some of the SURF complex joins the EJC, possibly while the terminating ribosome is still

present, forming a decay-inducing complex (DECID). This configuration activates SMG1 to

phosphorylate UPF1. Phosphorylated UPF1 signals the mRNA for destruction and has the

added effect of inducing translational repression of the mRNA, which is a prerequisite for

destruction. (c) (Left) Destruction of proteins is the job of the proteasome, a macromolecular

proteolytic machine whose components include proteins that recognize Ub-chain tags and

initiate feeding of the aberrant protein into the bore of the proteasome. Aberrant proteins are

thereby degraded into short peptides. (Right) NMD-dependent destruction of mRNA relies

on recruitment of SMG6 and/or SMG5-SMG7 or SMG5 -PNRC2 complexes via the

phosphate tags on UPF1. SMG6 possesses its own endonucleolytic cleavage activity, cutting

the mRNA target 5′ to the EJC. 3′-to-5′ exonucleases degrade the 5′-cleavage product. UPF1

helicase activity disassembles the RNP components bound to the 3′-cleavage product, and

this is followed by 5′-to-3′ exonucleolytic degradation. The SMG5-SMG7 or SMG5-PNRC2

adaptor complexes, recruited via SMG5 to a UPF1-localized phosphate moiety, direct

exonucleolytic degradation of the mRNA. These adaptors recruit decapping enzymes and/or

deadenylation enzymes, and their activities are followed by 5′-to-3′ and 3′-to-5′

exonucleolytic decay, respectively. Proteins relevant to each step are shown in color.

Abbreviation: CBC, cap-binding complex.
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Figure 2.
Regulation of protein quality control and nonsense-mediated mRNA decay (NMD) provides

buffering capacity. Protein quality control (left), as exemplified by the IRE1-mediated

branch of the unfolded protein response (UPR), and mRNA quality control, as exemplified

by NMD (right), are both governed by regulatory loops that provide buffering capacity.

(Left) For IRE1-mediated UPR activation, increased demand on the protein-folding load of

the endoplasmic reticulum (ER) leads to an accumulation of unfolded and/or partially folded

proteins and an increased demand for more folding chaperones. IRE1, a membrane-

embedded sensor of unfolded proteins, is activated either by direct binding to unfolded

proteins or by titration of chaperones (which prevent IRE1 oligomerization) away from

IRE1. IRE1 subsequently oligomerizes and autophosphorylates. The RNase domain in

activated IRE1 (red ) then mediates an unconventional cytoplasmic splicing reaction to

generate spliced XBP1 (XBP1s) mRNA from unspliced (XBP1u) mRNA. XBP1s mRNA is

translated into XBP1s protein, which is a transcriptional activator that upregulates a suite of

UPR target genes. Among these genes are chaperones, leading to increased chaperone

synthesis so as to match the protein-folding capacity of the ER with cellular demand. (Right)

Some NMD factors (UPF1, UPF2, UPF3X, SMG1, SMG5, SMG6, and SMG7) are

themselves normally targets of NMD by virtue of the presence of an unusually long 3′ UTR,

a uORF, or both. When genetic insults diminish NMD capacity, NMD activity is decreased,
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and the mRNAs encoding the NMD factors are stabilized. These stabilized mRNAs direct

protein synthesis in an effort to restore normal NMD activity.
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