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SUMMARY

Many microbial phyla that are widely distributed in open environments have few or no

representatives within animal-associated microbiota. Among them, the Chloroflexi comprises

taxonomically and physiologically diverse lineages adapted to a wide range of aquatic and

terrestrial habitats. A distinct group of uncultured chloroflexi related to free-living anaerobic

Anaerolineae inhabits the mammalian gastrointestinal tract and includes low-abundance human

oral bacteria that appear to proliferate in periodontitis. Using a single-cell genomics approach we

obtained the first draft genomic reconstruction for these organisms and compared their inferred

metabolic potential with free-living chloroflexi. Genomic data suggest that oral chloroflexi are

anaerobic heterotrophs, encoding abundant carbohydrate transport and metabolism functionalities,

similar to those seen in environmental Anaerolineae isolates. The presence of genes for a unique

phosphotransferase system and N-acetylglucosamine metabolism suggests an important ecological

niche for oral chloroflexi in scavenging material from lysed bacterial cells and the human tissue.

The inferred ability to produce sialic acid for cell membrane decoration may enable them to evade

the host defense system and colonize the subgingival space. As with other low-abundance but

persistent members of the microbiota, discerning community and host factors that influence the

proliferation of oral chloroflexi may help understand the emergence of oral pathogens and the

microbiota dynamics in health and disease states.
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Introduction

The human body is colonized by thousands of distinct types of bacteria that interact with

each other, have co-evolved with and are specialized to distinct host niches, with expanding

implications for health and disease (Clemente et al., 2012; Human Microbiome Project,

2012; Morgan et al., 2013). Although representatives of approximately 30 microbial phyla

have been detected in human microbiota samples based on small subunit (SSU) rRNA gene

sequences, a small subset (e.g. Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria,

Fusobacteria) comprise more than 90% of the species richness and abundance across the

general human populations (Zhou et al., 2013). Others (e.g. Verrucomicrobia, Spirochaetes,

Deferibacteres, Synergistes, Chloroflexi, candidate phyla TM7 and SR1), even though

usually present at low abundance (a few percent or less), have been consistently detected in

most individuals and include cosmopolitan species in healthy adults or become elevated in

disease (Paster et al., 2001; Derrien et al., 2008; Griffen et al., 2011; Wade, 2012; Abusleme

et al., 2013).

A deep branching bacterial lineage, the Chloroflexi is a physiologically diverse and

ubiquitous group of organisms found in a wide range of aquatic and terrestrial environments.

Originally referred to as “green non-sulfur bacteria”, Chloroflexi formally comprises of

filamentous anoxygenic photoautotrophs (Chloroflexales), aerobic organotrophs

(Herpetosiphonales) and thermophilic chemoheterotrophs (Thermomicrobia) (Hugenholtz et

al., 1998; Garrity and Holt, 2001; Hugenholtz and Stackebrandt, 2004). Four other classes

subsequently added to this group include the Dehalococcoidetes (anaerobic dehalogenic

reducers of chlorinated hydrocarbons), and the heterotrophic Ktedonobacteria, Anaerolineae

and Caldilineae identified in wastewater treatment systems and micro-aerobic or anoxic

environments (Yamada et al., 2006; Yamada and Sekiguchi, 2009; Yabe et al., 2010). Based

on recent comparative genomics and phylogenetic analyses, it has been proposed that those

added classes may represent related but distinct phyla, all potentially constituting a

Chloroflexi “superphylum” (Gupta et al., 2013).

Chloroflexi represent a low abundance (<1%) but consistent component of human oral and

skin microbiota and have also been detected in the gut of other mammals (Ley et al., 2008b;

Dewhirst et al., 2010; Griffen et al., 2011; Zhou et al., 2013). A recent study also pointed to

their proliferation in the subgingival pockets of patients with periodontitis, with a marked

increase in prevalence between healthy (<10%) and diseased individuals (80–90%)

(Abusleme et al., 2013), but a role for these bacteria in disease etiology has not yet been

established. No study has been dedicated to diversity analysis of mammalian-associated

chloroflexi and, because no cultured isolates or genomic information are available, their

physiology, mechanisms of host adaptation and pathogenic potential are unknown.

Single-cell genomics has emerged as a powerful approach to gain insights into the

physiological potential, evolutionary history and interspecies interactions of uncultured

bacteria and archaea, both in open environments and as part of the human microbiota

(Marcy et al., 2007; Yoon et al., 2011; Lasken, 2012; Pamp et al., 2012; Campbell et al.,

2013a; Campbell et al., 2013b; Podar et al., 2013; Rinke et al., 2013). Here, based on flow

cytometry-based bacterial cell isolation and single-cell genomics we present the first
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genomic dataset for a member of the human oral chloroflexi and its inferred physiological

potentials. We also analyzed the diversity and distribution of the different lineages

representing this phylum in the healthy human microbiota using SSU rRNA sequences

generated under the Human Microbiome Project (Human Microbiome Project, 2012).

Diversity and abundance of the Chloroflexi in the healthy human

microbiota

Based on the SSU rRNA dataset generated under the Human Microbiome Project (Methe et

al., 2012; Zhou et al., 2013), chloroflexi represented a minor component of the overall

healthy human microbiota (408 sequences out of ~24 million, i.e. 0.002%), Most of the

chloroflexi sequences (75.3%) originated from skin samples, followed by 24.0% from the

oral cavity and its contiguous extensions, and 0.7% were of vaginal origin (Figure 1A). Skin

chloroflexi exhibited high diversity and formed 63 operational taxonomic units (OTUs) at

97% nucleotide sequence identity. Chloroflexi from the oral cavity and its contiguous

extensions were less diverse and grouped into 7 OTUs with non-unique sequences at 97%

identity (Supplementary figure S1). In the Human Oral Microbiome Database (HOMD)

(Dewhirst et al., 2010) Chloroflexi are represented by a single phylotype, “oral taxon 439”

(de Lillo et al., 2006), affiliated with heterotrophic Anaerolineae (Figure 2) and present at

low abundance (0.003%) in healthy individuals. Its relative abundance increases in subjects

with periodontitis (de Lillo et al., 2006; Abusleme et al., 2013).

A principal coordinates analysis (PCoA) of unweighted UniFrac distances grouped skin,

nose and oral hard palate sequences with sequences from different open environments

(Figure 1B). The close nucleotide similarity between chloroflexi found on relatively exposed

habitats of the human body and diverse aquatic, soil and air phylotypes suggests that some

might not be stable members of the human microbiota but occasional hitchhikers. Two

apparently distinct clusters grouped keratinized gingiva (12 sequences), throat (2

sequences), tongue (1 sequence) and vaginal (3 sequences), but those phylotypes are quite

rare in the sampled human population and are phylogenetically diverse. However, one

distinct cluster consisted of the largest OTU (58 sequences) identified in the HMP dataset,

oral chloroflexi reported in other studies (e.g. “oral taxon 439” (Dewhirst et al., 2010;

Dewhirst et al., 2012), chloroflexi from animal gut (Ley et al., 2008b; Kong et al., 2010)

(Figure 1B) and formed a phylogenetically distinct clade within the Anaerolineae (Figure 2).

Oral chloroflexi single amplified genomes (SAGs)

Two oral chloroflexi were identified in a library of over 2000 subgingival bacterial single-

cell amplified genomic DNAs. The two SAGs (referred to as Chl1 and Chl2) originated

from distinct individuals with periodontitis. Based on SSU rRNA genes, Chl1 and Chl2

belong to the class Anaerolineae and form part of a clade that is distinct from its closest

relative with a sequenced genome, the free-living thermophilic anaerobe Anaerolinea

thermophila (Figure 2). The SSU rRNAs of Chl1 and Chl2 were identical, shared 99.7%

identity to the previously recognized “oral taxon 439”, and represent the distinct mammalian

oral and gut chloroflexi cluster discussed above.
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After abundance normalization of the sequence reads, assembly and contamination removal,

Chl1 and Chl2 were comprised of 1.1 Mbp and 1.2 Mbp of DNA sequence, with a G+C

content of 53%. Analysis of average nucleotide identity (ANI) revealed an identity of 98.3%

between Chl1 and Chl2, based on ~37% overlap of the genomes. Due to this high similarity

and the low diversity of oral subgingival chloroflexi revealed by prior studies, we treated

these SAGs as members of a single operational taxonomic unit (OTU), the previously

recognized uncultured “oral taxon 439” (de Lillo et al., 2006; Dewhirst et al., 2010). All

downstream metabolic analyses were performed on a combined assembly of the two

datasets, and the organism and its genomic information will be referred to as Chl1-2

throughout the paper. After merging, Chl1-2 consisted of 1.8 Mbp of DNA sequence, with a

G+C content of 53% and coded for 1774 proteins and 42 tRNAs and rRNAs. Based on the

presence of conserved single copy genes, the estimated genome size for this oral

representative of Chloroflexi is approximately 2.7 Mb, with an estimated 67% of the genome

present in the Chl1-2 dataset.

Metabolic inferences and comparative genomics

Based on SSU rRNA and protein sequence similarity, Anaerolinea thermophila is the closest

sequenced relative to oral taxon 439 (Chl1-2), with 23% of the predicted proteins as top

homologues. A genome distance-based tree also revealed a similar relationship

(Supplementary figure S2). Many aspects of metabolism are likely to be shared between

these lineages, as both encode a rich repertoire of genes for fermentative carbohydrate

metabolism. Cultured Anaerolineae have been shown to be strictly anaerobic fermentative

chemo-organotrophs, and utilization of carbohydrates has been shown in the laboratory and

observed in wastewater sludge granules (Yamada and Sekiguchi, 2009). A related organism

(RBG-9) recently uncovered based on metagenomic data from a subsurface environment

was predicted to be capable of aerobic sugar respiration in addition to anaerobic

fermentation of sugars and amino acids (Hug et al., 2013). Interestingly, related organisms

potentially capable of anoxygenic photrophy were also identified in thermal mats from

Yellowstone, which indicates that, metabolically, the Anaerolineae can be quite versatile

(Klatt et al., 2011).

Glycolysis/gluconeogenesis pathways are present in A. thermophila, RBG-9 and Chl1-2

although genes for the enzymes needed to convert glucose to fructose-6-P are missing in the

oral dataset, possibly due to the incomplete genome. Genes encoding enzymes of the

pentose phosphate and carbon fixation pathways were also identified as well as for the

potential transport and catabolism of a variety of pentoses, hexoses, and disaccharides.

Evidence of energy production capabilities in Chl1-2 includes several subunits of the ATP

synthase complex but no cytochrome-encoding genes were found. All Chloroflexi sequenced

to date encode an NADH:quinone oxidoreductase (complex I) for electron transport.

Although Chl1-2 does contain two genes similar to complex I subunits, these genes match

more closely to hymA and hymB, genes that encode subunits responsible for electron

transport in an iron-only hydrogenase (Graentzdoerffer et al., 2003). The hymAB-like genes

are adjacent to an iron-only hydrogenase catalytic unit gene (hymC). These genes were

originally found in association with a formate dehydrogenase, but no evidence of this
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complex was found in Chl1-2. Not surprisingly, no genes indicating potential for

photoautotrophy were found. Because of the incomplete nature of the genome, definitive

assertion of the respiratory and fermentative potential for the oral chloroflexi will require

cultivation or complete genome sequencing.

To explore for specific functional adaptations of Chl1-2 in a host-associated, oral

environment, the presence/absence of clusters of orthologous groups (COGs) was used to

compare it with its closest relative, A. thermophila, and other available complete genomes

for cultured Chloroflexi. Comparisons to A. thermophila revealed 606 COGs shared by both

organisms and 182 COGs unique to Chl1-2.

In addition to shared genes, Chl1-2 encodes a unique set of carbohydrate metabolism genes

not seen in any other Chloroflexi genomes, including a phosphotransferase system (PTS)

that has an ability to transfer a wide range of sugars including mannose, glucose, fructose,

N-acetylglucosamine (GlcNAc), glucosamine and N-acetylmannosamine (ManNAc)

(Plumbridge and Vimr, 1999). Chl1-2 also contains homologs of GlcNAc-6-phosphate

(GlcNAc-6-P) deacetylase and GlcN-6-P deaminase, enzymes involved in the catabolism

pathway of GlcNac-6-phosphate to fructose-6-phosphate (Plumbridge and Vimr, 1999). The

resulting fructose-6-phosphate could then feed into glycolysis. Together, these genes could

encode a pathway for the metabolism of GlcNAc, a major component of bacterial cell walls

(Figure 3). The presence of this pathway would support previous in situ reports that

members of the subphylum I Chloroflexi are capable of utilizing GlcNAc (Kindaichi et al.,

2004; Miura et al., 2007). The Chloroflexi members appear to retrieve GlcNAc from other

lysed cells in the environment, as seen with several microautoradiography (MAR)-FISH

studies (Okabe et al., 2005; Miura and Okabe, 2008; Zang et al., 2008).

In addition, Chl1-2 encodes a homolog of N-acetylneuraminate (Neu5Ac) lyase, which can

convert the sialic acid Neu5Ac into ManNAc and pyruvate (Figure 3). Although no specific

transporters were found in the partial genome, the presence of Neu5Ac lyase suggests that

Chl1-2 may acquire and catabolize sialic acid from the environment. This ability would be

useful in the oral environment, as most mammalian cell surfaces have abundant sialic acid

decoration of glycoproteins and glycolipids (Plumbridge and Vimr, 1999). Sialic acid

appears to function as a growth factor for some pathogenic oral bacteria, such as Tannerella

forsythia (Stafford et al., 2012). Furthermore, Chl1-2 encodes Neu5Ac synthase and

Neu5Ac cytidylyltransferase, proteins necessary for the production of the sialic acid (Figure

3). Sialic acid biosynthesis genes are also present in A. thermophila but were not found in

available sequencing data from other cultured Chloroflexi. Although it is unclear what the

role of this pathway may be in A. thermophila, it is possible that the production of sialic acid

in the oral environment helps Chl1-2 evade immune response by mimicking the exterior of

host cells (Stafford et al., 2012).

Genes encoding lipopolysaccharide (LPS) biosynthetic enzymes and the production of

galactose and rhamnose type O-antigens were identified in Chl1-2. Together with sialic acid,

those could be incorporated in LPS and capsular polysaccharides to mimic the surface of

epithelial cells (Stafford et al., 2012). Genes encoding proteins involved in export of LPS to

the cell surface (Frosch and Muller, 1993), a protein similar to CapD (Lin et al., 1994) and
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poly-gamma-glutamate biosynthesis protein CapA were also found. The presence of a

capsule would benefit Chl1-2 in the oral environment by providing adherence and resistance

to both specific and nonspecific host immune systems (Roberts, 1996). Chl1-2 also encodes

efflux transporters for multidrug and toxic compound extrusion (MATE) of lantibiotics,

xenobiotics, bacitracin and lipid A, HlyD-like proteins and major facilitator superfamily

(MFS) proteins necessary for type I secretion and nitroimidazole antibiotic resistance. Genes

involved in protection from oxidative stress (methionine sulfoxide reductase, glutathione

peroxidase, rubrerythrin and rubredoxin) were also identified, several of them absent in A.

thermophila. Chl1-2 also encodes a Clp protease that has been shown to be important for

stress response in a number of host-associated bacteria (Capestany et al., 2008; Loughlin et

al., 2009; Lourdault et al., 2011). Another common feature of oral associated bacteria is

their enhanced ability to acquire iron, which is bound to human lactoferrin and of limited

availability (Wang et al., 2012). In that respect, Chl1-2 encodes ferric iron-siderophore

transporter proteins as well as a hemolysin III gene. Competence proteins similar to ComEA

and ComEC were also present, along with a competence-specific regulator. This suggests

that Chl1-2 may be naturally competent, which would facilitate horizontal genes acquisition,

a process that has been shown to be rampant in the human microbiota (Smillie et al., 2011).

Conclusions

Vertebrate species harbor characteristic microbiota that, through co-evolution with their

hosts, have adapted to distinct eco-physiologies (Ley et al., 2008c; Ley et al., 2008a).

Resident microbiota is acquired and selected from the environment after birth, and is shaped

and maintained in a dynamic state through complex inter-microbial interactions and

interactions with the host. The majority of mammalian-associated microbial species

represent a handful of bacterial phyla that display a high level of host-specific diversity

(Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria), but many others have been

identified at lower abundance and in distinct body niches (Methe et al., 2012; Zhou et al.,

2013), some still being known only based on sequence data (Marcy et al., 2007; Campbell et

al., 2013b; Di Rienzi et al., 2013). Through single-cell genomics we provided insights into

an uncultured representative of the phylum Chloroflexi that belongs to a distinct group of

mammalian-adapted Anaerolineae, related to free-living anaerobic fermenters that inhabit a

wide range of terrestrial and aquatic environments. Small but exclusively host-adapted

clades of bacteria such as the oral chloroflexi revealed here, oral SR1 bacteria (Campbell et

al., 2013b) and the gut “‘Melainabacteria” (Ley et al., 2005; Di Rienzi et al., 2013), may

indicate that these bacteria colonized mammals relatively early on but did not undergo

rampant diversification like other lineages (e.g. Bacteroidetes, Firmicutes) perhaps due to

physiological constraints or competition. Like other bacteria adapted to a host environment,

oral hloroflexi appear to have acquired specific physiological traits that enable them to

inhabit the human body. Inferred glucosamine uptake may be linked to the abundance of cell

wall components from surrounding lysed bacterial and epithelial cells. The increased

frequency of chloroflexi in periodontitis may thus be linked to elevated bacterial turnover

and tissue breakdown in deep subgingival pockets (Abusleme et al., 2013). At the same

time, capsular polysaccharides could allow these bacteria cell to mimic the exterior of host

cells and enable immune evasion. Overall, the genomic characteristics of subgingival
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cloroflexi portray organisms similar to their free-living relatives, yet displaying niche-

specific adaptations for survival in a host environment. Such inferences may help to design

specific laboratory cultivation approaches for these organisms.

Experimental procedures

Diversity analysis of human-associated chloroflexi

Small subunit ribosomal RNA (SSU rRNA) gene sequences for representatives of all major

Chloroflexi groups were obtained from GenBank and the Silva database (Quast et al., 2013).

We specifically searched for and downloaded Chloroflexi-classified sequences from samples

of animal origin. Sequences assigned to Chloroflexi from the Human Microbiome Project

dataset (Human Microbiome Project, 2012) were identified and extracted as previously

described (Zhou et al., 2013). Overall relationships between the major Chloroflexi taxa and

affiliation of human and animal sequences were generated in ARB (Ludwig et al., 2004).

Sequence alignments were also generated and edited in Geneious 5.6 (Drummond et al.,

2011) followed by maximum likelihood phylogenetic reconstruction by RAxML

(Stamatakis, 2006) under a general time reversible model with parameters estimated from

the data. Diversity estimation at different sequence divergence levels and principal

coordinate analyses based on unweighted Unifrac distances using human, animal-associated

and 148 chloroflexi sequences from a variety of open environments were performed in

Mothur (Schloss et al., 2009) and QIIME (Caporaso et al., 2010).

Single-cell sorting and genomic amplification

Human subjects enrollment and sample collection protocols were approved by the Ohio

State University Institutional Review Board and by the Oak Ridge Site-Wide Institutional

Review Board. Signed informed written consent was obtained from all human subjects that

provided samples for this study. Subgingival microbiota samples from individual donors

diagnosed with periodontitis were collected, fixed and used for single cell sorting and

multiple displacement amplification (MDA) as previously described (Campbell et al.,

2013a; Campbell et al., 2013b). Among over 2000 taxonomically assigned single amplified

genomes (SAGs), two SAGs originating from different donors were identified to represent

members of phylum Chloroflexi and were selected for genomic characterization.

SAG sequencing, assembly and annotation

The two Chloroflexi SAGs (Chl1 and Chl2) were sequenced using a Illumina HiSeq paired

end sequencing (100 bp each direction) approach at the Hudson Alpha Institute for

Biotechnology (Huntsville, AL, USA). A total of 225 million (Chl1) and 45 million (Chl2)

reads were generated. Quality read filtering, normalization and assembly were performed for

each of the two SAGs as we described previously (Swan et al., 2011; Campbell et al.,

2013a). Scaffolding information was used to close gaps between some of the contigs using

PCR and Sanger sequencing. Assembled genomic data was loaded into IMG (http://

img.jgi.doe.gov) for gene prediction, annotation and for comparative genomic analyses

(Markowitz et al., 2012). Several contigs representing potential contamination with non-

chloroflexi sequences based on blastp against Genbank, differential GC content and tetramer

frequency profiles (Woyke et al., 2009), were identified and removed. Average nucleotide
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identity (ANI) between common contigs of Chl1 and Chl2 was calculated using JSpecies

(Richter and Rossello-Mora, 2009). A combined, hybrid assembly (Chl1-2) was generated

by comparing the two datasets using BLASTCLUST (Altschul et al., 1990) (S = 95, L = 0.7)

and Mauve (Darling et al., 2004). Regions that exhibited more than 95% identity over at

least 1 kb were merged, with sequence of the hybrid assembly chosen based on the longest

contig between Chl1 and Chl2 in that region. Genome size estimation was based on

frequency analysis using a set of 138 conserved single copy genes (CSCG) from 1516

finished bacterial genomes from IMG, as described in (Campbell et al., 2013b). The

sequence data for the individual and combined SAGs has been deposited in GenBank under

BioProject accession numbers PRJNA194441-194443 and is also available in IMG (http://

img.jgi.doe.gov).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Diversity of human-associated members of the Chloroflexi. (A) Abundance and distribution

of chloroflexi rRNA sequences in the body sites sampled under the NIH-HMP project

(asterisks indicate no chloroflexi sequences found). (B) PCoA based on unweighted Unifrac

distances between human-associated and environmental chloroflexi. The circled cluster

highlights the distinct oral and mammalian gut phylotypes.
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Figure 2.
Phylogenetic diversity of the Chloroflexi. (A). Classes and equivalent level taxa based on

ARB and Silva database (Ludwig et al., 2004; Quast et al., 2013). The animal-associated

clade that encompasses oral subgingival lineages and their close relatives is expanded. The

general class-level placing of HMP sequences is based on a maximum likelihood

phylogenetic analysis that included all available sequences. (B) Maximum likelihood

phylogeny of the Anaerolineae. A star indicates organisms for which genomic data is

available. Major nodes supported by bootstrap values >50 are indicated by filled dots. D.

lykanthroporepellens (Dehalococcoides) was used as an outgroup. For environmental

sequences only the GenBank accession number and the environment type are listed. The

scale bar indicates inferred number of substitutions per nucleotide position.
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Figure 3.
Genomic highlights for the oral taxon 439, Chl1-2. Inferred N-acetylglucosamine (GlcNAc)

and sialic acid N-acetylneuraminate (Neu5Ac) metabolism in oral chloroflexi. Enzymes for

which coding genes were not found in the Chl1-2 dataset are indicated by dotted arrows. IM,

inner membrane; CPS, capsular polysaccharide; LPS, lipopolysaccharide; pyr, pyruvate;

PTS, mannose-type phosphotransferase system; ManNAc, N-acetylmannosamine; GlcN-6-P,
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glucosamine-6-phosphate; Fru-6-P, fructose-6-phosphate; EMP, Embden-Meyerhof-Parnas

glycolytic pathway.
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