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Summary

In this paper, we extend the 3D multispecies diffuse-interface model of the tumor growth, which

was derived in Wise et al. (Three-dimensional multispecies nonlinear tumor growth-I: model and

numerical method, J. Theor. Biol. 253 (2008) 524–543), and incorporate the effect of a stiff

membrane to model tumor growth in a confined microenvironment. We then develop accurate and

efficient numerical methods to solve the model. When the membrane is endowed with a surface

energy, the model is variational, and the numerical scheme, which involves adaptive mesh

refinement and a nonlinear multigrid finite difference method, is demonstrably shown to be energy

stable. Namely, in the absence of cell proliferation and death, the discrete energy is a

nonincreasing function of time for any time and space steps. When a simplified model of

membrane elastic energy is used, the resulting model is derived analogously to the surface energy

case. However, the elastic energy model is actually nonvariational because certain coupling terms

are neglected. Nevertheless, a very stable numerical scheme is developed following the strategy

used in the surface energy case. 2D and 3D simulations are performed that demonstrate the

accuracy of the algorithm and illustrate the shape instabilities and nonlinear effects of membrane

elastic forces that may resist or enhance growth of the tumor. Compared with the standard Crank–

Nicholson method, the time step can be up to 25 times larger using the new approach.
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1. Introduction

Tumor growth is a complex biological phenomenon and is influenced by many factors, such

as cell–cell and cell–matrix adhesion, mechanical stress, cell motility and transport of
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oxygen, and nutrients and growth factors [1]. Mathematical modeling of cancer gives

important insights on tumor progression, helps explain experimental and clinical

observations, and helps provide optimal treatment strategies. In the past several years, more

and more research has been conducted on mathematical models of cancer, and numerical

simulations of tumor growth have been performed. See the recent reviews [2–21, 71]. There

are now a variety of modeling strategies available for investigating various aspects of

cancer, such as cellular automata and agent-based modeling, single-phase continuum and

multiphase mixture models, and methods that combine both continuum and discrete

components.

Nonlinear continuum models have been used to study the effects of shape instabilities on

avascular, angiogenic, and vascular solid tumor growth. Shape instabilities are important

because the mechanisms that control the tumor morphology also control the ability of the

tumor to be locally invasive, and local invasiveness is believed to be a precursor of

metastasis [22]. Using a boundary integral method, Cristini et al. [23] performed the first

fully nonlinear simulations of a continuum model of avascular and vascular tumor growth in

two dimensions. This work was extended to three dimensions [24], to coupled models of

tumor growth and angiogenesis [25, 26], and in a heterogeneous tumor environment [27, 73,

74] using level set methods. The interaction of multiple tumor cell species has been modeled

by multiphase mixture models (see, e.g., [19, 28–48]. In these models, the mechanical

effects of the stroma, the extracellular matrix, the basement membrane, and the connective

tissue were either neglected or highly idealized. Recently, using multiphase porous media

mechanics and thermodynamically constrained averaging theory, Sciumè et al. [49] modeled

growing tumors as a multiphase medium containing extracellular matrix, tumor and host

cells, and interstitial liquid. Numerical simulations were performed that characterized tumor

growth as a function of the initial tumor-to-healthy cell density ratio, nutrient concentration,

mechanical strain, cell adhesion, and geometry. The interactions of a growing tumor and a

basement membrane were studied by Bresch et al. [50] who used an age-structured tumor

model that accounts for both proliferating and quiescent tumor cells, together with a level set

method to model the basement membrane following an approach developed by Cottet and

Maitre [51] for fluid–structure interactions that penalizes local stretching to model the

membrane elasticity. 2D and 3D simulations were performed to show the effects of the

membrane and nutrient heterogeneity on tumor growth.

Here, we adapt the approach from [50] for use in multiphase mixture models. We first

consider the case in which the membrane has surface energy. The governing equations are

derived using a variational approach, and the numerical scheme, which involves adaptive

mesh refinement and a nonlinear multigrid finite difference method, is demonstrably shown

to be energy stable. Namely, in the absence of cell proliferation and death, the discrete

energy is a nonincreasing function of time for any time and space steps. We then consider a

simplified model of membrane elasticity where global stretching is penalized. The

governing equations are derived analogously to the surface energy case, although the model

is not fully variational because certain coupling terms are dropped. Nevertheless, a very

stable numerical scheme is developed following the strategy used in the surface energy case.
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Energy stable numerical methods were first developed for Cahn–Hilliard equations by Eyre

[52]. Recently, Wise [53] extended this method to consider Cahn–Hilliard–Hele–Shaw

equations, where a nonlocal pressure was considered. This approach has since been

extended to other gradient flow equations such as the phase field crystal [54] and modified

phase field crystal equations [55, 56], as well as other problems in materials science

involving crystal growth (e.g., [57]) and thin film epitaxy (e.g., [58]). Here, we extend the

approach developed by Wise for the Cahn–Hilliard–Hele– Shaw equation to incorporate an

encapsulating or basement membrane and the corresponding forces the membrane

introduces. Although the work presented here contains numerous simplifications, the

underlying modeling approach has been successfully used previously to compare with

experiments (e.g., [39, 59]). Further, the modeling strategy and numerical methods presented

here are generalizable to more complex, thermodynamically consistent models that account

for additional biophysical detail (e.g., [6, 60]).

This paper is organized as follows. In Section 2, we extend the diffuse-interface model of

Wise et al. [44] by incorporating a simplified description of membrane elasticity and then

construct a stable finite difference scheme to efficiently solve the governing equations. In

Section 3, the convergence rate of the numerical scheme is tested, and numerical simulations

are performed considering different membrane stiffnesses and geometries in two and three

dimensions. Finally, this paper is summarized and future work is discussed in Section 4.

2. Mathematical Model

In this section, we present a mathematical model of tumor growth with a simplified model of

a basement membrane. We begin by recalling the nondimensional tumor growth model from

Wise et al. [44], where a thermodynamically consistent diffuse-interface continuum model

of multispecies tumor growth was formulated, analyzed, and simulated. The authors

accounted for mechanical interactions, mainly focused on cell–cell adhesion among the

tumor and host. This model converges to classical sharp-interface formulations (e.g., [23,

61, 62]). Both the diffuse-interface and sharp-interface models have been successfully used

in comparison with experiments (e.g., [39, 59, 63, 64, 72]).

Here, we assume that the tumor and membrane are evolving in a bounded tissue domain Ω ⊂

Rd, d = 2 or 3. The dimensionless dependent variables defined in Ω are as follows:

• ϕT is the volume fraction of the tumor cells;

• ϕV is the volume fraction of the viable tumor cells;

• ϕD is the volume fraction of the dead cells;

• ϕH is the volume fraction of the host tissue;

• ϕW is the volume fraction of the water;

• uS is the solid tumor velocity;

• uW is the interstitial fluid velocity;

• p is the pressure;
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• q is the interstitial fluid pressure; and

• n is the nutrient concentration.

We assume that there are no voids:

(1)

where ϕT = ϕV + ϕD. Following Wise et al. [44], we assume for simplicity that ϕW = ϕ̄
W is

constant. Then, ϕS = ϕH + ϕT = ϕs̄ = 1 − ϕ̄
W. Rescaling the solid volume fraction by ϕ̄

S (e.g.,

ϕ̃
T = ϕT/ϕS), we obtain ϕH̃ + ϕ̃

T = 1. Hereafter, we drop the tilde notation.

2.1. Total cell–cell interaction (adhesion) energy

It is assumed that tumor cells prefer to adhere to each other rather than to the host.

Following the classical theory of phase transitions and Wise et al. [44], we use the following

cell–cell adhesion energy E:

where  is a double-well bulk energy minimized at ϕT = 0 and ϕT = 1,

which characterizes the differential adhesiveness of the tumor and host cells. The parameter

γ measures the cell–cell adhesion force, and  is a gradient energy, with ε a

parameter that characterizes strength of the penalty. We note that in practice, ε measures the

thickness of the diffuse interface that separates the tumor and host domains.

2.2. Nondimensional equations

We now introduce a diffuse-interface continuum model of tumor growth described in Wise

et al. [44]. The equations are nondimensionalized using the nutrient diffusion length and

mitosis time scales. We refer the reader to [44] for more details of the

nondimensionalization. With the assumptions that tumor cells move together and the

densities of the components are matched, the volume fraction ϕT obeys the mass

conservation equation

(2)

(3)

where M > 0 represents the diffusive mobility of the tumor cells, and μ is the chemical

potential. The source term ST is specified later in Section 2.3. Note that because the density

of tumor cells is constant, we absorbed it into the flux and source terms. Further, the source
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term is different from that used in [44] where the ϕT multiplicative factor of ST was not

considered. This particular choice, which differs from the Wise et al. model only in the

diffuse interface where ϕT transitions from 1 inside the tumor to 0 in the tumor exterior, is

motivated in the succeeding discussion.

Instead of solving for ϕV, an evolution equation for the volume fraction of dead cells ϕD is

used

(4)

where the source term of dead cells SD is also given in Section 2.3. Knowing ϕT and ϕD, we

compute the volume fraction of viable tumor cells by ϕV = ϕT − ϕD.

The solid tumor velocity uS, which is the mass-averaged velocity of all the components, is

assumed to be given by Darcy's law [44]

(5)

where we have assumed a constant motility that is scaled out when we nondimensionalize

the equations. Note that we have implicitly assumed that all the components are tightly

packed so that they all move with the mass-averaged velocity field. Assuming that the

source of mass in the host tissue is SH = ϕHST, where ϕH = 1 − ϕT, velocity is constrained to

satisfy [44]

(6)

Note that the source SH is nonzero only in the diffuse-interface region. Together, Eqs. (5)

and (6) constitute a Poisson equation for the pressure p

(7)

The interstitial fluid velocity can also be modeled using Darcy's law uW = − ∇q such that ∇

·uW = −ST by mass conservation, which couples the solid and liquid components [44]. With

the choice, Eq. (2) can be rewritten as follows:

(8)

Because the time scale for nutrient diffusion is much faster (e.g., ∼ 1 min) than the rate of

cell proliferation (e.g., ∼ 1 day), the nutrient is assumed to evolve quasistatically:
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(9)

where we have neglected the nutrient uptake by host tissue because this is small compared

with the uptake by tumor cells (e.g., see [44] for details and references). The diffusion

coefficient D (ϕT) and nutrient capillary source term TC(ϕT,n) are

(10)

(11)

where DH is the nondimensional nutrient diffusion coefficient in the host domain,  and 

denote the nutrient transfer rates for preexisting vascularization in the tumor and host

domains, and nc is the nutrient level in the capillaries. The function Q(ϕ) is used to

interpolate between DH and DT = 1, and is defined as

with Q(1) = 1, Q(1/2) = 1/2, and Q(0) = 0.

The earlier equations are valid on the whole domain Ω and not just on the tumor volume ΩT.

There are no boundary conditions required for ϕT and ϕD at the tumor boundary ΣT. At the

outer boundary, we choose the following boundary conditions

(12)

which allow the tumor to leave the domain smoothly [44].

2.3. The mass exchange terms

As described in Wise et al. [44], we suppose that the net source of tumor cells ST is

(13)

where the first term on the right-hand side of Eq. (13) describes mitosis. As mitosis occurs,

an amount of water is converted into cell mass. The parameter λM is the tumor mitosis rate.

Dead cells also undergo cell lysing. When cell lysis occurs, dead cells break down into

water; λL is the lysing rate of dead cells.

The net source of dead cells SD is
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(14)

where the term λAϕV describes the death of cells due to apoptosis with rate λA ≥ 0, the term

λNℋ (nN−n)ϕV models the death of cells due to necrosis with rate λN ≥ 0, and ℋ is a

Heaviside step function. It is assumed that viable tumor cells necrose based on the level of

the local nutrient concentration n; that is, when the nutrient level is below the cell viability

limit nN, cells die.

We also consider the effect of compressive stress. Motivated by the results of Cheng et al.

[65], we assume that mechanical stress provides feedback on the cell mitosis and apoptosis

rates, with pressure providing negative feedback for the former and positive feedback for the

latter. Accordingly, we model the dependence of the cell mitosis and apoptosis rates on the

pressure p as Hill-type functions:

(15)

(16)

where a,b,c,d are constants, the parameter λ̄
M is the mitosis rate without feedback, χM, χA =

0,1, and p+ = max(0, p). We do not model the feedback due to tensile stress, although this

may be considered in a future work.

2.4. Membrane surface energy

We now consider the effects of a basement membrane, Σ, on the growing tumor. We use a

phase field approach and introduce a function ϕ̃ such that  corresponds to Σ. We

motivate the approach by considering first the membrane surface energy

Again, we take , a double-well potential; the parameter γ̃ measures the

cell–cell adhesion force;  is a gradient energy that allows intermixing, and ε̃

measures the thickness of the diffuse interface between the basement membrane and the host

tissue.

We assume that the membrane moves with the velocity uS. Here, we use an advective Cahn–

Hilliard type equation to approximate the transport of ϕ̃
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(17)

(18)

where the mobility  is localized on the membrane. The

function μ̃ is the membrane chemical potential.

The membrane energy contributes an extra resistive force to the velocity field uS, which now

becomes

(19)

where γ̃ is a measure of the membrane surface tension. Equations (17) and (18) are

accompanied with the boundary conditions

The governing equations of our new model then consist of Eqs. (2)–(4), (7) –(9), and (17)–

(18) with the velocity uS given by Eq. (19). This new model is thermodynamically

consistent in the sense that under the assumption that there is no source, that is, ST = 0, the

total energy Etot, which is the sum of E and Es, is nonincreasing in time. This is seen as

follows: The time derivative of the total energy Etot is

(20)

Substituting Eqs. (2) and (17) into Eq. (20), using integration by parts and dropping the

boundary terms, this gives
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where we denote

Rewriting I2 and using the condition ∇ · uS = 0 (because ST = 0), one obtains

Further, by using integration by parts and the divergence theorem, and assuming that the

tumor does not hit the boundary, I2 becomes

We rewrite I2 by using Eq. (19)

Chen et al. Page 9

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2014 August 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Combining this with I1 gives

2.5. A simplified description of membrane elastic energy

We next take into account a simplified version of the membrane elastic energy instead of the

membrane surface energy considered in the previous section. The elastic energy is as

follows:

where A denotes the stiffness, and χ(x,t) is a template function. For simplicity, we choose

χ(x,t) =ϕ̃(x,0). Thus, deformations from the original state are penalized. Then, our new

model with the membrane elastic energy can be obtained by using a variational approach but

dropping the A-dependent term in chemical potential μ̃ and the γ̃ term in the velocity

equation. Because of these dropped terms, the elastic energy model is not variational, and

we cannot guarantee that the elastic energy is nonincreasing in time. While keeping the γ̃

term is not expected to yield qualitatively different results from those presented here, the A-

dependent term in μ̃ is more problematic as it disrupts the smooth profile of ϕ̃ across the

membrane surface, which is why we use the advective Cahn–Hilliard equation derived

earlier to approximate the transport of ϕ̃ To summarize, the equations for the tumor and

membrane are thus

(21)

(22)

(23)

(24)

(25)

and
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(26)

(27)

Note that the elastic forces induce the additional term Aϕ̃∇(χ(x, t) − ϕ̃) in the velocity field

uS. The nutrient equations (9)–(11) are unchanged.

2.6. A discrete time and continuous space scheme

To solve the system of equations governing tumor growth with an elastic membrane, we

develop a stable numerical method. To motivate the approach, we first develop an energy

stable scheme for the tumor growth model with the membrane surface energy in Eqs. (2)–

(4), (7) – (9), and (17)–(18). The scheme, which is first order accurate in time and second

order accurate in space, is based on a convex splitting approach (see [52–56, 58, 66–68])

and has two important properties: (1) unconditional energy stability and (2) unconditional

unique solvability [53]. The key idea is that the energy Etot admits a (not necessarily unique)

splitting into purely convex and concave energies, that is, Etot = Ec − Ee, where Ec and Ee

are convex, although not necessarily strictly convex [52, 68]. Using the notation Ec and Ee

from Eyre [52], where Ec refers to the contractive part of the energy (convex) and Ee refers

to the expansive part of the energy (concave), we consider a canonical splitting of the

surface energy

(28)

and

(29)

The approach here is based upon the following estimate that was proved in Wise et al. [68].

Theorem 2.1—Suppose that Ω = (0, Lx) × (0, Ly), ϕ, ψ ∈ H2 (Ω), and ∂nϕ = 0 on ∂Ω.

Consider the canonical convex splitting of the energy Etot into Etot = Ec − Ee given in Eqs.

(28) and (29). Then,

(30)

where δϕ denotes the variational derivative with respect to the argument of the energy, and

Lx and Ly are positive real numbers.
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We do not consider the motion of the extracellular water hereafter, because it decouples

from the evolution of the solid volume fractions and the membrane. Taking ST = SD = 0, we

propose the semi-implicit scheme:

(31)

(32)

(33)

(34)

(35)

(36)

(37)

where s > 0 is the time step size. This generalizes the model developed by Wise [53] for

Hele-Shaw flows to incorporate the effects of a basement membrane.

We next prove that the earlier numerical scheme decreases the energy for any time step.

Note that because the sources ST = SD = 0, the discretization of the nutrient equation does

not affect the results (the discretized nutrient equation is given in the following text). Letting

 and  in Eq. (30) and using Eqs. (31)–(37), one obtains
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Hence, the energy is nonincreasing in time, that is,

(38)

Using the case with the membrane surface energy as a template, we then take the following

semi-implicit scheme for the model with the membrane elastic energy:

(39)

(40)

(41)

(42)

(43)

(44)

(45)

Note that because the model with the membrane elastic energy is not variational (because

certain terms were dropped as described earlier), we cannot fully duplicate the analysis for

the surface energy model. We next rewrite Eqs. (39)–(45) in an equivalent form in which the

velocity does not appear explicitly, and we incorporate the source term ST and SD:

(46)

(47)

(48)
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(49)

(50)

(51)

The nutrient concentration equation is discretized as

(52)

2.6.1. The fully discrete energy stable scheme—Here, we use the notation from

Wise et al. [15]. We present the scheme in two dimensions; the 3D case is analogously

defined. We assume that the computational domain Ω = (0, Nxh) × (0, Nyh), where Nx and Ny

are positive integers, and h > 0 is the grid spacing. We define

where i, j can take on integer and half-integer values. Consider the following three sets of

uniform grid points: (i) east-west edge points Eew; (ii) north-south edge points Ens; and (iii)

cell-centered points C, defined via

(53)

(54)

(55)

Real-valued grid functions with domains Eew are called east-west edge-centered functions

and are identified via ; those with domains Ens are called north-south
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edge-centered functions and are identified via ; and those with domains

C are called cell-centered functions and are identified via ϕi,j = ϕ(xi, yj). The velocity uS is

approximated as edge-centered functions. For example, writing  is

approximated as an east-west edge-centered function, and  is approximated as a north-

south edge-centered function. All other dependent variables are approximated as cell-

centered functions.

To complete the spatial discretization, we replace spatial derivatives by finite difference

operators. The Laplacian operator is approximated to second order by

(56)

where ϕ is cell-centered. The Laplacian with nonconstant diffusivity/mobility is

approximated to second order by

(57)

where both ϕ and m are assumed to be cell-centered, and Aave,x and Aave, y are the averaging

operators defined component-wise as

We next discretize Eqs. (46)–(52) in space using centered differences to produce a fully

discrete energy stable scheme.

(58)
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(59)

(60)

(61)

(62)

(63)

and

(64)

To solve the fully coupled, nonlinear system of equations at the implicit time step, we use a

nonlinear multigrid method [15, 53, 68, 69, 75]. This enables the resulting discrete equations

to be solved with nearly optimal complexity. We provide the details of the algorithm in

Appendix A.

3. Numerical Results

In this section, we first test the convergence rate of the scheme given in the previous section.

We then present 2D and 3D simulations of tumor growth in confined geometries.

3.1. Convergence

To estimate the convergence rate with respect to a mesh with grid spacing h, three different

grid spacings 2h, h, and h/2 are used. We calculate the error between two different grid

spacings  and  by
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and correspondingly for e2h:h. The rate of convergence is defined as

Here, we consider only the 2D case. The computational domain is Ω =(0, 20) × (0, 20). The

initial shape of the tumor is elliptical such that the contour curve with ϕT = 0.5 satisfies the

equation

(65)

We choose the root-level grid sizes 322, 642, and 1282, respectively. We perform three

levels of refinement. That is, the finest mesh sizes are, respectively, h = 20/256, h = 20/512,

and h = 20/1024. We take the linear refinement path s = 0.256h. Therefore, the

corresponding time step sizes are 0.02, 0.01, and 0.005. The solution is evolved to time T =

20. We present results for the evolution using the membrane surface energy; the results for

the algorithm when the elastic energy is used are similar and are not presented. The

parameters are given in Table I, and the errors and rate of convergence are shown in Table

II. This confirms the overall first order accuracy of the algorithm.

Using the same parameters, we compare the performance of our new algorithm with the

Crank–Nicholson method [15]. When the membrane surface energy is considered, the

largest time step that can be used with the Crank–Nicholson algorithm is s = 0.004, while

the new algorithm yields accurate results using time step s = 0.1, a factor of 25

improvement. When the elastic forces are considered (using A = 1.0 with the other

parameters unchanged), the largest time step that can be used with the Crank–Nicholson

scheme is s = 0.005 while the new scheme can be used with s = 0.07, resulting in a factor of

14 improvement in efficiency. Keeping the other parameters the same, the largest time step s

is a decreasing function of the parameter A. Here, we observed that .

3.2. 2D simulations with feedback from mechanical forces

We present 2D simulations of tumor growth in confined geometries using the elastic energy

model. The initial tumor is the same as considered in the previous section. We utilize a

block-structured Cartesian adaptive mesh where the root-level grid is 322, and there are four

levels of refinement—the grid size is halved with each level of refinement (Figure 1). We

consider two types of membrane geometries. In the first type, a membrane that encapsulates

a tumor (Figure 2 (left)) such that the contour curve with ϕ̃ = 0.5 satisfies {(x, y)|(x − 10)2 +

(y − 10)2 = 14} is considered. The second geometry mimics a duct (Figure 2 (right)), where

the ϕ̃ = 0.5 contour is given by the horizontal lines y = 7.5 and y = 12.5. The computational
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domain is Ω =(0,20) × (0,20).We take ε = ε̃ = 0.05, the mobility M = 10, and

. The parameters are γ = 0,0.2 and A = 0,1,2,4. The simulations are

performed up to time T = 100 and the time step size s = 0.002.

We begin by investigating in Figures 3 and 6 how a fibrous capsule affects the growth of a

tumor as a function of the capsule stiffness and cell–cell adhesion parameters. At early times

(T ≤ 20), the evolution is similar for all the cases with the tumor being slightly more

deformed when the capsule stiffness A is small. Increasing cell–cell adhesion γ tends to

stabilize the tumor shape. At later times, there are significant differences in the evolution for

the different cell–cell adhesion parameters and compared with a freely growing tumor when

the capsule elastic parameter A = 0. When the cell–cell adhesion γ = 0 (Figure 3), the tumor

develops a budding instability resulting first in a dumbbell-like shape (T ≈ 40) that later

develops a further instability as the first buds become unstable (T ≈ 80). The pressure in the

dead cell region is negative because of the lysing of dead cells (Figure 4). Increasing the

capsule stiffness influences the instability with the larger stiffness resulting in the inhibition

of instability and the first buds become stable (T ≈ 60), and at later times (T ≈ 80), the

tumor pinches off to form two tumor fragments. The stiffer capsules exert more force, and

the pressure becomes positive with high values within the domain enclosed by the

membrane. Negative pressures are observed at the membrane because of the strong resistive

forces (Figure 4). When the cell–cell adhesion is increased (Figure 6), the tumor grows

much more stably with the secondary budding instability being suppressed. The capsule

stiffness only slightly affects the evolution leading to slightly smaller and less deformed

tumors. For comparison, the evolution of tumors using the membrane surface energy rather

than the elastic energy are presented in Appendix B. The results are qualitatively similar.

We have observed earlier that for those cases with a large membrane stiffness, for example,

the cases with A = 4, there is strong positive pressure produced in the tumor domain. This

high pressure may be expected to inhibit viable cell growth and may induce apoptosis [65].

Accordingly, we incorporate these effects here using Eqs. (15) and (16), where we take a =

8, b = 10, c = 39, d = 4.9. Clearly, there is no feedback when χM = χA = 0. As shown in

Figure 5 with χM = χA = 1, the cell proliferation rate decreases rapidly while the apoptosis

rate correspondingly increases as the pressure p increases. We next consider tumor with

feedback in the capsule geometries. Using A = 4 and γ = 0.2, the result is shown in Figure 6

(bottom). The case without feedback (χM = χA = 0) is also shown in Figure 6 (middle). As

expected, feedback inhibits the growth of the tumor, and the tumor reaches a steady size

early in the evolution, as evidenced by the tumor volumes plotted in Figure 7.

To measure the shape deformation of the tumor, we introduce the shape factor ShϕT of the

tumor:
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where a = √4.4 and b = 2. ShϕT = 1 means there is no deformation (i.e., the tumor is the

initial ellipse). In addition, the perimeters of the tumor and membrane are computed by

where ϕ = ϕT, ϕ̃ and the volumes of the regions enclosed by the tumor, viable cells, and

capsule are given by

where ϕ = ϕT, ϕV, ϕ̃. As seen in Figure 7, the shape factors and tumor volumes are

decreasing functions of the membrane stiffness, consistent with the stabilization observed

earlier.

We next consider tumor growth in the ductal geometry in Figure 8. Note that all the

parameters are identical to the previous cases, and the only difference is the geometry of the

duct and the elastic forces it introduces. In the ductal case, growth in the vertical direction is

significantly inhibited by the pressure of a stiff duct. Instead, growth along the duct is

preferred. Indeed, the stiffer the duct, the more elongated and larger the tumor becomes, and

the duct is less deformed. In the duct geometry, feedback similarly inhibits growth (Figures

8 and 9), although the tumors with feedback continue to grow and are still subject to

instability (Figure 9). The pressure is lower than in the encapsulated case, so the feedback is

less restrictive. As observed earlier, the feedback mainly reduces the rate of growth at early

times while the rates of growth at late times are primarily insensitive to feedback. In contrast

to the case of encapsulated tumor growth, here the shape factors and volumes are increasing

functions of the membrane stiffness (Figure 9).

3.3. 3D simulations with feedback from mechanical forces

We next investigate how the mechanical forces affect tumor growth in 3D configurations

where the initial tumor shape (ϕT =0.5 isosurface) is given by

In the capsule geometry, the membrane is a sphere with center (10, 10, 10) and Rm = 4. In

the duct geometry, the membrane is a cylinder with radius 2.8. The domain is Ω = (0, 20)3,

the model parameters are given in Table III, the root-level grid is 323, and three levels of

refinement are used. The time step size s = 0.005.

We first consider tumor growth in the capsule geometries. Taking A = 4 and γ = 0.2, the

result is shown in Figures 10 and 11. The case with feedback is also shown in Figures 10

and 11. As expected, feedback inhibits the growth of the tumor, although the tumor with
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feedback continues to grow slowly. We observe that the tumors are more unstable than in

two dimensions because there is more space for the tumor to grow in this 3D configuration

(e.g., ratio of initial membrane and tumor radii is approximately 4 in three dimensions and 2

in two dimensions). This instability is what enables the tumor with feedback to continue to

grow. Interestingly, Figure 12 shows the primary growth suppression due to feedback at

early times, while at late times, the two tumors grow at similar rates. In the duct geometry,

the case without feedback (χM = χA = 0) is also plotted in Figures 13 and 14. We observe

that growth in the vertical direction is significantly inhibited by the pressure of a stiff duct,

and feedback similarly inhibits growth (Figure 15), although in the duct case the tumor

seems to evolve to a steady state.

4. Summary and Future Work

In this paper, we developed a simplified model, and associated efficient adaptive numerical

methods, for tumors in the presence of a stiff membrane to model tumor growth in a

confined microenvironment. We considered cases in which the membrane had a surface

energy or a simplified elastic energy. In the surface energy case, the model is variational. In

the elastic energy case, the model is nonvariational because certain coupling terms are

neglected. To solve the equations efficiently, we developed a stable numerical method based

on an implicit and spatially adaptive finite difference approximation of the governing system

of equations. In the surface energy case, the numerical method was shown to be energy

stable. In the elastic energy case, the method was shown to be very stable. Compared with

the standard Crank–Nicholson method, the time step could be up to 25 times larger using the

method developed here. Simulations were performed in two and three dimensions that

demonstrated the accuracy of the algorithm and the influence of the membrane stiffness on

tumor growth. The membrane compressed the evolving tumor, could suppress instability,

and could lead to growth anisotropy. In a ductal geometry, this could actually lead to more

rapid growth. We also found that negative feedback from mechanical (solid) pressure that

reduces mitosis rates and increases apoptosis rates generally made tumors smaller and less

deformed.

The future challenges include extending the current approach to more realistically model

confinement by a membrane, both mechanically and geometrically, and comparing the

results with experiments. Accordingly, we have recently developed a modeling approach

following the diffuse domain method [70], combined with the mechanical model and energy

stable numerical methods developed here, to provide a more realistic model of confined

tumor growth. This will be described in a forthcoming paper as will comparisons with

experiments.
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Appendix A: Nonlinear Multigrid Method

We write the discrete nonlinear system (58)–(63) as N = F, where the 7 × Nx × Ny nonlinear

operator N = (N(1), N(2), N(3), N(4), N(5), N(6), N(7)) is defined as

(A.

1)

(A.2)

(A.3)

(A.

4)

(A.

5)

(A.6)

(A.

7)

The 7 × Nx × Ny source F = F(1), F(2), F(3), F(4), F(5), F(6), F(7)) is defined as

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)
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(A.13)

(A.14)

V-cycle algorithm

Suppose that a unique solution Ψk+1 exists for the equation N = F. We are now to construct a

sequence  that converges to the solution as m → ∞. To construct this

sequence, we redefine the operator and source terms as

and

To obtain the next iterate Ψk+1,m+1 from the previous iterate Ψk+1,m, we solve the equation

(A.15)

Here, we use a single FAS multigrid V-cycle iteration with Ψk+1,m as the initial guess to

obtain an approximate solution of Eq. (A.15)[68].
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Nonlinear smoothing

In this appendix, we describe the smoothing using the simpler lexicographic ordering. Let l

be the index for the lexicographic Gauss–Seidel. We introduce the following center-to-edge

averages:

and

The smoothing procedure is as follows: for every (i, j), stepping lexicographically from (1,

1) to (Nx, Ny), find

 and

 that solve
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(A.16)
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(A.17)
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(A.18)
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(A.19)
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(A.20)
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(A.21)

(A.22)
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(A.23)

Note that a local Newton linearization is used to handle the nonlinear terms at the implicit

time level. The terms in F that are evaluated at the (k + 1) time level are lagged in the V-

cycle iteration. Because Eqs. (A.16)–(A.22) are coupled, we use Cramer's rule to solve for

the solutions. The nutrient equation (A.23) is decoupled from the others, and we solve it by

simple division.

Appendix B: 2D Simulations of the Tumor Growth Model with the

Membrane Surface Energy

In this section, we present 2D simulations of tumor growth for the surface energy model. We

use the same initial tumor and membrane (only capsule geometry) as for the simulations of

the elastic energy model. All parameters are the same as in the model with elastic energy

except that the membrane surface energy γ̃ = 0,1,2. The results, which are presented in

Figures B.1 and B.2, demonstrate that the evolution is qualitatively similar to that when the

elastic energy is used.
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Figure B.1.
The pressure contours together with the membrane ϕ̃ = 0.5 surface (green), and the tumor ϕT

= 0.5 surface (red) with small cell–cell adhesion γ = 0. The dead cells are located primarily

within the magenta curve (ϕD = 0.5).

Figure B.2.
The pressure contours together with the membrane ϕ̃ = 0.5 surface (green), and the tumor ϕT

= 0.5 surface (red) with small cell–cell adhesion γ = 0.2. The dead cells are located primarily

within the magenta curve (ϕD = 0.5).
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Figure 1.
Tumor (solid) and membrane (contour, green) together with the adaptive mesh. Four levels

of refinement are performed: the root-level grid is 322.
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Figure 2.
Initial membrane (green) and tumor morphologies (red) in 2D.
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Figure 3.
The pressure contours together with the membrane ϕ̃ = 0.5 surface (green), and the tumor ϕT

= 0.5 surface (red) with small cell–cell adhesion γ = 0. The dead cells are located primarily

within the magenta curve (ϕD = 0.5).
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Figure 4.
Slices of the distributions of pressure (blue), membrane (green), tumor cells (red), and dead

cells (magenta) along y = 10 in 2D for the simulation shown in Figure 3.
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Figure 5.
The effect of mechanical feedback on the mitosis λM and apoptosis λA rates through the

pressure p.
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Figure 6.
The pressure contours together with the membrane ϕ̃ = 0.5 surface (green), and the tumor ϕT

= 0.5 surface (red) with large cell–cell adhesion γ = 0.2. The dead cells are located primarily

within the magenta curve (ϕD = 0.5). Top and middle: without feedback; bottom: with

feedback.

Chen et al. Page 41

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2014 August 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 7.
The shape factors and volumes of the encapsulated tumors in Figures 3 and 6.
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Figure 8.
The pressure contours together with the membrane ϕ̃ = 0.5 surface (green), and the tumor ϕT

= 0.5 surface (red) with large cell–cell adhesion γ = 0.2. The dead cells are located primarily

within the magenta curve (ϕD = 0.5). Top and middle: without feedback; bottom: with

feedback.
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Figure 9.
The shape factors and volumes of the tumors shown in Figure 8.
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Figure 10.
The membrane ϕ̃ = 0.5 surface (green) and the tumor ϕT = 0.5 surface (red) with large cell–

cell adhesion γ = 0.2 and A = 4. The dead cells are located primarily within the magenta

curve (ϕD = 0.5).Top: without feedback; bottom: with feedback.
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Figure 11.
2D slices of the membrane ϕ̃ = 0.5 surface (green), the tumor ϕT = 0.5 surface (red), and

dead cells (magenta) along z = 10 for the cases presented in Figure 10. Top: without

feedback; bottom:with feedback.
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Figure 12.
The volumes of the tumor and viable cells for the simulation shown in Figure 10.
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Figure 13.
The membrane ϕ̃ = 0.5 surface (green), and the tumor ϕT = 0.5 surface (red) with large cell–

cell adhesion γ = 0.2 and A = 4. The dead cells are located primarily within the magenta

curve (ϕD = 0.5).Top: without feedback; bottom: with feedback.
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Figure 14.
2D slices of the membrane ϕ̃ = 0.5 surface (green), and the tumor ϕT = 0.5 surface (red) and

dead cells (magenta) along z = 10 for the cases presented in Figure 13. Top: without

feedback; bottom:with feedback.
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Figure 15.
The volumes of tumor and viable cells for the simulation shown in Figure 13.
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Chen et al. Page 51

Table I

Nondimensional parameters in the 2D numerical simulations.

ε 0.05 ε̃ 0.05

M 12.0 M̃ 1.0

γ 0.2 γ̃ 0.5

0.5 vU 1.0

nc 1.0 λM 1.0

λA 0.0 λN 3.0

λL 1.0
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Table II

Errors and convergence rate for the energy stable scheme with a 2D growing tumor. Parameters are given in

Table I, the initial condition for the tumor is defined in Eq. (65), and T = 20.

Root-level grid sizes 322–642 642–1282

Error 1.9221 × 10−3 9.7936 × 10−4

Rate 0.9728
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Table III

Nondimensional parameters in the 3D numerical simulations.

ε 0.1 ε̃ 0.1

M 8.0 M̃ 20.0

γ 0.2 A 4.0

0.5 0.0

nc 1.0 λM 1.0

λA 0.0 λN 3.0

λL 1.0
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