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Communication: Charge, diffusion, and mobility of proteins
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Implementation of Einstein’s law connecting charge, diffusion coefficient, and mobility to interpret
experimental data on proteins from single molecule electrophoresis through nanopores faces serious
difficulties. The protein charge and diffusion coefficient, inferred with the Einstein law, can be orders
of magnitude smaller than their bare values depending on the electrolyte concentration, pore diame-
ter, chemical nature of the pore wall, and the externally applied voltage. The main contributors to the
discrepancies are the coupled dynamics of the protein and its counterion cloud, confinement effects
inside the pore, and the protein-pore-surface interaction. We have addressed these ingredients by
harking on classical theories of electrophoresis of macroions and hydrodynamics inside pores, and
deriving new results for pore-protein interactions. Putting together various components, we present
approximate analytical formulas for the effective charge, diffusion coefficient, and mobility of a pro-
tein in the context of single molecule electrophoresis experiments. For the omnipresent pore-protein
interactions, nonlinear dependence of the velocity of protein on voltage sets in readily and analyt-
ical formulas for this effect are presented. The derived formulas enable the determination of the
bare charge and size of a protein from the experimentally measured apparent values. © 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4894401]

I. INTRODUCTION

The fundamental law relating the charge Q, diffusion co-
efficient D, and electrophoretic mobility μ of an ion in a so-
lution is the Einstein equation

μ = QD

kBT
, (1)

where kBT is the Boltzmann constant times the absolute tem-
perature, and μ = U/E is the ratio of the velocity U of
the ion to the externally applied electric field E. Although
this law is derived from equilibrium considerations and in
the linear response regime, it is routinely used to char-
acterize proteins in single molecule electrophoresis experi-
ments with nanopores,1–14 where non-equilibrium effects are
omnipresent. By fitting the experimentally determined his-
tograms of the transit times of the protein molecule in a
nanopore with a one-dimensional diffusion-drift model, D and
U of the protein molecule are obtained. These values of D
and U are then used to get the protein charge Q by using
Eq. (1) and the protein radius Rg by additionally using the
Stokes-Einstein relation for a sphere D = kBT/(6πηRg) (η is
viscosity of the electrolyte solution). It turns out that Eq. (1)
is dramatically inadequate in inferring the fundamental char-
acteristics of the protein molecules from the single-molecule
electrophoresis through nanopores.13, 14

The failure of Eq. (1) arises from many factors working
together. As the charged molecule moves down the electric
potential gradient along the pore, it faces an opposing drag
from its counterion cloud. The drags of the protein and the
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counterion cloud are mediated by hydrodynamic and electro-
static forces inside the pore. The finite size of the pore restricts
the translational degree of freedom in directions orthogonal
to the pore axis. In addition, the protein molecules can adsorb
at the pore wall resulting in a reduced mobility. Although a
complete resolution of all of these issues is an insurmount-
able task, we present here an approximate generalization of
Eq. (1) by allowing for protein-counterion-cloud dynamics,
confinement effects from the pore, and protein-pore-wall in-
teraction as

μ = Qeff Deff

kBT
, (2)

where Qeff and Deff are the effective charge and effec-
tive diffusion coefficient depending on the electrolyte con-
centration, pore radius, and pore-protein interaction energy.
In addition, we give analytical formulas for the nonlinear
dependence of μ on E and the mean translocation time.

FIG. 1. Counterion cloud drags the protein in the opposite direction and
gives an apparent charge different from protein’s bare charge. The pore-
protein interaction, modeled as a periodic potential, dramatically changes the
diffusion coefficient and the voltage dependence of velocity of the protein.
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Equation (2) may be taken as a generalization of Qeff and Deff
in bulk electrophoresis16–18 to the presence of the pore.

We consider the mobility of a protein molecule of radius
of gyration Rg and net surface charge Q inside a cylindrical
pore of uniform radius R and length L containing an elec-
trolyte solution (with monovalent salt concentration cs and
viscosity η) under a constant electric field E along the pore
axis (Figure 1). The potential interaction Fp between the pro-
tein and the pore wall is modeled as a saw-tooth periodic po-
tential of period λ (comparable to 2Rg) and depth εkBT. Each
barrier is associated with the protein migration by a distance
of 2Rg. Ignoring the inertial force, the Langevin equation for
the instantaneous velocity of the macromolecule along the
pore (x-direction) is

−ζ
dx

dt
+ f + frandom = 0, (3)

where −ζdx/dt is the frictional force (with ζ = kBT/D be-
ing the friction coefficient), frandom is the random force arising
from the collisions of solvent molecules with the protein, and
f is the net force on the protein from the external electric field
fE, counterion cloud fcloud, confinement inside the pore fconf,
and pore-protein interaction fp,

f = fE + fcloud + fconf + fp. (4)

We address below successively the three major components
of the problem, viz., collective dynamics of the protein and
its counterion cloud, confined hydrodynamic transport inside
the pore, and the effect of potential interaction between the
protein and the pore wall.

II. PROTEIN-COUNTERION DYNAMICS

Without any confinement effects, the velocity v(r) of the
fluid at location r outside the protein is given by the linearized
Navier-Stokes equation in the steady state limit

−η∇2v(r) + ∇p(r) = ρ(r)E(r), (5)

where ρ(r) is the local charge density from all small ions sur-
rounding the protein and E(r) is the local electric field and
p is the pressure. By combining Eqs. (3)–(5) for a spherical
particle and taking E(r) as Ex̂, and using the Debye-Hückel
theory and no-slip boundary condition at the particle surface,
Hückel derived the velocity U = 〈dx/dt〉 as15

ζU = QE − κRg

(1 + κRg)
QE, (6)

where the two terms on the right-hand side are from fE and
fcloud, respectively. κ is the inverse Debye length, and for an
aqueous solution at 25◦C of monovalent salt at concentration
cs in molarity, κ = 3.28

√
cs nm−1.

Combining the two terms on the right-hand side of
Eq. (6),

ζU = Q

(1 + κRg)
E ≡ Qeff E; Qeff = Q

(1 + κRg)
, (7)

where the macromolecule and its counterion cloud are taken
as a collective entity (quasiparticle) with an effective charge

FIG. 2. The apparent charge Qeff is much smaller than Q depending on κRg.

Qeff which is much less than the bare charge Q. Sev-
eral attempts to improve Hückel’s theory are found in the
literature.19–22 The most notable is from Henry (by account-
ing for local electric field near the particle arising from the
continuity of current at the particle surface) with the result19

Qeff = Q

(1 + κRg)
g(κRg), (8)

where the Henry correction g(κRg) varies between 1 and 3/2
for nonconducting macroions, given by

g(α) = 1 + α2

16
− 5α3

48
− α4

96
+ α5

96

+ α4

8

(
1 − α2

12

)
eαE1(α), (9)

with E1(α) being the exponential integral
∫ ∞
α

e−xdx/x. The
ratio Qeff/Q is plotted in Figure 2 as a function of κRg for the
Hückel (Eq. (7)) and Henry (Eq. (8)) expressions. The drag
force from the counterion cloud significantly affects the infer-
ence of the protein charge in electrophoresis measurements.
For example, for a protein of radius 1.5 nm in 1 M KCl, κRg
= 5 and the effective charge is seen from Figure 2 to be re-
duced to about 20% of the bare charge.

III. CONFINEMENT EFFECTS

The diffusion and convection of a macromolecule are
hindered by the physical boundary of the pore. Considering
an uncharged spherical particle confined inside a cylindrical
pore, the hard excluded volume effect and hydrodynamic in-
teraction among the particle along the pore axis and the pore
wall were addressed by Ferry23 and Faxén,24 respectively. As
a result, the diffusion coefficient Dp of the particle inside the
pore is substantially reduced, given by (known as the Renkin
equation25)

Dp

D
=

(
1 − Rg

R

)2 [
1 − 2.104

(
Rg

R

)

+ 2.09

(
Rg

R

)3

− 0.95

(
Rg

R

)5 ]
. (10)
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FIG. 3. Effect of pore confinement on diffusion coefficient according to
Ferry-Faxén-Renkin (top curve) and Dechadilok-Deen (bottom curve).

More recently, Dechadilok and Deen26 have provided a better
formula for Dp given by

Dp

D
= 1 + 9

8

(
Rg

R

)
ln

(
Rg

R

)
− 1.56034

(
Rg

R

)

+ 0.528155

(
Rg

R

)2

+ 1.91521

(
Rg

R

)3

− 2.81903

(
Rg

R

)4

+ 0.270788

(
Rg

R

)5

+ 1.10115

(
Rg

R

)6

− 0.435933

(
Rg

R

)7

. (11)

A plot of Dp/D versus Rg/R is given in Figure 3 for both Ferry-
Faxén-Renkin and Dechadilok-Deen equations. Clearly, Dp
is substantially smaller than D. A generalization of Faxén’s
result for restricted hydrodynamics involving macroions and
counterion clouds in an electrolyte solution is nontrivial and
entails numerical work. As we expect the dominant effect
from the finite pore volume to arise from the excluded volume
effect and as the hydrodynamic and electrostatic interactions
are to be screened to some extent, we are here content with
the above formulas for Dp and Qeff.

IV. PORE-PROTEIN INTERACTION

We now consider the effect of the periodic potential en-
ergy profile along the pore on the diffusion and drift of the
protein molecule. The Langevin equation from Eqs. (3) and
(4) is

dx

dt
= Dp

kBT
(fE + fcloud + fp) +

√
Dp
(t), (12)

where the confinement effect is subsumed into Dp and the
fluctuation-dissipation theorem for the random noise 
(t)
is satisfied. The force fp due to pore-protein interaction is
−∂Fp(x)/∂x, where Fp is taken as the saw-tooth periodic
potential,

Fp(x)

kBT
≡ F̃p(x) =

{− 2εx
λ

0 < x < λ
2 ,

−2ε + 2εx
λ

λ
2 < x < λ,

(13)

ε is the strength of the attractive energy in units of kBT as
sketched in Figure 1. Since the net effect of fE and fcloud is to

yield the apparent charge Qeff, we write fE + fcloud = Qeff E as
−∂(−Qeff Ex)/∂x. Therefore, Eq. (12) becomes

dx

dt
= −Dp

∂F̃ (x)

∂x
+

√
Dp
(t), (14)

with

F̃ (x) = −Q̃eff Ex + F̃p(x), (15)

where Q̃eff ≡ Qeff /(kBT ). The Fokker-Planck equation for
the probability of finding the protein at x and time t, and the
flux J, follows from Eq. (12) as10, 28

∂P (x, t)

∂t
=− ∂

∂x
J =Dp

∂

∂x

{[
∂F̃ (x)

∂x
P (x, t)

]
+ ∂P (x, t)

∂x

}
.

(16)

A. Effective diffusion coefficient

The presence of the potential well (or a potential barrier)
inside every period of the potential energy profile modifies the
diffusion coefficient. For E = 0, the law of diffusion for each
period λ obeys

λ2 = 2Deff τ0, (17)

where τ 0 is the mean first passage time for one period (with
reflecting boundary condition at x = 0 and absorbing bound-
ary condition at x = λ, and E = 0),

τ0 = 1

Dp

∫ λ

0
dye

F̃
p

(y)
∫ y

0
dxe

−F̃
p

(x)
. (18)

Substituting Eq. (13) into Eq. (18), we get from Eq. (17)

Deff = Dp

ε2

(1 − e−ε)(eε − 1)
. (19)

This exact result is plotted in Figure 4 as a function of ε (in-
teraction energy in units of kBT). The diffusion coefficient is
seen to decrease significantly as the barrier height increases.
The asymptotic limits of Eq. (19) are

Deff

Dp

=
{

1 − ε2

12 + · · · ε 	 1,

ε2e−ε ε 
 1.
(20)

The large barrier result is reminiscent of the Kramer’s for-
mula for barrier crossing, but with a different prefactor ε2.
This limit is also included in Figure 4. By measuring Deff
and using Eq. (19), the pore-protein interaction energy can be
determined.

B. Electrophoretic mobility

The probability to find the macromolecule at x in the
steady state (J = constant) follows from an integration of
Eq. (16) as

P (x) = e−F̃ (x)

[
P (x = 0) − J

Dp

∫ x

0
dx ′eF̃ (x ′)

]
. (21)
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FIG. 4. Dependence of diffusion coefficient on pore-protein interaction
energy. Bottom curve is from Eq. (20).

For the periodic potential F̃p(x), the standard analysis gives
(for m = integer)27–29

P (mλ + x) = P (x); P (x = 0) = J

Dp

I+
(1 − e

−Q̃
eff

Eλ)
,

(22)
with

I± =
∫ λ

0
dxe±F̃ (x). (23)

Averaging Eq. (14) over the normalized P(x) in each period,
and with 〈
(t)〉 = 0, the average velocity of the protein is

U = λDp

(1 − e−2θ )

[I+I− − (1 − e−2θ )Y ]
, (24)

where

θ = Q̃eff Eλ/2; Y =
∫ λ

0
dxe−F̃ (x)

∫ x

0
dyeF̃ (y). (25)

Substituting Eq. (15) into Eqs. (23) and (25), we get

I± = λ

2

[
± 1

(θ + ε)
(1 − e∓(θ+ε)) ± e∓(θ+ε)

(θ − ε)
(1 − e±(ε−θ))

]
,

(26)

and

Y =
(

λ

2

)2 {
(eθ+ε − 1)

(θ + ε)2
+ (eθ−ε − 1)

(θ − ε)2

+ 1

(θ2 − ε2)
[−2θ + eθ (eθ − eε)(1 − e−θ−ε)]

}
. (27)

The exact analytical expression for the velocity is given by
Eqs. (24), (26) and (27) as a function of the effective charge
Qeff, pore diffusion coefficient Dp, pore-protein interaction en-
ergy ε, period of the potential λ, and the strength of the elec-
tric field E.

In the linear response regime (θ 	 1), Eq. (24)) reduces
to

U = Q̃eff Dp

ε2

(1 − e−ε)(eε − 1)
E = Q̃eff Deff E, (28)

in view of Eq. (19). However, the linear response regime is
valid only for very small values of θ for ε = 0, as can be seen
in Figure 5, where U/Q̃eff Deff E from Eq. (24) is plotted
against θ = Q̃eff Eλ/2 for different values of ε.

FIG. 5. Velocity reduction by pore-protein interaction energy ε and the onset
of nonlinear dependence on the electric field. U0 is the velocity in the linear
response regime D

p
Q̃

eff
E.

C. Average translocation time

The average translocation time for the protein through the
nanopore of length L with N periods (L = Nλ) is given by the
mean first passage time

τ = 1

Dp

∫ L

0
dyeF̃ (y)

∫ y

0
dxe−F̃ (x), (29)

where the reflecting boundary condition at x = 0 and absorb-
ing boundary condition at x = L are used with the initial po-
sition of the protein being at x = 0. Using Eqs. (13), (15)
and (22),

τ = Nτ1 + 1

Dp

N−1∑
m=1

∫ (m+1)λ

mλ

dyeF̃ (y)
∫ mλ

0
dxe−F̃ (x), (30)

where τ 1 is the mean first passage time over one period (with
F̃ replacing F̃p in Eq. (18), as a generalization to E = 0).
Combination of Eqs. (13), (15), (25) and (30) gives

τ1 = 1

Dp

(
λ

2

)2 {
(e−θ−ε − 1)

(θ + ε)2
+ (e−θ+ε − 1)

(θ − ε)2

+ 1

(θ2 − ε2)
[1 + 2θ − e−θ (eε + e−ε) + e−2θ ]

}
(31)

and

Dpτ = DpNτ1 + I+I−
(1 − e2θ )

[
−N + (1 − e−2Nθ )

(1 − e−2θ )

]
(32)

with I± given in Eq. (26). The above equation provides the
complete dependence of the average translocation time on the
pore length (L = Nλ) in terms of ε and E. As an illustration,
a plot of Eq. (32) as 2Dpτ /λ2 vs. N is given in Figure 6. The
above formula reduces to the expected limits. For E → 0, it
becomes the law of diffusion,

L2 = 2Deff τ, (33)

and for ε = 0, it becomes the familiar drift-diffusion
formula,10, 30

Dpτ = 1

Q̃eff E

[
L + 1

Q̃eff E
(e−Q̃

eff
EL − 1)

]
. (34)
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FIG. 6. Dependence of mean translocation time on pore length for ε = 5 and
θ = Q̃

eff
Eλ/2 = 0.1 (top) and 0.5 (bottom).

In its own right, Eq. (34) is a crossover between the diffu-
sive law τ = L2/(2Dp) for Q̃eff EL 	 1 and the drift law
τ = L/(DpQ̃eff E) = L/U for Q̃eff EL 
 1.

Combination of Eqs. (8), (11), (19), (24)–(27), and (32)
gives the full set of equations for the effective charge, ef-
fective diffusion coefficient, velocity, and mean translocation
time in terms of Q, D, pore radius R, inverse Debye length κ ,
protein radius Rg, period λ and strength ε of the pore-protein
interaction potential, and the electric field. The effective val-
ues of diffusion coefficient and velocity obtained from fitting
experimental translocation time histograms are shrouded by
the various contributing factors in these equations. The de-
rived formulas constitute a good starting point in sorting out
Q, D, and μ from nanopore electrophoresis experiments.
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