Commentary

Targeting of Polytopic Proteins to the Plasma Membrane

Most proteins in plant cells are synthesized on cyto-
plasmic ribosomes and later get transported to their
proper place of action. For proteins that function in the
endomembrane system, at the plasma membrane, or
outside the cell, translation occurs at the endoplasmic
reticulum, and the resulting proteins are later traf-
ficked via vesicular transport from there to their final
destination. Proper sorting requires specific targeting
signals that are recognized by the transport machinery,
the coat proteins, which deform the membrane during
transport vesicle formation while at the same time select-
ing the proteins that will be included in the bounding
membrane of the vesicle (Bassham et al., 2008; Brandizzi
and Barlowe, 2013). Thus, it is not astonishing that
several signals for efficient protein export from the en-
doplasmic reticulum have been identified in the (usu-
ally short) cytoplasmic tails of proteins, which allow
them be recognized by coat protein complex II (COPIIL;
Gillon et al., 2012). Similarly, proteins that need to be
recycled back to the endoplasmic reticulum or an earlier
Golgi compartment interact via sequences in their cyto-
plasmic tails with subunits of the COPI coat for inclu-
sion in retrograde transport vesicles (Gao et al., 2012).
While a number of targeting signals have been identi-
fied for the early secretory pathway in plants (Gao et al.,
2014), virtually nothing is known about the mechanisms
that target membrane proteins to the plasma membrane.

The situation is further complicated for polytopic
membrane proteins that have several transmembrane
domains, such as many membrane transporters. These
proteins have several cytoplasmic loops that could harbor
targeting signals and can take on complex conformations
that may influence the amino acid residues that are ac-
cessible to the coat proteins. For example, aquaporins,
also known as major intrinsic proteins, are membrane
channels that mediate the flux of water or other small
hydrophilic molecules through membranes by forming a
selective channel in the center between their six trans-
membrane domains (Wallace and Roberts, 2004).
Aquaporins are found in all extant organisms from
bacteria to multicellular eukaryotes and adopt a highly
conserved protein structure (Fu et al., 2000; Sui et al.,
2001; Tornroth-Horsefield et al., 2006). They function
as tetramers and, in plants, are found in different
membranes, most prominently in the plasma mem-
brane (plasma membrane intrinsic proteins [PIPs]) and
the vacuolar membrane (tonoplast intrinsic proteins).
The signals that allow their proper targeting have not
been identified. Curiously, not all PIPs are efficiently
transported to the plasma membrane (Chaumont et al.,
2000), suggesting that these PIPs differ in their targeting
sequences. For example, a diacidic (DxE: Asp-any
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amino acid-Glu) endoplasmic reticulum export signal
at the N terminus of ZmPIP2;5 of maize (Zea mays) is
not present in ZmPIP1;2 (Zelazny et al., 2009). In this
issue, Chaumont and colleagues (Chevalier et al., 2014)
take the analysis of aquaporin targeting to the next level
by systematically swapping all loop regions between
ZmPIP1;2 and ZmPIP2;5 in order to test for additional
targeting signals. Curiously, none of the exchanges al-
tered the behavior of the hybrid proteins, suggesting that
the loop regions are not involved in targeting. A series of
additional hybrid fusions instead revealed transmem-
brane domain 3 as the crucial determinant for plasma
membrane targeting of ZmPIP2;5 and, more specifically,
two amino acids within this transmembrane domain
(Leu-127 and Ala-131).

This discovery presents a new paradigm for the plasma
membrane targeting of membrane proteins, since it iden-
tifies residues that are buried within the membrane as
essential for normal transport (Fig. 1). How these resi-
dues are recognized by the transport machinery is not
clear at this time. A direct interaction with coat proteins
seems unlikely, unless the residues are somehow ac-
cessible on the cytoplasmic face of the membrane. It is
possible, however, that other (integral or peripheral)
membrane proteins mediate an indirect interaction be-
tween ZmPIP2;5 and the coat proteins, analogous to the
vacuolar protein sorting74 system in yeast (Saccharomyces
cerevisiae; Tu et al., 2008). Alternatively, the altered
residues on the outer surface of the aquaporin tetramer
might interact with different membrane lipids, which in
turn could influence the recruitment of coat proteins
(Matsuoka et al., 1998). Of course, a conformational
change of the helix packing that secondarily affects the

Figure 1. Structure of the aquaporin tetramer with newly discovered
targeting residues highlighted. The structure is based on bovine AQP1
(Protein Data Bank no. 1J4N; Sui et al., 2001). Individual aquaporin
monomers are shown in different colors, and the residues involved in
the plasma membrane targeting of ZmPIP2;5 are highlighted in red.
Horizontal lines represent the approximate edges of the plasma mem-
brane, with the cytoplasmic side at the bottom.
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presentation of other protein segments on the membrane
surface cannot be ruled out either. It is also not clear where
along the secretory pathway this signal is recognized, as
the authors only tested for arrival of the mutant proteins
at the plasma membrane. Identification of the punctate
structures in which the Leu-127Phe/Ala-131Met double
mutant accumulates could give an indication of where
the signal functions. Finally, even though Leu-127 and
Ala-131 are necessary for the plasma membrane targeting
of ZmPIP2;5, they were not sufficient to mediate a similar
localization in ZmPIP1;2, suggesting that there are other
signals that retain ZmPIP1;2 within the cell. It will be in-
teresting to see whether similar mechanisms are at play in
the PIN family of auxin transporters, of which some are
retained in the endoplasmic reticulum while others func-
tion at the plasma membrane (Mravec et al., 2009). Clearly,
we do not have all the answers yet, but the systematic
study by Chevalier et al. (2014) highlights the usefulness of
aquaporins as an experimental system that can lead to the
discovery of novel plasma membrane targeting signals.
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