
Scientific Correspondence

Differential Accumulation of ELONGATED
HYPOCOTYL5 Correlates with Hypocotyl Bending to
Ultraviolet-B Light1

Filip Vandenbussche* and Dominique Van Der Straeten

Department of Physiology, Laboratory of Functional Plant Biology, Faculty of Sciences, Ghent University,
B–9000 Ghent, Belgium

To date, the main long-standing model explaining
phototropic bending is that of Cholodny (1927) and
Went (1926), which suggests that the lateral distribu-
tion of a growth hormone regulates phototropism and
which is supported by a substantial amount of molecular
and cell biological evidence (Christie et al., 2011; Ding
et al., 2011; Christie and Murphy, 2013). The alternative
theory of Blaauw (1919), in which differential growth to
unilateral light is thought to occur through unilateral
photomorphogenic inhibition of growth, has been pushed
into the background, even though supportive data occa-
sionally are published (Yamada et al., 2000). Here, we
present further evidence that a mechanism as proposed
by Blaauw (1919) can occur in plants as well. We show
that UV-B light causes increased accumulation of the
transcription factor ELONGATED HYPOCOTYL5 (HY5)
at the illuminated side of etiolated Arabidopsis (Arabi-
dopsis thaliana) hypocotyls and that HY5 is necessary for
phototropin-independent bending toward UV-B.

Although UV-B radiation has been described as a
stressor for plants, low-level exposure leads to typically
photomorphogenic responses in the absence of any vis-
ible stress (Jansen, 2002). Recently, significant advances
in the molecular mechanisms regulating UV-B-specific
photomorphogenesis have been achieved thanks to the
molecular genetic research opportunities provided by the
model plant Arabidopsis (Tilbrook et al., 2013; Jenkins,
2014). The current model for UV-B-specific photomor-
phogenic signaling states that UV-B is perceived by UV
RESISTANCE LOCUS8 (UVR8) homodimer photore-
ceptor proteins. UVR8 monomerizes and associates with
CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1;
Favory et al., 2009; Rizzini et al., 2011). By consequence,
the transcription factor HY5 is no longer marked for
degradation and accumulates (Favory et al., 2009; Huang

et al., 2013). In addition, UVR8 and COP1 are known to
control UV-B-induced transcription of HY5 (Brown et al.,
2005; Oravecz et al., 2006). HY5 activity in general
eventually leads to inhibition of hypocotyl elongation
(Oyama et al., 1997; Yu et al., 2013).

Apart from general light perception, plants can also
sense the direction of incoming light. Many plant spe-
cies need this response to be able to grow toward the
light to obtain favorable conditions for photosynthesis.
They have phototropins, which are photoreceptors that
stimulate growth toward blue, UV-A, and also UV-B
light (Liscum et al., 2014; Vandenbussche et al., 2014).
Lack of phototropins confers incapability of growing
toward unilateral blue light. However, UV-B through
its receptor UVR8 causes bending toward the light in
etiolated seedlings, even in the absence of functional
phototropins (Vandenbussche et al., 2014).

HY5 MEDIATES DIRECTIONAL BENDING TO UV-B

Other than an apparent role for differential auxin sig-
naling, the mechanism of the phototropin-independent
UVR8 response is unknown. To unravel the downstream
mechanisms of the UVR8 function in these settings, we
focused on the known UV-B signaling component HY5
(Ulm et al., 2004; Brown et al., 2005). Etiolated 2-d-old
wild-type Columbia, hy5-215 (hereafter referred to as hy5),
phototropin1-5 (phot1-5) phot2-1 (hereafter referred to as
phot1 phot2), and phot1 phot2 hy5 seedlings were exposed
to unilateral monochromatic UV-B light (Vandenbussche
et al., 2014). After 24 h of exposure, the wild type, hy5,
and phot1 phot2 seedlings showed a clear phototropic
response, whereas the phot1 phot2 hy5 triple mutant
seedlings did not (Fig. 1A; (Vandenbussche et al., 2014).
To study the process in more detail, a kinetic analysis of
the seedlings was performed. Pictures of a lateral view of
seedlings were taken every 15 min, using a set-up in
which the focal plane was parallel to the incoming UV-B
light and the bending direction of the wild type. As de-
scribed previously (Vandenbussche et al., 2014), wild-
type plants rapidly oriented toward the incoming light,
starting about 1 h after the onset of illumination and
completing reorientation after 3 h. hy5 behaved in a very
similar way as the wild type, suggesting no major role
for HY5 in this rapid bending response (Fig. 1B). Also as
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described (Vandenbussche et al., 2014), phot1 phot2 still
bent toward the light source, yet compared with the wild
type, the response was slower, reaching its maximum
after about 7 h. By contrast, the phot1 phot2 hy5 triple
mutant seedlings did not bend in the direction of the
light source. They rather bent in random directions,
as indicated by the large standard deviations shown
in Figure 1B. These data indicate the importance for HY5
in directional bending toward UV-B light in the absence
of a phototropin signal. The results are reminiscent of the
response caused by UVR8, which mediates the slower
bending response (Vandenbussche et al., 2014). Hence, it
is likely that HY5 also in this situation mediates the
UVR8 effect. However, another system may cause the
randomization of bending, a response associated with
phytochromes in other light conditions (Lariguet and
Fankhauser, 2004; Kim et al., 2011). In conclusion, bend-
ing toward UV-B in etiolated seedlings can be achieved
either by a rapid phototropin-dependent response that

occurs between 1 and 3 h after onset of exposure or a
UVR8-HY5-dependent response that occurs between
3 and 7 h after onset of exposure.

UNILATERAL UV-B CAUSES ACCUMULATION OF
HY5 AT THE ILLUMINATED SIDE

Unilateral UV-B is believed to form a sharp light
gradient in seedlings due to reflectance and scattering
of incoming light (Vandenbussche et al., 2014). To in-
vestigate whether this is the case, etiolated seedlings
were stained with the UV-B-excitable optical brightener
umbelliferone and subsequently exposed to unilateral
UV-B light. Both the wild type (data not shown) and
phot1 phot2 mutants were tested (Fig. 2, A and B). There
was clearly more fluorescence on the UV-B illuminated
side than on the shaded side (Fig. 2B), confirming the
existence of a gradient of UV-B light in the seedling.
However, to be meaningful for a plant, a light gradient
somehow needs to be functional. The HY5 gene is an
excellent marker for UV-B signaling, as it is both tran-
scriptionally induced and stabilized at protein level in
the presence of UV-B light (Ulm et al., 2004; Brown
et al., 2005; Favory et al., 2009; Huang et al., 2013). In
addition, HY5 is considered an integral part of UV-B
photomorphogenic signaling (Tilbrook et al., 2013).
Therefore, to analyze the phototropin-independent, HY5-
dependent phototropic response in more detail, accu-
mulation of the HY5 protein was examined. The effect
of unilateral UV-B exposure on HY5-Yellow Fluorescent
Protein (YFP) under the naturalHY5 promoter (Oravecz
et al., 2006) was analyzed under confocal microscope in
phot1 phot2 background. The illuminated side clearly ac-
cumulated more HY5-YFP protein (Fig. 2, C and D). This
response was much stronger in UV-B than in blue light.
The blue light-induced accumulation of HY5 in this case
is likely to depend on blue light perceiving photorecep-
tors such as cryptochromes or phytochromes (Osterlund
et al., 2000; Wang et al., 2001) and appears less dif-
ferential. Lack of a blue light phototropic response in
phot1phot2 mutants (Sakai et al., 2001) also suggests that
the smaller differentiality in HY5 accumulation formed
by blue light is not sufficient to induce phototropic
bending. In a more detailed analysis, the HY5-YFP ac-
cumulation at the illuminated side in UV-B was followed
in time by monitoring nuclear fluorescence (Pacín et al.,
2014). Quantification showed that no significant differ-
ence with the dark control was observed after 1 h of
illumination (Fig. 2F). At this point, the phototropin-
dependent response (Fig. 1; Vandenbussche et al., 2014)
has already started. Thus, the timing of accumulation of
HY5 in UV-B appeared slightly later than the start of
output of phototropin action, yet preceded the bending
response in phot1 phot2 mutants (compare Fig. 2F with
Fig. 1). The rate of accumulating of HY5 is comparable
to that in white light (Pacín et al., 2014). Thus, the ac-
cumulation of HY5 seems sufficiently early for this
transcription factor to generate eventual phenotypic
output such as the directional bending. Together, the

Figure 1. A, Effect of unilateral UV-B on 2-d-old etiolated seedlings.
Seedlings were grown on Jiffy pellets for 2 d in darkness and subse-
quently exposed to unilateral monochromatic UV-B (0.12 mmol m–2 s–1

of 302 nm). Photographs were taken after 24 h of exposure. B, Kinetic
analysis of directional bending in Arabidopsis mutants. Seedlings were
grown as in A, with a background of infrared (930-nm) light. Every
15 min, photographs were taken with the focal plane parallel to the
direction of UV-B radiation. Quantification of the bending angle was
performed on these photographs using ImageJ software (Vandenbussche
et al., 2014). Error bars indicate SD (n $ 10). wild type, Columbia; hy5,
hy5-215; phot1phot2, phot1-5 phot2-1.

Plant Physiol. Vol. 166, 2014 41

Functionality of Differential HY5 Accumulation



data support a model in which UV-B causes unilateral
accumulation of HY5, which then, in the end, leads to
bending toward the light.

Considering the importance of HY5 for elongation of
the hypocotyl, we tested whether HY5 in UV-B causes
a stronger inhibition of growth at the illuminated side
compared with the shaded side. After UV-B exposure,
the length of phot1 phot2 hypocotyls was shorter at the
illuminated side, while this was not the case in phot1
phot2 hy5 triple mutants (Fig. 2G). It was shown before
that auxin is involved in the UVR8-dependent directional
bending. Thus, it is tempting to speculate that HY5
mediates local auxin signal reduction at the illuminated

side, either by inhibiting signaling or stimulating auxin
efflux, or both. In case efflux is involved, auxin trans-
port toward the shaded side may exist and both the
Cholodny-Went and Blaauw theories apply, unifying
both hypotheses. Notably, HY5 has been suggested to
negatively regulate auxin signaling (Sibout et al., 2006),
and auxin has a role in UVR8-dependent bending
(Vandenbussche et al., 2014). Furthermore, regulation of
tropic responses has been linked to both auxin transport
and signaling (Kami et al., 2014).

The biological role of the UV-B-specific response is
still under investigation, but it could be important in
situations in which the phototropin response is nearly

Figure 2. UV-B-induced accumulation of HY5. A, Bright-field image of the top of a 2-d-old etiolated phot1 phot2 seedling. B,
Blue fluorescence in the seedling (as in A) illuminated with monochromatic UV-B (0.12 mmol m–2 s–1 of 306 nm from the left).
The seedling was stained in 100 mM umbelliferone in water, rinsed three times, mounted on a cover slip, and imaged using a
Zeiss Axiovert microscope, while being exposed to unilateral UV-B. C, Confocal laser-scanning microscopic (Nikon EZC1)
image from a phot1 phot2 seedling containing the pHY5::HY5-YFP construct. The seedling was grown for 2 d in darkness and
then exposed to unilateral monochromatic UV-B (0.12 mmol m–2 s–1 of 302 nm, from the left) for 270 min. Nuclear HY5-YFP
accumulation is visible as bright green spots. D, Confocal laser-scanning microscopic image, as in C, with differential inter-
ference contrast image overlay. E, Quantification of fluorescence in populations of seedlings grown as in C. Unilateral light was
either 0.12 mmol m–2 s–1 of 302 nm (UV-B) or 450 nm (blue). Imaging was completed within 10 min after harvesting. Fluo-
rescence intensity in nuclei of epidermal cells in the growth zone was measured at the illuminated and the shaded side using
Nikon Instruments elements Advanced Research analysis software. Error bars indicate SD on fluorescence from different
seedlings (n . 10). Statistical significance versus illuminated side: **P , 0.01, ***P , 0.001. F, Kinetic analysis of HY5-YFP
accumulation upon unilateral UV-B illumination (0.12 mmol m–2 s–1 of 302 nm) in 2-d-old etiolated phot1 phot2 pHY5::HY5-
YFP seedlings during the first 8 h after exposure. Fluorescence measurement was done as in D, using fixed acquisition settings of
the 480-min sample, which was adjusted to yield values just under saturation. Error bars indicate SD on fluorescence from
different seedlings (n . 5). G, Seedlings were grown for 2 d in darkness and then exposed to 18 h of unilateral monochromatic
UV-B (0.12 mmol m–2 s–1 of 302 nm) or kept in darkness. Photographs were taken, and hypocotyl length was measured using
ImageJ software. Data were normalized to the length of dark-grown seedlings. a, significant (P , 0.05) difference with dark
control; b, significant (P , 0.05) difference with the length of the shaded side. Error bars represent SE of the mean (n $ 25).
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absent or near saturation. With the data presented here,
the UVR8- and HY5-regulated photomorphogenic path-
way fits in a scenario where differential growth is regu-
lated according to the Blaauw theory, indicating that both
the Cholodny-Went and the Blaauw models for direc-
tional growth can apply in plants.
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