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Abstract

Transcription factors (TFs) influence cell fate by interpreting the regulatory DNA within a

genome. TFs recognize DNA in a specific manner; the mechanisms underlying this specificity

have been identified for many TFs, based on three-dimensional structures of protein-DNA

complexes. More recently, structural views have been complemented with data from high-

throughput in vitro and in vivo explorations of the DNA binding preferences of many TFs.

Together, these approaches have greatly expanded our understanding of TF-DNA interactions.

However, the mechanisms by which TFs select in vivo binding sites and alter gene expression

remain unclear. Recent work has highlighted the many variables that influence TF-DNA binding,

while demonstrating that a biophysical understanding of these many factors will be central to

understanding TF function.
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Questions at the interface of genomics and structural biology

After decades of research, much is now understood about how transcription factors (TFs)

recognize their cognate DNA binding sites in the genome to initiate gene regulatory

functions. However, potential target sites of each TF occur many times in the genome. How

proteins can very precisely identify their functional binding sites in a cellular environment

has not been resolved. Although closely related proteins are known to bind to distinct target

sites to execute different in vivo functions, the mechanisms by which paralogous TFs select

very similar, but not identical, target sites are not understood. Current knowledge on the

DNA binding specificities of TFs is largely derived from research in genomics and structural

biology, two fields of research that have developed along parallel lines with limited

interactions and have only just begun to become integrated.

Recent studies have focused on the question of how TFs recognize a subset of putative DNA

binding sites (Figure 1A) by identifying features, beyond the sequence of the core binding

site, which contribute to TF-DNA binding specificity [1–4]. Several features contribute to

TF-DNA readout on multiple levels (Figure 1B), including the nucleotide sequence [5–11],

three-dimensional structure and flexibility of TFs and their DNA binding sites [12–15], TF-

DNA binding in the presence of cofactors [1, 16], cooperative DNA binding of TFs [12, 17–

19], chromatin accessibility and nucleosome occupancy [20–25], indirect cooperativity via

competition with nucleosomes [26, 27], pioneer TFs that bind nucleosomal DNA [28, 29]

and DNA methylation [30]. Additionally, interactions exist among all of these factors, which

might alter binding in a cell type-specific manner [29, 31]. Many comprehensive reviews [8,

32–48] have discussed these different aspects of TF-DNA binding specificity, often from

either a genomics or structural biology perspective. This review attempts to integrate what

has been learned at the various scales from studies by these two complementary approaches,

and discusses the important progress that has been made in recent years.

Transcription factors recognize DNA through the interplay of base and

shape readout

Structural biology has been at the forefront of the search for a protein-DNA recognition

code. Cocrystal structures of protein-DNA complexes were first solved in the 1980s [49].

Since then, more than 1,600 entries of protein-DNA structures have been entered in the

Protein Data Bank [50], including structures solved by nuclear magnetic resonance (NMR)

spectroscopy. These structures have revealed why many TFs preferentially bind to a specific

DNA sequence [39]. Namely, the preference for a given nucleotide at a specific position is

mainly determined by physical interactions between the amino acid side chains of the TF

and the accessible edges of the base pairs that are contacted. These contacts include direct

hydrogen bonds, water-mediated hydrogen bonds and hydrophobic contacts. This form of

protein-DNA recognition is known as base readout (Figure 2A). A prominent example for

base readout is the formation of bidentate hydrogen bonds between arginine residues and

guanine bases in the major groove of DNA [19].

TFs can also recognize the structural features of their DNA binding sites, such as sequence-

dependent DNA bending [51, 52] and unwinding [53]. This phenomenon of recognizing
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sequence-dependent DNA structure is known as shape readout (Figure 2B). The DNA shape

concept includes the static and dynamic properties of DNA structure, and the readout of

enhanced negative electrostatic potential in narrow minor groove regions through arginine

[13] or histidine [54] residues.

These two protein-DNA recognition mechanisms (i.e., base and shape readout, also known

as direct and indirect readout [55]) were often historically presented as mutually exclusive

driving forces for DNA recognition by a given protein. Only recently have structural studies

[19, 56, 57] embraced the more realistic situation that most proteins use the interplay of base

and shape readout to recognize their cognate binding sites. The contributions of base and

shape readout, however, vary across protein families (Figure 2C; Figure 3). Recent

structures of protein-DNA complexes accurately reflect the biologically correct architecture

(which can affect cooperativity), revealing cofactors that bind (Figure 3A) [1] or do not

contact [16] DNA, TF-DNA binding as dimers (Figure 3B–C) [58] or tetramers (Figure 3D)

[19] and multiple TFs that bind DNA while forming protein-protein contacts (Figure 3E)

[59].

Computational models for describing the DNA binding specificities of

transcription factors

In parallel to structural biology approaches to studying protein-DNA binding specificity,

sequence-based computational methods have been developed. These methods use a set of

known protein-DNA binding sites to generate DNA motif models for predicting the binding

specificity of any new site. Early DNA motif discovery methods [60–63] were trained and

tested on: 1) small sets of aligned TF binding sites (TFBSs) collected from small-scale

experiments, such as DNase I footprinting [64] or electrophoretic mobility shift assays [65],

2) simulated data, in which TFBSs were artificially inserted into background DNA [63], or

3) sets of promoter regions of coregulated genes [61]. The development of microarray- and

sequencing-based assays for the high-throughput measurement of protein-DNA binding

resulted in a burst of motif discovery methods; to date, hundreds of DNA motif discovery

algorithms have been developed [9, 66, 67].

Most sequence-based DNA motif discovery methods use position weight matrices (PWMs)

to represent the TF-DNA binding specificity [5, 8]. This type of model is simple, intuitive

and can be learned from various data types: from small sets of known binding sites to high-

throughput protein-DNA binding data. Traditional PWM models have the benefit of being

easy to visualize as DNA motif logos [68]. However, these models are only able to describe

the DNA base readout by a TF. Moreover, they implicitly assume that positions within a

TFBS independently contribute to the binding affinity, an assumption that does not always

hold [7, 10, 69–71]. Consequently, more complex sequence-based models of protein-DNA

binding specificity have been developed (Figure 4; Table 1A) to account for positional

dependencies within TFBSs, as well as other complexities in protein-DNA recognition [2, 9,

31, 72–74].

These complex models typically perform better than traditional PWMs [2, 63, 70, 73, 75],

providing important insights into the DNA recognition mechanisms used by different TFs.

Slattery et al. Page 3

Trends Biochem Sci. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



For example, a dinucleotide-based model [73] revealed that including the nonindependent

contributions between two specific positions in the DNA binding models of Hnf4a was

critical for accurately predicting the genomic regions bound by Hnf4a in vivo. Another

recent study [2] revealed that contributions from di- and tri-nucleotides in the DNA regions

flanking TFBSs can influence TF binding specificity. Importantly, though, the flanking di-

and tri-nucleotides in these models did not reflect base readout by the TFs; instead, the

effect of the higher-order sequence features was exerted through local three-dimensional

DNA structure (i.e., DNA shape) [13].

Interactions between adjacent base pairs are dominated by base stacking [76] and, to a lesser

degree, by inter-base pair hydrogen bonds in the major groove [77]. These physical

interactions give rise to DNA shape [78, 79] and explain the interdependencies between

adjacent positions in a TFBS [73] and other, more complex situations. DNA shape features

can be derived on a genomic scale by using a sliding pentamer window to mine Monte Carlo

predictions [78]. This approach was the basis for generating a motif database of structural

features of TFBSs [79], as well as for multiple studies in which hundreds of thousands of

DNA sequences were analyzed in terms of DNA shape features [1, 2, 30, 79, 80].

A small but important class of sequence-based motif discovery methods represents

approaches to infer DNA binding affinities by fitting thermodynamic energy-based models

to experimental data (Table 1A). Similar to probabilistic models, some energy-based models

assume independent contributions among positions in the TFBS [81–83], whereas others

incorporate nonindependent contributions [73]. Structure-based atomistic models of DNA

binding specificity have also been developed [84–90]. However, these models are not yet

widely used, likely because they require knowledge of the structure of the protein (or one of

its homologs) when bound to the target DNA site. Such data are not as easily available as

DNA sequence data. Without having to model the complete structure of the TF-DNA

complex, structural information on DNA alone can be incorporated into DNA motif

discovery models. Recently, probabilistic models incorporating DNA structure-derived

features [2, 79, 91, 92] were shown to perform better than models based on DNA sequence

information alone. Thus, genomic and structural information are beginning to be integrated

into protein-DNA binding models that account for both base- and shape-readout

mechanisms.

Binding assays for probing the DNA binding specificities of transcription

factors

With the emergence of new, high-throughput technologies for measuring protein-DNA

binding (Figure 4; Table 1B, C), it has become more feasible to create complex models of

DNA binding specificity through machine learning. However, all experimental datasets

contain noise and (potentially substantial) biases, and complex models will fit the noise and

biases more easily than simple PWM models. Thus, it is not surprising that in some recent

studies of algorithms for training DNA binding specificity models from high-throughput

data [9, 93], the models that performed best on certain in vitro datasets did not always

generalize well to independent in vivo data. As more accurate datasets emerge (e.g., from
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genomic-context protein-binding microarrays [gcPBMs] [2, 74]), it is likely that more TFs

will be better described by complex models of DNA binding specificity [43].

The rich datasets provided by high-throughput technologies have revolutionized our ability

to characterize protein-DNA binding specificity. For example, the comprehensive nature of

universal protein-binding microarray (PBM) data [94], which include measurements of TF

binding specificity to all possible 8-bp sequences, has facilitated the characterization of low-

affinity TF-DNA binding sites, which are often not captured by simple DNA binding models

[95, 96]. Such sites, which are under widespread evolutionary selection [97, 98], are critical

for interpreting the spatial and temporal TF gradients that arise during development [99,

100]. High-throughput datasets have revealed that closely related TFs, even when they

exhibit a high degree of similarity in their DNA binding domains (DBDs; up to 67% amino

acid identity), can have distinct DNA binding profiles [7, 95, 101–105]. Moreover, different

TF family members can prefer different core binding sites [7, 102, 106, 107] or flanking

DNA sequences [2, 108]. Thus, both base- and shape-readout mechanisms might play roles

in the differential DNA binding specificity of paralogous TFs.

Perhaps the most striking finding suggested by high-throughput protein-DNA binding

technologies is the large number of proteins that can bind DNA using two or more distinct

modes [47]. A small number of such proteins were previously identified through structural

studies [32, 39, 109]; however, recent high-throughput data suggest that this phenomenon is

more common than anticipated. Variable binding modes can be classified into different

categories: 1) variable spacing, in which TFs bind DNA motifs composed of two half-sites

separated by different numbers of bases [7, 104]; 2) multiple DBDs, in which TFs contain

multiple independent DBDs that allow them to recognize different DNA elements [7]; 3)

multimeric binding, which might be more common than previously thought and can even

occur in the case of TFs known to bind DNA primarily as monomers [10, 110]; and 4)

alternate structural conformations, in which TFs with a single DBD can bind different DNA

motifs, enabled by distinct conformations of the DBD (e.g., mouse TF SREBF1) or domains

outside the DBD (e.g., yeast TF Hac1) [9, 111]. Importantly, the multiple modes of DNA

binding observed in high-throughput in vitro studies are also enriched in the genomic

regions bound by TFs in vivo [10, 104], suggesting that the different mechanisms of binding

are biologically relevant. Further studies of TFs with multiple modes of binding are needed

to understand the precise biochemical and biophysical mechanisms that allow such TFs to

interact with diverse binding sites.

Studying the specificity of individual TFs via high-throughput in vitro technologies cannot

provide a full picture of how these proteins achieve their diverse regulatory roles in the cell.

Transcriptional regulation often involves the assembly of multiprotein complexes, which can

modulate the DNA binding specificities of individual TFs [1, 16]. A complete understanding

of the determinants of binding specificity in gene regulation requires the integration of all

factors that affect protein-DNA binding in the cell, including cooperating or competing TFs

and the local chromatin state.
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From in vitro to in vivo transcription factor-DNA interactions

Transferring our knowledge of the in vitro biochemical and biophysical principles of

protein-DNA interactions to an in vivo context is not straightforward. In contrast to the

relatively well-defined components of a typical in vitro biochemical experiment, the cellular

nucleus contains hundreds of millions of DNA base pairs (in metazoan genomes), as well as

RNA, histones and countless nonhistone proteins. The overall concentration of

macromolecules in the nucleus is estimated to be between 100 and 400 mg/ml [112, 113].

Within this crowded nucleoplasm [114], TFs somehow bind specific DNA sites and regulate

gene expression. In addition, although the genome contains numerous potential binding sites

for each TF, only some of them are actually bound in vivo, and only a fraction of the bound

sites are functional. Consequently, predicting and interpreting in vivo TF-DNA binding are

not trivial endeavors, even when the intrinsic sequence preferences of TFs are well

characterized in vitro.

Regulatory genomic sequences targeted by TFs are primarily found in noncoding intergenic

or intronic DNA, with a few exceptions [115]. The amount of noncoding genomic DNA

varies from organism to organism, with metazoan genomes containing relatively large

amounts of noncoding DNA (e.g., ~97% of the human genome is noncoding vs. <30% of the

Saccharomyces cerevisiae genome [116]; Figure 5A). Although pioneering studies in S.

cerevisiae have provided a tremendous foundation for our understanding of TF biology, the

noncoding regulatory landscape in this organism is easier to parse than for metazoan

eukaryotes.

For S. cerevisiae, most regulatory DNA sequences for a given gene fall within a few

hundred base pairs of its transcription start site (TSS) (Figure 5B) [117]. In metazoans, by

contrast, regulatory sequences often fall tens of kilobases or even megabases from the TSS

of the target gene [118–120]. These distal elements can be upstream or downstream of the

target gene, and they regularly bypass intervening genes (Figure 5C). The combination of a

large search space (i.e., noncoding sequence) and the distal location of many enhancers

complicates the search for regulatory DNA sequences in metazoans.

Making sense of regulatory DNA is further complicated by a lack of straightforward

sequence grammar. Unlike genic coding regions, which are easily interpreted from the

triplet code, noncoding regulatory elements are difficult to decode. Regulatory TFBSs are

often clustered, with binding sites from different TFs in close proximity to one another. A

group of TFBSs that function together to direct gene expression are referred to as a cis-

regulatory module (CRM) or enhancer. The combinatorial nature of these groupings gives

enhancers the ability to integrate inputs from multiple TFs, to direct the spatial and temporal

patterns of gene expression. Although enhancers typically contain clusters of TFBSs and

other common features (e.g., dinucleotide repeat sequences [121]), the patterns associated

with these features are not sufficiently strong to permit easy discrimination between

enhancers and nonregulatory DNA. In addition, sequence information is often an insufficient

predictor of TF binding because in vivo TF binding preferences are influenced by additional

variables, including interaction with cofactors and chromatin accessibility (discussed
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below). Ultimately, enhancers are difficult to decode and require further experimental work

for their identification and functional characterization.

Chromatin and transcription factor-DNA binding

In the past decade, we have seen a dramatic expansion of the use of genome-wide

technologies for studying in vivo TF-DNA binding and transcriptional regulation. These

technologies include genome-wide chromatin immunoprecipitation (ChIP-seq) and related

approaches (Figure 4; Table 1B), gene expression profiling and newer screening methods for

the high-throughput identification of DNA regions with enhancer activity [122–130].

Collectively, these tools of the genomics era have facilitated the annotation of genomic

regulatory regions and have served as a platform for understanding TF-DNA interactions on

a global scale, informing models of how TFs achieve regulatory specificity in vivo.

One surprising finding from early genome-wide ChIP studies was that TF binding is

widespread, with thousands to tens of thousands of binding events for many TFs. These

numbers did not fit with existing ideas of the regulatory network structure, in which TFs

were generally expected to regulate a few hundred genes, at most [131–133]. Binding is not

necessarily equivalent to regulation, and it is likely that only a small fraction of all binding

events will have an important impact on gene expression (Figure 6) (discussed below) [134,

135]. However, if we ignore preconceived notions regarding the expected number of direct

target genes for a TF and, instead, focus only on DNA sequence, the genome-wide binding

numbers begin to make sense.

Considering the information content of a typical 6-bp human TF motif, one would expect

matches to a motif to occur approximately once every 4 kb, with hundreds of thousands of

potential binding sites genome-wide [136]. Thus, based on information theory alone, TFs

actually bind far fewer regions than expected (Figure 6), due in large part to the restrictive

nature of chromatinized DNA.

Nuclear DNA is associated with nucleosomes, which consist of two copies each of the

histone proteins H2A, H2B, H3 and H4, or their variants. Nucleosome assembly facilitates

DNA packaging in the nucleus, but also has major regulatory roles [22]. Histones are subject

to extensive posttranslational modifications (PTMs) [137, 138], which can regulate

chromatin compaction and affect the recruitment of certain transcriptional regulators [139,

140]. With more than 100 possible histone PTMs and a tremendous possibility for

combinatorial PTM interactions, the burgeoning field of epigenomics is rapidly defining

genome-wide chromatin states (i.e., distinct combinations of histone modifications and other

chromatin-associated factors at a given locus) across many cellular contexts [137]. Findings

from the integration of chromatin state data with TF binding data suggest that many TFs

have specific histone PTM preferences that are consistent across multiple cell types [141].

Still, it is often unclear whether a specific chromatin state is simply permissive to TF

binding, actively directs TF binding or is a result of TF binding. Further mechanistic

elucidation of the relationships between TFs and histone PTMs will likely influence our

models of TF-DNA targeting.
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Aside from the regulatory potential of histone PTMs, nucleosome-DNA interactions can

provide a steric impediment to TF binding and increase TF-DNA dissociation rates [142].

Consistent with this concept, most of the TFBSs identified by the Encyclopedia of DNA

Elements (ENCODE) consortium fall within highly accessible (i.e., nucleosome-depleted)

DNA regions [143]. Furthermore, for several TFs, simple thermodynamic models based on

TF levels, DNA motif information and DNA accessibility [23, 24, 133, 144, 145] can largely

explain genome-wide binding patterns. Carefully designed studies have suggested that the

accessibility of TFBSs can explain most genome-wide binding patterns. However, recent

studies indicate that some binding to accessible DNA regions may be a crosslinking-

mediated ChIP artifact (discussed below) [146, 147], and there are factors whose binding

patterns are not driven by DNA accessibility [148].

DNA accessibility in vivo is commonly measured through DNase-seq, FAIRE-seq, or, more

recently, ATAC-seq (Figure 4; Table 1B) [149–152]. DNase-seq is based on the differential

DNase I sensitivity of nucleosome-associated and nucleosome-free DNA. DNase I

selectively cleaves DNA that is not protected by association with nucleosomes; therefore,

accessible DNA regions manifest as DNase I-hypersensitive sites. TF binding to DNA

protects DNA from cleavage by DNase I. Consequently, footprints of TF-DNA binding can

be identified within hypersensitive regions [151]. These properties of DNase-seq data were

recently exploited to characterize DNA accessibility profiles around TFBSs during a

program to differentiate mouse embryonic stem cells (ESCs) into pancreatic and intestinal

endoderm [153]. The data were used to quantify the impact of a given TF on DNA

accessibility patterns. Ultimately, TFs were broken down into three categories: pioneers,

settlers and migrants.

Pioneer TFs (Figure 7A) are characterized by their ability to bind DNA target sites, even in

inaccessible regions, and, subsequently, to promote DNA accessibility. Although pioneer TF

activity had been described previously [154, 155], the above DNase-seq based study

expanded the catalog of TFs with pioneer activity [153]. Interestingly, TFBSs for the

pioneer TF Pu.1 can be differentiated from nontargeted Pu.1 motif matches, based on DNA

sequence and shape characteristics that favor nucleosome assembly [29]. True Pu.1 target

sequences are highly associated with nucleosomes in cell types where Pu.1 is not expressed.

This result suggests that selective pressures have favored sequences that are competent for

both pioneer TF binding and nucleosome occupancy. It also highlights the importance of the

interplay between these two forces in pioneer TF function.

In contrast, settler TFs (Figure 7B) almost always bind sites matching their DNA binding

motif if these sites fall within accessible DNA; however, they do not bind inaccessible DNA

sites [153]. The least defined group, migrant TFs (Figure 7C), are similar to settler TFs,

although more selective [153]. Migrants only bind a subset of their target sites, even in

accessible DNA; therefore, their selectivity is likely driven by interaction with additional

cofactors. Although settler and migrant TFs do not evict nucleosomes like pioneer factors,

TFs lacking pioneer activity can facilitate the binding of unrelated TFs by competing with

nucleosomes for DNA binding; this process is termed collaborative competition or

nucleosome-mediated cooperativity [26, 27]. Taken together, these data support the idea that
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DNA accessibility substantially contributes to the DNA binding selectivity of most TFs,

with pioneer TFs being an important exception.

Functional and nonfunctional transcription factor-DNA binding

Regardless of whether one considers the widespread genomic binding of TFs to be expected

or unexpected, most researchers acknowledge that a reasonable fraction of TF binding

events are neutral or nonfunctional (i.e., they do not have a direct impact on target gene

expression levels). ChIP-seq assays do not provide any information about regulatory

function, just protein-DNA coassociation. In addition, similar to all biochemical purification

assays, ChIP-seq assays must cope with false positives and false negatives (see [156] for

what is necessary to confirm functional binding). Although functional binding events are

certainly present within the thousands of genome-wide binding events for many TFs, neutral

binding is likely to be common [135].

Thus, a major question in the TF genomics field regards how to identify functional TF

binding events within the thousands of genome-wide TF-DNA interactions. What features

distinguish functional from neutral binding? Can we use these distinctions to learn about TF-

DNA binding strategies? The data suggest that functional binding can be identified on the

basis of several distinguishing features, although these features will be influenced by the TF

under study and the experimental design.

Developmentally dynamic or clustered TF peaks have been identified as enriched for

functional binding events [157–162]. Functional analyses of TF targets in the Drosophila

embryo suggested that the strongest ChIP peaks represent functional binding, whereas lower

signal peaks do not [135]. Consistent with this model, strong ChIP peaks are more likely to

be conserved across species [161, 163, 164]. However, ChIP peak strength is a less reliable

indicator of function when monitoring binding in more heterogeneous tissues, likely because

functional binding events only occur in a subset of cells within a tissue [162].

However, caution is needed when interpreting functionality or binding affinity from ChIP-

seq signal strength. ChIP assays are usually based on the average signal across millions of

cells. Thus, a medium peak might actually be a high-affinity TFBS that is only bound in

50% of cells, whereas a strong peak might be a medium-affinity TFBS that is bound in every

cell. That is not to say that peak strength does not correlate with affinity or regulatory

function for some TFs (as there clearly can be a strong correlation [135]); however, not all

data follow this pattern. The experimental design must be considered when interpreting and

building models from in vivo genome-wide TF binding data.

The implications of the many seemingly nonfunctional binding events identified by ChIP-

seq should also be considered. As a point of clarification, discussions of ChIP-seq data often

refer to regions of strong ChIP enrichment as TFBSs, which can be misleading.

Immunopurification assays, especially those aided by crosslinking, can be rife with false

positives. Indeed, recent carefully controlled ChIP-seq studies in yeast have indicated that

many regions of the genome, especially those associated with highly expressed genes, are

hyper-ChIPable. This situation makes it difficult to discern between functional and
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artifactual ChIP signals [146, 147]. The resulting high potential for artifact-based peaks in

ChIP must be considered when interpreting ChIP-based studies.

The fact that potentially misleading ChIP signals are associated with highly expressed genes

is interesting because highly occupied target (HOT) regions also exhibit this feature [165,

166]. HOT regions are often targeted by 10 or more unrelated TFs. They generally fall in

nucleosome-depleted regions upstream of highly expressed genes. Although HOT regions

can act as regulatory enhancers, many of the binding events within HOT regions are neutral

(i.e., have no impact on gene expression patterns) and may result from nonspecific or

indirect DNA binding [167, 168]. Interestingly, HOT region binding disappears when a

modified, crosslinking-free ChIP protocol is used, suggesting that such binding could be an

experimental artifact for certain TFs [169].

Nonfunctional ChIP signals may potentially be due to the capturing of transient nonspecific

or indirect binding events in highly accessible DNA. Single-cell, single-molecule imaging

studies of the TFs Sox2 and Oct4 demonstrated that nonspecific interactions with chromatin

are central to the in vivo search for functional binding sites [170]. At physiological TF

concentrations, at least for Sox2 and Oct4, these nonspecific interactions were sampled

enough times to provide a measurable ChIP signal in a population of cells [170].

Nonregulatory protein-DNA interactions can be sequence-dependent, occurring via binding

to spurious weak matches to the TF target sequence, as a result of the low-information

motifs targeted by metazoan TFs (Figure 7D) [136]. Sequence-independent nonspecific

interactions are also possible, through interactions with other chromatin-associated proteins

or through the general electrostatic attraction between negatively charged DNA and

positively charged DBDs (Figure 7D) [171, 172].

A recent theoretical model suggested that TFs are more attracted to repeated homo-

oligomeric poly(dA:dT) and poly(dC:dG) tracts; the longer the segment, the greater the

attraction (Figure 7D) [173–175]. This variation of nonspecific binding, termed

nonconsensus binding, has also been observed in vitro [176]. It has the potential to shape

nonfunctional and functional TF-DNA interactions [173]. Thus, although nonfunctional TF-

DNA associations do not provide information about the regulatory targets of a TF, they may

provide clues to the mechanisms by which TFs find their functional binding sites across the

genome. To recognize their functional sites during this searching process, TFs are

influenced by additional variables, including direct and indirect interactions with other TFs.

Transcription factor interactions at genomic regulatory regions

A clear theme from both classical enhancer-bashing studies and newer genomics data is that

enhancers must integrate multiple TF inputs to direct precise patterns of gene expression.

How, exactly, are multiple TFs assembled at enhancers? The answer to this question is

likely to fall somewhere on a spectrum represented by two extremes: the enhanceosome

model and the billboard model.

The enhanceosome model (Figure 8A) is based on pioneering work with the interferon-β

(IFN-β) enhancer [177]. This model proposes that enhancer activity is dependent on the

cooperative assembly of a set of TFs at the enhancer. Only once the cooperative unit is
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assembled on an enhancer will cofactor recruitment cause changes in gene expression. The

cooperative assembly of an enhanceosome is dependent on protein-protein interactions and a

highly constrained pattern of TF-DNA binding sites (or binding-site grammar).

Enhancesome assembly does not tolerate shifts in the quality, spacing or orientation of the

binding site, which can disrupt protein-protein interactions and cooperativity [59, 178].

The IFN-β enhanceosome probably represents an extreme example, as few enhancers are

found under similarly stringent constraints. However, additional examples of

organizationally constrained enhancers do exist [179–184]. Spatial constraints on select

paired TF-TF coassociations and binding-site combinations are found in genome-wide ChIP

data [148, 185, 186]. Interactions between TFs can lead to cooperative DNA binding,

although this binding does not approach the extreme multifactorial cooperativity required for

enhanceosome assembly. True enhanceosome and enhanceosome-like regulatory DNA

elements are not common. It may be that they are only necessary under unique regulatory

conditions, such as for the amplification of signals at enhancers regulated by low-abundance

TFs [181] or to prevent unwanted TF synergy and ectopic enhancer activity [182].

The billboard model (Figure 8B), also known as the information display model [187, 188],

hypothesizes that although individual TFBSs are essential for enhancer activity, binding-site

grammar is very flexible. That is, the positioning of binding sites within an enhancer is not

subject to strict spacing or orientation rules because, even though the TFs collaborate to

regulate enhancer output, they do not target the enhancer as a cooperative unit. The TFs at a

billboard enhancer work together in a combinatorial fashion to direct precise patterns of

gene expression, but they do not depend on highly cooperative DNA binding to target the

enhancer in an all-or-nothing manner. For example, the loss of a cell-specific repressive

input to an enhancer will lead to ectopic target gene expression in that cell type, but will not

cause the complete collapse of enhancer function. Billboard-like combinatorial binding is

not uncommon in genome-wide ChIP data [189, 190]. Indeed, findings from the high-

throughput dissection of mammalian enhancers suggest that the regulatory architecture of

many enhancers is quite flexible [128, 191].

Another flexible enhancer architecture model—the TF collective model—was recently

proposed on the basis of the genome-wide binding patterns of a panel of TFs that regulate

heart development in Drosophila [192, 193]. Cardiac TFs were observed to bind their target

regions in an all-or-nothing fashion, with binding driven by the collective action of many

TFs, similar to cooperative binding. Similar all-or-nothing patterns of genome-wide binding

have been seen in TFs that regulate mammalian hematopoiesis [194]. However, despite the

similarity to cooperative binding, the binding-site grammar at targeted enhancers is flexible

in the TF collective model [193].

Ultimately, the mechanisms by which multiple TFs assemble on enhancers probably fall on

a continuum between the enhanceosome and billboard extremes. Distinct TF binding

properties are better suited to different regulatory strategies. Noncooperative TF-DNA

interactions are well suited for regulating graded gene expression, which is often necessary

for homeostatic responses. Cooperative interactions are more appropriate for switch-like,

on/off expression, which is often necessary in developmental cell-fate decisions [195–197].
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The strategies employed by TFs and enhancers are subject to multiple evolutionary

pressures. In the end, no single model can accurately describe all of the rules of

transcriptional regulation.

Cellular context and transcription factor binding specificity

In multicellular organisms, gene regulatory networks are plastic, with spatial, temporal and

environmental dynamics impacting gene expression patterns. Many TFs are reiteratively

used in multiple cellular contexts, often directing the expression of distinct sets of genes.

Characterizing the influence of cellular context on genome-wide TF-DNA binding is central

to the understanding of binding specificity. Accordingly, there has recently been a dramatic

increase in the number of ChIP-seq studies monitoring metazoan TF-DNA binding across

multiple cell or tissue types [3, 162, 198–205] or across multiple environmental or signaling

contexts [129, 206–208]. Although context-independent binding (i.e., binding events shared

across multiple conditions) is common [162, 199, 204], context-specific binding is

substantial in all cases, suggesting that regulatory specificity is often achieved at the level of

TF-DNA binding. Importantly, DNA accessibility is dynamic, with important differences in

accessibility across cell types or developmental stages within a cell type [143, 209–211].

Thus, the chromatin environment is modified by cellular context, likely through the pioneer

TFs expressed in a given context, which, in turn, can impact the binding patterns of

nonpioneer TFs.

Interestingly, context-independent and -dependent binding events for a given TF often

represent distinct binding strategies. For example, estrogen receptor (ER) binding sites that

are shared between breast and endometrial cancer cell lines are associated with high-affinity

estrogen response elements (EREs), are not dependent on DNA accessibility, and tend not to

colocalize with interacting TFs [204]. By contrast, cell type-specific ER binding sites are not

associated with high-affinity EREs, fall within DNA that was accessible before ER

activation, and colocalize with interacting TFs. Whether the colocalized TFs in the cell type-

specific ER binding sites directly impact ER-DNA binding preferences, or whether they

simply generate a permissive chromatin environment, remains to be tested. Nevertheless, it

is clear that these binding sites represent a regulatory strategy that is distinct from that used

at the cell type-independent ER binding sites.

Cell- and tissue-specific genomics data have clarified that precise patterns of gene

expression result from collaboration between broadly expressed TFs and tissue-, cell-, or

developmental stage-specific TFs [3, 129, 202, 212, 213]. This mechanism for refining the

regulatory activity of a broadly expressed TF is not new to developmental biology. Indeed,

the mechanism was evident from the findings of enhancer-bashing experiments that were

performed before genomics experiments were common [214].

An interesting example of this refinement comes from two TF modules that direct the

differentiation of mouse ESCs into spinal or cranial motor neurons (Figure 9A) [215]. The

homeodomain TF Isl1 is an essential component of both modules. Homeodomain TFs Lhx3

and Phox2a determine whether a spinal or a cranial motor neuron, respectively, is generated.

Inducible expression of these two ESC programming modules revealed that Isl1 binding is

Slattery et al. Page 12

Trends Biochem Sci. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



strongly influenced by context (i.e., the presence of Lhx3 or Phox2a is required for distinct

Isl1-Lhx3 or Isl1-Phox2a composite binding sites, respectively). In this elegant experimental

model, the programming TFs were induced concomitantly by using a polycistronic

construct, in an identical cellular context (ESCs). Consequently, the observed binding

differences were not due to basal differences in chromatin structure or expressed cofactors.

The data suggested that Isl1 forms a complex with Lhx3 or Phox2a; the complex is then

recruited to context-specific enhancers with distinct binding-site grammars to direct cranial

or spinal motor neuron fate. Thus, Isl1 is necessary for both motor neuron fates, and its

genome-wide DNA targeting is refined by interactions with additional cell type-specific

TFs.

Binding that is unaffected by a cellular context can be important and may represent the

association of a TF with its canonical targets [199, 204]. For example, a variation in

context-independent binding is central to the regulatory roles of the GATA transcription

factors Gata1 and Gata2 (Figure 9B). These zinc finger proteins bind the DNA motif

WGATAA (W = A or T) and are the primarily regulators of hematopoietic stem cell (HSC)

maintenance and differentiation [216]. These factors were the subject of several recent

ChIP-seq experiments covering multiple branches of hematopoietic lineage commitment.

The studies identified substantial cell- and stage-specific GATA factor-DNA binding [213,

217, 218] and highlighted the key role that DNA-binding and non DNA-binding cofactors

play in modifying GATA-DNA binding selectivity [194, 219–221].

GATA1 and GATA2 also act at binding sites that remain bound by GATA factors when

HSCs differentiate into erythrocytes. In the GATA switch process, GATA2 (which maintains

the HSC state) is displaced by GATA1 (which promotes erythroid commitment) [216]. This

process is best characterized at autoregulatory enhancers targeting the GATA1 and GATA2

genes (Figure 9B), where the switch can have a neutral regulatory effect or can change the

direction of an enhancer’s activity (e.g., activator to repressor) [216, 222–224]. Importantly,

several ChIP-seq studies have demonstrated substantial overlap in the regions targeted by

GATA1 and GATA2 at different stages, suggesting that the GATA switch might be part of a

global mechanism during erythroid commitment [194, 218, 221, 225–227]. Thus, the

potentially widespread GATA switch mechanism is dependent on highly similar GATA

factors targeting the same DNA sequence at multiple stages of erythroid development.

Findings from the recent glut of context-specific ChIP-seq experiments demonstrate that the

context-specific regulatory activity of a TF is often adjusted at the level of TF-DNA binding.

A TF may bind and regulate the output of an enhancer in one cell, whereas it does not bind

the same enhancer in another cell. Differential binding could be regulated via DNA

accessibility or cofactor interactions; however, another mechanism is also prevalent. In

many cases, a TF (or highly similar TFs, in the case of the GATA switch) targets the same

enhancer across many cellular contexts. In these instances, changes in enhancer activity are

likely to be regulated by changes in the coactivators or corepressors that are recruited by the

bound TF, or by the action of collaborating TFs that target the same enhancer.

Selective pressures on regulatory DNA have resulted in finely tuned systems for increasing/

decreasing the transcription of a given gene, although there clearly are many routes towards
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regulating enhancer output. It seems that the only common thread in the world of TF-DNA

interactions and transcriptional regulation is that no single model is sufficient to explain all

of the mechanisms used to achieve regulatory specificity.

Concluding remarks

TFs select their genomic target sites through multiple mechanisms at various levels. Some of

these mechanisms are well understood; for instance, the determinants of base and shape

readout are known because of the many high-resolution structures that are currently

available. Models of TF-DNA binding specificity using PWMs or interdependencies

between nucleotide positions in a binding site can quantitatively describe in vitro binding.

Higher-order determinants of TF-DNA binding in vivo include cofactors, TF cooperativity

and chromatin accessibility. However, an accurate model that integrates all of the known

contributions to TF-DNA binding specificity is not yet available, because the interactions

between the various factors of in vivo binding are highly complex, dynamic and dependent

on many unknown parameters.

Thus, a simple recognition code does not exist between the amino acids of a TF’s DBD and

the nucleotides in the TFBS. It is possible that some complex code, comprising rules from

each of the different layers, contributes to TF-DNA binding; however, determining the

precise rules of TF binding to the genome will require further high-quality structural and

high-throughput binding data. Questions that remain to be determined include whether such

a multi-rule system will ever be condensed into a single code and, if so, whether such a

potential code represents the overarching principles of protein-DNA recognition or is highly

specific for TF families and the cellular conditions of their activity.
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Box 1

Outstanding questions

• Will it be possible to condense the different rules that determine TF-DNA

binding specificity (e.g., base and shape readout, cofactors, cooperativity and

chromatin accessibility) into a simple code?

• Would such a code describe overarching principles that are valid for protein-

DNA interactions in general, or would it be highly specific to a TF or a TF

family?

• If a single code cannot be defined, can a set of rules that describes binding

specificity at multiple levels be integrated into a complex, but unified, model?

• What kind of experimental data will be required to derive more accurate binding

specificity models?

• What kind of computational methods need to be developed to derive accurate

models from high-throughput genome-wide binding data?

• To what extent can higher-quality in vitro TF-DNA binding data be used to

derive more accurate binding specificity models and explain in vivo TF-DNA

binding?

• Beyond using cofactors to alter DNA binding preferences, how much impact do

variables, such as PTMs, have on TF-DNA binding specificity?

• Considering the diverse, context-specific roles of many TFs, can a single motif

ever capture a TF’s in vivo DNA binding preferences?

• Within the same cell type, how important is cell-to-cell variation in TF-DNA

interactions?

• Will single-cell genomics reinforce or rewrite current models of in vivo TF-

DNA binding?

• Beyond DNA accessibility, are there any instances in which the chromatin state

(e.g., presence of histone modifications) acts as an epigenetic specificity

determinant, or is this state primarily an effect of TF binding?
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Highlights

• TFs recognize their genomic target sites by using mechanisms at multiple levels

• Models of DNA sequence and shape can capture the in vitro TF binding

specificity

• Cofactors, cooperativity, chromatin and other factors affect the in vivo TF

binding

• No simple code combines all of the various determinants of TF binding

specificity
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Figure 1. Structure-based illustration of multiple levels of TF-DNA binding specificity
(A) The basic helix-loop-helix (bHLH) Mad-Max heterodimer (PDB ID 1nlw) binds to only

a subset of putative binding sites (blue). Some TFBSs are inaccessible due to nucleosome

formation (PDB ID 1kx5), while other accessible TFBSs are not selected by the TF.

(B) Higher-order determinants of TF binding include cooperativity with cofactors (e.g.,

Hox-Exd heterodimer; PDB ID 2r5z), multimeric binding (e.g., p53 tetramer; modeled based

on PDB IDs 2ady and 1aie [228]), cooperativity through TF-TF interactions (e.g., IFN-β
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enhanceosome; modeled based on PDB IDs 1t2k, 2pi0, 2o6g and 2o61 [16]) and chromatin

accessibility due to nucleosome formation (PDB ID 1kx5) [229].
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Figure 2. Base and shape readout contribute to TF-DNA binding specificity
(A) Base readout describes direct interactions between amino acids and the functional

groups of the bases. Whereas the pattern of hydrogen bond acceptors (red) and donors

(blue), heterocyclic hydrogen atoms (white) and the hydrophobic methyl group (yellow) is

base pair-specific in the major groove, the pattern is degenerate in the minor groove.

(B) Shape readout includes any form of structural readout, based on global and local DNA

shape features, including conformational flexibility and shape-dependent electrostatic

potential. The IFN-β enhanceosome (PDB ID 1t2k; top) varies in minor groove shape. The

human papillomavirus E2 protein (PDB ID 1jj4; bottom) binds to a binding site with

intrinsic curvature.

(C) Most DNA binding proteins use interplay between the base- and shape-readout modes to

recognize their DNA binding sites. However, the contribution of each mechanism to binding

specificity might vary across TF families. Shape readout dominates for the minor groove-

binding HMG box protein (PDB ID 2gzk; left). Base readout is a major contribution in DNA

recognition by the bHLH protein Pho4 (PDB ID 1a0a; right). Both readout modes are more

or less equally present in the DNA binding of a Hox-Exd heterodimer (PDB ID 2r5z;

center).
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Figure 3. Interplay of base and shape readout varies among TF families
(A) A heterodimer of the homeodomain proteins (PDB ID 2r5z) Hox protein Sex combs

reduced (Scr; cyan; top and center) and its cofactor Extradenticle (Exd; magenta; top and

center) binds with its recognition helices through base readout to the major groove (blue

box; bottom), whereas arginine residues of the N-terminal Scr linker read minor groove

shape and electrostatic potential as a form of shape readout (beige box; bottom).

(B) A homodimer of the bHLH protein USF (PDB ID 1an4; green and pink; top and center)

binds with its recognition helices through base readout to the E-box core-binding site (blue

box; bottom) and recognizes flanking sequences (beige box; bottom) through extended

linkers that connect the two α-helices of each USF monomer.

(C) The human papillomavirus (HPV) E2 homodimer (PDB ID 1jj4; purple and chartreuse;

top and center) recognizes with its recognition helices the half-sites of its binding site

through base readout (blue box; bottom), whereas the intrinsic curvature of the central

spacer contributes to binding through shape readout (beige box; bottom).

(D) The four DBDs of the p53 tetramer (PDB ID 3kz8; cyan, yellow, pink, and green; top

and center) bind to the major groove through base readout (blue box; bottom), whereas the

Arg248 residues recognize the minor groove through shape readout (beige box; bottom).

(E) The c-Jun and ATF-2 TFs (cyan and magenta, respectively; top and center) of the IFN-β

enhanceosome (PDB ID 1t2k) recognize the major groove through base readout (blue box;

bottom), whereas the adjacent IRF-3 TFs (green and yellow; top and center) use their His40

residues to recognize the minor groove through shape readout (beige box; bottom).
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Figure 4. Timeline of genomic approaches for experimental and computational studies of TF-
DNA binding specificity
Development of experimental high-throughput DNA binding assays (above timeline axis)

and computational DNA binding specificity models and algorithms (below timeline axis).

Further examples of these experimental approaches and computational methods are provided

in Table 1.
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Figure 5. Distinct cis-regulatory structure of unicellular and metazoan model organisms
(A) Percentages of coding and noncoding DNA in select genomes, adapted from [116].

(B) Typical regulatory structure of a Saccharomyces cerevisiae gene, with most regulatory

DNA binding sites falling within a few hundred bases of the gene’s TSS.

(C) Typical regulatory structure of a human gene, with several clusters of regulatory DNA

sites (enhancers) distal to the TSS.

For (B) and (C), green dashed lines represent activating regulatory inputs, and red dashed

lines represent repressive inputs.
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Figure 6. In vitro versus in vivo transcription factor-DNA interactions
(A) Standard and high-throughput in vitro DNA binding assays provide a motif or model

representing a TF’s DNA binding preferences.

(B) Genomic DNA sequences matching a TF’s in vitro-derived motif represent potential

TFBSs.

(C) Potential in vivo binding sites determined from a TF’s in vitro-derived motif far

outnumber the actual number of in vivo binding sites as measured by ChIP-seq. In general,

<5% of potential binding sites are identified as bound in vivo. In addition, in vivo binding
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strength does not always correlate with motif strength, and not all in vivo binding sites

contain the expected motif. Non-DNA variables, such as nucleosomes and cofactor

interactions, explain part of the difference between predicted and actual binding.

(D) Not all in vivo binding events have a regulatory impact on gene expression. Productive,

functional binding must be validated experimentally using standard reporter assays or other

measures of cis-regulatory function. In this hypothetical example, only Regions W and Y

drive gene expression that is responsive to the TF being tested.
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Figure 7. Transcription factor-DNA binding strategies
(A) Pioneer TFs can bind inaccessible, nucleosome-associated DNA sites. Pioneer factors

then create an open chromatin environment that is permissive for the binding of nonpioneer

factors (settler and migrant TFs).

(B) Settler TFs bind to essentially all accessible copies of their DNA target sites.

(C) Migrant TFs only bind a subset of their accessible target DNA sites.

(D) High- and low-affinity binding are driven by a TF’s specific DNA recognition

properties. Nonspecific binding is driven by the electrostatic attraction between negatively

charged DNA and positively charged DNA binding domains. Nonconsensus binding is

driven by the attraction of TFs to repeated homo-oligomeric tracts. Indirect binding, or

tethering, is driven by the interaction of TFs with another DNA binding factor (in this

schematic, TF’).
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Figure 8. Models of transcription factor assembly on enhancer DNA
(A) Left: The enhanceosome model is characterized by cooperative TF binding and highly

constrained binding site positioning. Right: Minor changes in enhancer sequence (i.e.,

inversion in this case, but insertions, deletions, mutations, etc., also apply) can lead to

collapse of TF assembly and enhancer function.

(B) Left: The billboard model is characterized by highly flexible binding-site grammars.

Although all TFs are important for enhancer function, TF binding and enhancer function are

not affected by significant changes in binding site positioning or orientation.
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Figure 9. Cellular context and transcription factor-DNA binding
(A) Isl1 is an essential factor in two separate embryonic stem cell (ESC) reprogramming

modules, which generate spinal (left) and cranial (right) motor neurons, respectively. The

genome-wide DNA targeting of Isl1 is markedly influenced by interaction with spinal- and

cranial-specific TFs (Lhx3 and Phox2, respectively). DNA at different loci is represented in

blue, red or black. DNA accessibility profiles of the reprogrammed stem cells resemble

brain, not ESC, accessibility profiles, suggesting that the reprogramming TFs can induce

DNA accessibility. However, this possibility remains to be functionally tested.

(B) Left column: GATA “switch” sites at the GATA2 locus remain continually bound by

GATA factors through multiple stages of erythroid differentiation. GATA2 acts as an

autoregulatory activator at these enhancers, and GATA1 is either repressive (red line) or

neutral (gray dashed line). Right column: At the GATA1 locus, DNA methylation and,

presumably, chromatin compaction prevent GATA2 from binding a “switch” enhancer in

hematopoietic stem cells. As the epigenetic environment becomes permissive, GATA2 binds

this enhancer and activates GATA1 expression. GATA1 then displaces GATA2 and acts as

an autoregulatory activator at this enhancer.
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Table 1

Computational models of protein-DNA binding specificity and high-throughput assays for generating the data

used to train and test specificity models.

(A) Computational models of protein-DNA binding specificity

Model type Model Description Refs.

Position weight matrices (PWMs) Simple probabilistic models that assume independence between
positions in TF binding sites (TFBSs) [5]

Dinucleotide weight matrices (DWMs) Generalization of PWM models that incorporates frequencies of
dinucleotides [73, 230]

Bayesian networks Flexible probabilistic models that can incorporate dependencies
between positions in TFBSs [63]

Hidden Markov models Probabilistic models that can incorporate dependencies between
neighboring positions in TFBSs [70, 231]

High-order Markov models Flexible probabilistic models that can incorporate high order
dependencies between neighboring positions in TFBSs [232]

k-mer based regression models Probabilistic models that predict the level of TF binding based on
the frequencies of mono-, di-, and tri-nucleotides [93, 233]

Markov networks Flexible probabilistic models that can incorporate high-order
dependencies within TFBSs [72]

Neural networks Flexible probabilistic models that represent TF binding
specificities using a system of interconnected, artificial “neurons” [75]

Random forest models Flexible probabilistic models that represent TF specificity using a
collection of decision trees [92]

Support vector models Probabilistic models that can incorporate complex patterns of
similarities between TFBSs [2, 31]

Variable-order Bayesian networks Flexible probabilistic models that can incorporate high-order
dependencies within TFBSs [234]

Thermodynamic/Energy-based models Models that infer DNA binding affinities by fitting
thermodynamic equations to experimental data [73, 81–83, 235–237]

Atomistic/Structure-based models Models based on known structures of TFs bound to target DNA
sites [86, 90]

Probabilistic models that incorporate structural
features

Models that incorporate structural features such as groove
geometries and helical parameters [2, 79, 91, 92]

Probabilistic models that incorporate in vivo data Models that incorporate in vivo data such as DNA accessibility,
histone modifications [238, 239]

(B) In vivo high-throughput DNA binding assays

Assay name Assay description Refs

ChIP-chip Chromatin immunoprecipitation followed by microarray hybridization [240]

ChIP-seq Chromatin immunoprecipitation followed by high-throughput sequencing [241]

ChIP-exo Chromatin immunoprecipitation with exonuclease digestion followed by high-throughput sequencing [242]

DamID DNA adenine methyltransferase identification [243]

DNase-seq DNase I cleavage followed by high-throughput sequencing [151, 244]

FAIRE-seq Formaldehyde-assisted isolation of regulatory elements, followed by high-throughput sequencing [149]

ATAC-seq Assay for transposase-accessible chromatin using high-throughput [152]
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(C) In vitro high-throughput DNA binding assays

Assay name Assay description Refs

B1H Bacterial one-hybrid [102, 245]

PBM Protein binding microarray [94, 246]

CSI Cognate site identifier [247]

MITOMI Mechanically induced trapping of molecular interactions [101, 248]

MEGAshift Microarray evaluation of genomic aptamers by shift [249]

TIRF-PBM Total internal reflectance fluorescence protein-binding microarray [103]

Bind-n-Seq Analysis of in vitro protein-DNA interactions using massively parallel sequencing [250]

SELEX-seq/HT-SELEX Systematic evolution of ligands by exponential enrichment, followed by high-throughput
sequencing [1, 82, 110]

EMSA-seq Electrophoretic mobility shift assay followed by deep sequencing [95]

HiTS-FLIP High-throughput sequencing - fluorescent ligand interaction profiling [108]

gcPBM Genomic-context protein binding microarray [2]
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