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Abstract

Brain activity observed at many spatiotemporal scales exhibits a 1/f-like power spectrum,

including neuronal membrane potentials, neural field potentials, noninvasive

electroencephalography, magnetoencephalography and functional magnetic resonance imaging

signals. A 1/f-like power spectrum is indicative of arrhythmic brain activity that does not contain a

predominant temporal scale (hence, “scale-free”). This characteristic of scale-free brain activity

distinguishes it from brain oscillations. While scale-free brain activity and brain oscillations

coexist, our understanding of the former remains very limited. Recent research has shed light on

the spatiotemporal organization, functional significance and potential generative mechanisms of

scale-free brain activity, as well as its developmental and clinical relevance. A deeper

understanding of this prevalent brain signal should provide new insights and analytical tools for

cognitive neuroscience.

A student entering neuroscience today might learn about the irregular, Poisson-like firing in

cortical pyramidal neurons on the one hand, and the plethora of brain oscillations on the

other hand. Both are well-established neuroscience phenomena: the former from single- or

multi- unit recordings of neuronal spiking, the latter from recordings of brain electrical field

potentials such as local field potentials (LFP), electroencephalography (EEG) and

magnetoencephalography (MEG). Why is it that one modality has emphasized irregular

patterns of neural activity, while the other has emphasized oscillatory patterns? In fact,

regular, rhythmic neuronal firing patterns do exist in cortical excitatory neurons; they are

just less common [1-3] (Fig. 1A). Irregular, arrhythmic (see Glossary) field potential activity

patterns also exist (Fig. 1B), and actually account for the majority of the signal power

recorded in LFP/EEG/MEG experiments (Fig. 1C), but are much less studied than brain

oscillations. In this article I will focus on what we currently know about this prevalent,

arrhythmic component of brain field potentials, and identify several urgent questions in this

research field.
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Brain Oscillations vs. Scale-free Brain Activity

Brain oscillations are recurring patterns of brain activity that follow a particular temporal

beat. For example, the first discovered EEG rhythm, the occipital alpha wave, proceeds at

roughly 10 cycles per second [4]. Thus, brain oscillations are most easily identified in the

frequency domain, as their power spectra contain peaks at the corresponding frequency

ranges (arrows in Fig. 1C). There are a number of brain oscillations at different frequency

ranges, each with their own underlying mechanisms and functional roles [5-8].

At the same time, it is well known that the power spectrum of brain electrical field potentials

contains a predominant “1/f” component; that is, power tends to fall off with increasing

frequency following a power-law function: P ∝ 1/ fβ, where P is power, f is frequency, and β

is a parameter (typically in the range of 0 ~ 3) named the “power-law exponent”. A power-

law function is indicative of scale-invariance (see Glossary), which suggests that no

particular time scale or frequency dominates the dynamics. Hence, the brain activity

contributing to this 1/f slope in the power spectrum is devoid of periodicity (i.e., being

arrhythmic; see Box 1). Accordingly, we have recently named it “scale-free brain activity”

in reference to its scale-invariant nature [9]. (Note that white noise, including Poisson firing

patterns, is a special case of arrhythmic activity, in which case β equals 0 and power is

constant across different frequencies.) A power-law distribution of the power spectrum is

characteristic of the temporal dynamics of brain activity at many different observational

levels: It has been described in the fluctuations of neuronal membrane potentials [10, 11],

LFP [12] and invasive EEG (i.e., electrocorticography, ECoG) signals [9, 13-15], scalp-EEG

and MEG recordings [16], and functional magnetic resonance imaging (fMRI) signals

[17-19] (see Box 2). In addition, the amplitude fluctuations of narrow-band brain

oscillations in EEG/MEG recordings exhibit prevalent scale-free dynamics [20]. A power-

law distribution has also been reported in the statistics of neurotransmitter release [21] and

neuronal firing [22], where it has been more controversial (e.g., [1-3, 11, 23]). Lastly,

fluctuations of human behavioral output such as reaction time, hit rate and force have often

been found to exhibit a 1/f-like power spectrum as well [24-28].

In a power spectrum, brain oscillations appear as bumps on top of this 1/f slope (Fig. 1C)

(the bumps may be difficult to detect in a log-log plot if the amplitude of brain oscillations is

much smaller than that of the 1/f slope at the corresponding frequency range). For decades,

brain activity contained in the “1/f” slope has been deemed unimportant and was often

removed from analyses in order to emphasize brain oscillations. However, in recent years,

increasing evidence suggests that scale-free brain activity contributes actively to brain

functioning. Computational modeling work has further shed light on how the irregular,

Poisson firing of cortical pyramidal neurons might combine in a recurrent network to

contribute to the distinctive “1/f” shape of the brain field potential power spectrum. Initial

evidence has also emerged suggesting changes in scale-free brain activity during

development [29, 30], sleep [31], and under various neurological and psychiatric disorders

[32-35]. These recent advances argue that contrary to being a form of noise, scale-free brain

activity in non-invasive recordings such as EEG and MEG provides a window onto the

population activity of the cortical pyramidal neurons.
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Scale-free Brain Activity is Not Unstructured Noise

1/f-type temporal dynamics are prevalent not only in the nervous system, but also in nature

at large [36, 37]. The ubiquity of scale-free dynamics in a wide variety of systems was often

taken as evidence that these dynamics lack functional specificity, as exemplified by the

colloquial name “1/f noise.” To a large extent, the historical neglect of scale-free brain

activity is due to this deflationary interpretation of scale-free dynamics. However, it is

important to keep in mind that the power spectrum is only a second-order statistic; similarity

of the power spectrum does not indicate similarity in higher-order statistics beyond the

power spectrum. In other words, diverse generative mechanisms in a variety of systems can

give rise to scale-free dynamics with very similar power spectral shape, but the fine

structures within these dynamics may differ across systems, providing clues about the

underlying generative mechanisms [9].

To illustrate this point, in a previous study [9], we examined higher-order statistics of human

ECoG signals during the awake, resting state (continuous recordings for 19 ~ 83 min), as

well as continuous earth seismic waves (Univ. of Nevada, Reno seismic network, for ~4

months) and stock market fluctuations (daily price of Dow-Jones index for ~80 years). All

three signals exhibited a power spectrum close to the form of P ∝ 1/f2. For lack of an

established meaningful index of higher-order statistics in the context of scale-free dynamics,

we borrowed an approach from the field of brain oscillations – nested frequencies [38],

which characterizes the dependence between the phase of a low-frequency component and

the amplitude of a high-frequency component. This approach revealed prominent nested-

frequency patterns within all three types of signals, which were absent in a simulated

random walk that shared an identical power spectrum. Interestingly, nested-frequency

patterns were systematically different between brain activity, earth waves and stock market:

While the preferred phase (see Glossary) of nested-frequency patterns within brain ECoG

signals concentrated around 0 and ±π (corresponding to the peak and trough of the low-

frequency fluctuation, respectively), those in earth seismic waves concentrated around ±π/2

(corresponding to upward and downward shifts in seismic activity). By contrast, there was

no dominant preferred phase in stock market fluctuations. These results suggest that despite

very similar power spectral shape (power-law scaling with an exponent β ≈ 2), the

arrhythmic ECoG signal, the earth seismic waves, and the stock market fluctuations each

contain specific higher-order statistical structures that differ from each other. These analyses

provided the first clues that, contrary to the negative connotations of the term “1/f noise,”

scale-free brain activity contains rich, specific temporal structures.

Beyond Nested Frequencies

Nonetheless, what do these nested-frequency patterns in scale-free dynamics mean? Nested-

frequency analysis necessitates filtering the broadband signal in different frequency ranges

and extracting the phase and power of a lower- and a higher-frequency band, respectively.

While it is straightforward to characterize the phase and power corresponding to rhythmic

brain oscillations, the interpretation of phase and power extracted from filtered arrhythmic

signals requires more caution. Although we avoided narrow-band filters with steep roll-off,
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which are prone to ringing artifacts in the time domain (see Supplementary Note in [9]), an

intuitive interpretation of this finding remained elusive.

Indications of the potential mechanisms of these results emerged when the surface Laplacian

transform was applied to ECoG data before nested-frequency analysis was carried out.

Under Laplacian transform, the signal from each electrode is subtracted by the mean of its

four nearest neighbors, such that the transformed signal represents local vertical current flux

and approximates transcortical recording (i.e., cortical-surface recording referenced to the

underlying white matter) [39]. By contrast, in our previous analysis and other studies on

nested frequencies in ECoG signals [9, 38, 40, 41], an average-reference or bipolar montage

was used, whereby the polarity of the transformed signal depends heavily on the activity of

the reference. Interestingly, after Laplacian transform, the preferred phase in most nested-

frequency pairs clustered only around ±π (as opposed to the original finding of preferred

phases around 0 and ±π), corresponding to the trough of the low-frequency fluctuation (Fig.

2A). The exceptions are 1-Hz and <0.5Hz bands (Fig. 2A, two leftmost columns), where the

preferred phase was between 0 and π, i.e., on the negative shift, consistent with known

physiology of the slow cortical potentials (SCPs) represented in this frequency range [39,

42-44]. This pattern was similar during slow-wave sleep (not shown), except that the

preferred phase in the SCP range moved close to 0 (corresponding to the peak of the low-

frequency fluctuation), which was likely due to the contamination by up-and-down states

(UDS) during deep sleep (for the difference between UDS and SCP see Supplementary Note

3 in Ref [39]). The concentration of preferred phase around ±π after Laplacian transform can

be explained by negative field potential transients (nFPs) observed in the raw ECoG signals

(Fig. 2B). In the frequency domain, these sharp negative transients produce realignment of

phase at ±π across many frequencies and, simultaneously, increase of power across many

frequencies (as demonstrated in Refs [45, 46]), thereby producing nested-frequency patterns

with preferred phase around ±π. Strikingly, a similar time-domain-based account can be

provided for the nested-frequency patterns in earth seismic waves. Seismic waves are

dominated by step functions due to the collision of tectonic plates [47] which, in the

frequency domain, would realign the phase of many different frequencies at ±π/2.

In summary, the above considerations illustrate an account of the nested frequencies based

on time-domain waveforms that have more straightforward mechanistic explanations.

Broadly speaking, with the exception of event-related potential (ERP) analyses, the standard

interpretation of continuous neuroelectrical data has been dominated by frequency-domain

methods that decompose a broadband signal into many different frequency bands. In the

case of a genuine brain oscillation (e.g., [48]), such an approach is straightforward, effective

and intuitive. However, this approach is often applied to broadband brain activity without

first assessing the occurrence of brain oscillations, in which case any extracted narrow-band

signals may have no real biological underpinning whatsoever (see, e.g., Supplementary Note

in Ref [9]). In this context, it is especially enlightening to ponder that the artificiality of

using a series of sinusoids to reconstruct any time series may have played a large role in

Lagrange’s rejection of Fourier’s paper in 1807. It took Fourier some 15 years to eventually

publish his work [49] – a fact that should bring some measure of perspective and consolation

to present-day scientists. Since classic signal processing methods were developed in

engineering fields with the goal of analyzing narrow-band oscillations [49], going forward,
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development of time- and/or frequency- domain-based methods to capture the fine structures

within arrhythmic, broadband signals will likely prove fruitful in the investigation of scale-

free brain activity (for an example see Ref [46]).

Functional Significance of Scale-free Brain Activity

Research on the functional roles of scale-free brain activity is just beginning. Nonetheless,

there are several tantalizing lines of evidence suggesting that it may be intimately related to

brain functioning.

First, the broadband (roughly 5 ~ 200 Hz) power of LFPs has been shown to correlate tightly

with population neuronal firing rates in both human and macaque [14, 46]. Ray and

Maunsell [46] presented an impressive dissociation between scale-free brain activity and

brain oscillation in the same frequency range, using LFPs recorded from the primary visual

cortex (V1) of awake macaques. As they increased the size of the visual stimulus, both

population firing rate and broadband power in the gamma frequency range decreased, while

the power of narrow-band gamma oscillation increased. Hence, in this context, the

broadband, arrhythmic activity, but not gamma oscillation, correlated with neuronal firing

rate. Given the tight relationship between broadband power and population firing rate, it

might not come as a surprise that broadband power, especially in the gamma frequency

range (30 ~ 200 Hz) where it is less obscured by prominent oscillations in the theta, alpha

and beta ranges, demonstrates remarkable task specificity across a diverse range of tasks,

including visual stimulation [50], finger movement [51], speech production [52], movie

viewing [53] and default-mode functions such as autobiographical judgment [54, 55].

Second, multiple studies have demonstrated that the steepness of the 1/f-like power

spectrum, quantified by the power-law exponent β, can be modulated by sensory stimuli or

task performance. A study using intracellularly recorded membrane potentials in cat V1

found that the power-law exponent in the high-frequency range (75 ~ 200 Hz) could be

modulated by the spatial and temporal correlation statistics of the visual input [11]. Using

ECoG recordings in humans, it was observed that the power-law exponent β in the low-

frequency SCP range (<4 Hz) decreased during a visual detection task of unpredictable

stimuli [9]. Since the power spectrum is equivalent to the Fourier transform of the

autocovariance function (“Wiener-Khinchin theorem”), a reduced power-law exponent

indicates shorter/weaker autocorrelation in the time domain. Speculatively, this reduction of

temporal autocorrelation (i.e., redundancy) in the ECoG signals during task may be

consistent with the need for more efficient online information processing.

Third, given the correlation between SCP and fMRI signals [39, 42, 56, 57], it is reassuring

that a similar phenomenon was observed in the fMRI signal, namely that the power-law

exponent β decreases during performance of a visual detection task as compared with rest

[17]. Interestingly, this change was found in both activated and deactivated brain regions,

suggesting reduction of temporal autocorrelation in both. This finding has recently been

extended to a working memory task: As cognitive load was enhanced, the power-law

exponent was further reduced (Chang, He & Duyn, HBM meeting, 2012), paralleling a

similar observation in the fluctuations of human behavioral performance [58]. The whole-
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brain coverage of fMRI further allowed elucidation of the variation of β across brain

networks, which was found to be largest in the default network, saliency network and visual

cortices, and smallest in subcortical and motor regions [17, 30]. Interestingly, the brain

regions with a larger β were also more expensive in their glucose metabolism [17]. These

results suggest that the degree of autocorrelation within fMRI signals varies across resting-

state networks and seems to increase with higher resting metabolism.

Lastly, as mentioned earlier, the amplitude fluctuations of brain oscillations also exhibit

scale-free temporal dynamics [20, 59]. Recently, intriguing evidence has emerged showing

that across subjects, the scaling exponent of EEG/MEG signal amplitude fluctuations

correlated with the scaling exponent of behavioral output [26, 27]. These observations

extended the behavioral correlations of scale-free brain activity from the within-individual to

the across-individual domain.

Generative Mechanisms of Scale-free Brain Activity

What are the generative mechanisms of scale-free brain activity? In this section, I will first

focus on existing computational modeling studies on the power spectral shape of invasively

recorded LFP and ECoG signals, and then describe the discrepancy of the power-law

exponent observed across modalities (ECoG/LFP vs. EEG, MEG and fMRI) and the

intriguing questions posed by these findings.

Modeling the power spectrum of ECoG and LFP activity

Studies investigating the power spectrum of ECoG and LFP signals have reported very

similar values for the power-law exponent, which is typically in the range of 2 ~ 3 [9, 12, 13,

15]. Similar power-law exponents were also found in the power spectrum of neuronal

membrane potential fluctuations [10, 11]. In particular, two studies using human ECoG,

focusing on the relatively low (from <0.01 to 100 Hz) [9] and relatively high (10 ~ 500 Hz)

[13] frequency ranges respectively, have reported strikingly similar exponents in the middle-

frequency range: β = 2.44 in the range of 1 ~ 100 Hz in the first study, and β = 2.46 in the

range of 15 ~ 80 Hz in the second study. The close alignment of these numbers exemplifies

the robustness of the power-law distribution.

In addition to this middle-frequency range, Miller et al. [13] found a transition to β ≈ 4 in

the high-frequency range above 75 Hz, suggesting that power declines faster with increasing

frequency in this range. They proposed a simple model that can explain the power spectral

shape, which utilizes the convolution of two exponentially decaying functions representing,

respectively, the post-synaptic current and the membrane leak. An exponentially decaying

function (see Glossary) in the time domain is characterized by a “Lorentzian” function in the

frequency domain of the form: P ≈ constant for f << f0; and P ∝ 1/f2 for f >> f0, where f0 is

the “knee” frequency. The “knee” frequency is directly related to the time constant (τ, see

Glossary) of the exponential decay such that f0 = 1/ (2πτ). Recalling that convolution in the

time domain is equivalent to multiplication in the frequency domain, the resulted power

spectrum from this model is thus the multiplication of two Lorentzian’s, following the form:

P ≈ constant for f << f1; P ∝ 1/f2 for f1 << f << f2; and P ∝ 1/f4 for f >> f2, where f1 and f2
are two “knee” frequencies determined by the time constants.
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Determining the locations of f1 and f2 may shed light on the underlying generative

mechanisms of arrhythmic brain activity. While Miller et al. found f2 to be around 75 Hz,

their data do not reveal the location of f1 in the lower frequency range. This information is

provided in the study by He et al. [9], which found f1 to be around 1~2 Hz. Together, these

results suggest the existence of two time constants: one around 2~3 ms, another around 100

ms. At present, the origins of these time constants remain a speculation. One possibility is

that the 2~3 ms time constant originates from synaptic current, and the ~100 ms time

constant from membrane leak [13]. An alternative possibility is that the ~100 ms time

constant comes from the slow NMDA synaptic current [60, 61], and the membrane leak time

constant can be as short as 2~3 ms during active synaptic activity [62]. Adjudication

between these two scenarios will require future experiments, such as blocking NMDA

signaling and examining the resulting change in the power spectrum of field potentials.

Interestingly, He et al. found that at the very low frequency range, below a “shoulder” of

0.1 ~ 1 Hz where power is relatively flat, the power spectrum again follows a form close to

P ∝ 1/f2 (see Fig. 1 in Ref [9]). Potential generative mechanisms for this low-frequency

behavior have recently been explored in a recurrent network model (Chaudhuri, He &

Wang, Cosyne meeting, 2014). It was found that a recurrent network of rate-based nodes

with linear couplings and random connectivity, when poised near criticality (i.e., with

balanced excitation and inhibition), could reproduce the low-frequency behavior of the

ECoG power spectrum. In such a network, the network recurrent activity produces one or

more very slow time constants, whose corresponding “knee” frequencies are below that so

far investigated empirically (0.003 Hz [9]). Moreover, reducing the spatial correlation of the

inputs to different nodes resulted in a flattening of the power spectrum, similar to that

observed in human ECoG and fMRI data during task performance [9, 17]. Thus, this

network naturally converts spatial correlation into temporal correlation, providing support

for a previous proposal that decoupling among neuronal groups might underlie the reduction

of power-law exponent during task [17].

This low-frequency range of the ECoG activity (i.e., the SCP) bears significant resemblance

to persistent neural activity [63, 64]. As with persistent neural activity, both network and

cellular mechanisms may be at play in generating the SCP. In particular, future studies

should investigate potential contributions by slow cellular and neuromodulatory

mechanisms, such as metabotropic glutamate receptors [65], endocannabinoid signaling

[66], and the cholinergic pathway [67]. Under anesthesia or deep sleep, the presence of UDS

may also contribute to the power spectral shape of LFP and ECoG signals [68]. In addition,

the effect of different network topology on the power spectrum should be further explored.

Of note, two recent computational modeling studies found that network multistability caused

by clustered connections or inhibitory neurons is conducive to producing slow fluctuations

in population activity [69, 70].

Lastly, a separate class of models has attributed the 1/f-type power spectrum of neuronal

membrane potentials and EEG signals to the low-pass filtering effect of the cable properties

of neuronal dendrites [71, 72]. In-depth treatment of this literature is beyond the scope of

this Review. Interestingly, this class of models predicts higher power-law exponents for

neuronal membrane potentials than for the EEG signals (Pettersen et al., arxiv.org/abs/
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1305.2332). With the assumption that the noise-generating membrane currents themselves

obey a power law with an exponent of 1, this theory predicts a 1/f-type power spectrum for

the membrane potentials with an exponent of 2.6, roughly in accordance with empirical

literature [10, 11]. For the EEG, the power-law exponents are predicted to be in the range of

1 ~ 2.5 depending on the considered frequency region and dendritic lengths; this is in

qualitative agreement with experimental observations [16, 73].

Differences between Power-Law Exponents of Signals from Different Recording Modalities

Dehghani et al. investigated the power spectrum of simultaneously recorded scalp-EEG and

MEG signals [16] in human subjects under quiet wakefulness. They found that the power-

law exponent of scalp-EEG signals varied from 1 to 2 across the scalp in the frequency

range of 0.1 ~ 10 Hz, with a mean of 1.33 ± 0.2 (± s.d). Interestingly, the power-law

exponent of MEG signals was systematically smaller in the same frequency range (i.e., the

power spectrum was flatter), with a mean of 1.06 ± 0.3 after correcting for noise. Using data

acquired in our laboratory, we have observed a similar difference between the power-law

exponents of EEG and MEG signals, with EEG signals having systematically steeper power

spectra than MEG signals (Hill, Li & He, unpublished data). Lastly, several studies have

found the power-law exponent of fMRI signals in the gray matter to be mostly in the range

of 0.5 ~ 1 (assessed for <0.1 Hz frequency region), with a mean across brain regions being

close to 0.8 [17, 19].

The differences between the power-law exponents of these different signals should be an

important topic for future research. In particular, they may hold clues to the underlying

generative mechanisms of arrhythmic brain activity recorded in these different modalities. A

direct comparison between the fMRI signal and the other imaging modalities is difficult as

the fMRI signal is subject to neurovascular coupling – a process that we still do not fully

understand. However, the difference between EEG and MEG signal exponents is intriguing,

and may constitute evidence for frequency-dependent filtering in the extracellular medium

[16], although this remains a subject of debate [72, 74]. Lastly, since EEG and ECoG record

very similar signals, the relatively large difference between their power-law exponents (1.5

vs. 2~3) may be due to signal summation and filtering by the dura, skull and scalp in scalp-

EEG.

Relationship with Amplitude Fluctuations of Brain Oscillations and

Neuronal Avalanches

In this Review, I have focused on scale-free dynamics in the raw fluctuations of broadband

(from < 0.01 Hz to ~ 500 Hz) electrical and magnetic signals from the brain, as well as the

low-frequency (<0.5 Hz) activity recorded in fMRI. As mentioned above, the amplitude

fluctuations of narrow-band brain oscillations also exhibit scale-free dynamics [20];

moreover, a recent burgeoning literature has demonstrated the functional [26, 27, 59],

developmental [29], and clinical [34] relevance of this phenomenon. Future studies should

investigate the relationship between broadband scale-free brain activity and scale-free

dynamics in narrow-band amplitude fluctuations. Such a potential link is especially
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tantalizing given the prevalent phase-amplitude coupling in brain electrical signals [9, 75,

76].

Recent empirical [27] and theoretical [77] work has also linked scale-free dynamics in

narrow-band amplitude fluctuations with neuronal avalanches. Neuronal avalanches refer to

the phenomenon that the propagation of negative sharp transients in LFPs follows a power

law in its spatial and temporal distributions [78, 79]. Recalling the discussion above that

these negative sharp transients in field potentials (nFPs) are likely a major contributor to

nested frequencies in broadband scale-free activity, it is tempting to speculate a potential

connection between scale-free brain activity and neuronal avalanches.

A comprehensive theoretical framework that incorporates broadband scale-free activity,

scale-free dynamics in narrow-band amplitude fluctuations, and neuronal avalanches will

surely be rewarding and may not be far in sight. Encouragingly, recent empirical and

modeling studies have pointed to the “critical” role of balanced excitation and inhibition in

the genesis of all three phenomena (Chaudhuri, He & Wang, Cosyne 2014)[77, 80, 81].
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Glossary

Brain
oscillations

Brain activity patterns that recur with a particular temporal frequency.

Arrhythmic Without a predominant temporal frequency, often used

interchangeably with “aperiodic” and “irregular”.

Scale-invariance A property referring to the lack of a characteristic scale. Its adjective

“scale-invariant” is used interchangeably with “scale-free”. Scale-

invariance can manifest in either temporal (as in “scale-free

dynamics”) or spatial (as in “fractal geometry”) domain.

Mathematically, scale-invariance is characterized by a power-law

distribution of the temporal/spatial power spectrum.

Exponentially
decaying
function

, where X is a time-varying function and λ is the decay

rate. It is called “exponentially decaying” because the solution to this

function is: X (t) = X0e−λt. Convolution of two exponential functions

can be written as:  and . In the context

of the present discussion, V could approximate neuronal membrane

potential, and I the postsynaptic current.

Time constant The time constant of an exponentially decaying function is defined as

the reciprocal of the decay rate: τ = 1/λ. It is also directly related to
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the knee frequency in the power spectrum: . Importantly,

time constant is an entirely different concept from the “time scale” of

an oscillation. The time scale of an oscillation is characterized by the

reciprocal of its characteristic frequency. By contrast, the time

constant of an exponentially decaying function describes how fast the

system returns to baseline, and does not imply the existence of

periodicity at all.

Preferred phase
in nested
frequencies

The phase of the lower-frequency fluctuation at which the amplitude

of the higher frequency is the largest.
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Box 1

Could Scale-free Brain Activity Be Produced by the Sum of Many
Oscillations?

Could a 1/f-type power spectrum be the result of a summation over many narrow-band

oscillations, where the amplitude of an oscillation is inversely proportional to its

frequency? While mathematically possible (indeed, it is the basis of Fourier transform),

in the context of the brain, such a perfect line-up of many generators at each frequency

with a perfectly scaled amplitude would seem to be magic instead of biological reality. In

particular, we know that when oscillations do exist, they often manifest as “bumps” on

top of the 1/f slope in the power spectrum (see Fig. 1B-C). In addition, because

oscillations come and go, such a “summation” account would require averaging over

long periods of time to produce a 1/f-type power spectrum. In a previous paper [9], we

showed that even with data records as short as 20 seconds, reproducible 1/f-type power

spectrum, as well as the oscillatory bumps on top of it, can be discerned. Overwhelming

results now suggest that the more parsimonious and biologically realistic framework is

that there are two types of brain activity that coexist: the broadband, arrhythmic activity

and the narrow-band, rhythmic oscillations.
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Box 2

Power laws: How good is good enough?

The power-law distribution is undoubtedly one of the most controversial topics in the

recent history of modern science [36, 37, 82]. This is partly because it has been claimed

to exist in a very wide array of systems, such as earthquakes, finance and solar flares – to

name but a few, sometimes without critical examination [83]. The power-law distribution

has been used to describe three different types of functions. Unfortunately, the

discussions of power laws have often lumped them together indiscriminately. These

functions include:

1) Probability function (i.e., normalized histogram), which describes the frequency/

occurrence of a variable x as a function of its size or rank k: Px(k) ∝ 1/kβ. Examples

of this category include the famous Zipf’s law and neuronal avalanches [79].

2) The relationship between two variables: y ∝ xβ. A well-known example of this

class of power laws is the allometric scaling law in biology, where a biological

variable (Y) scales as a function of body mass (M): Y ∝ Mβ[84].

3) The temporal or spatial power spectrum: P(f) ∝ 1/fβ. In the case of the temporal

power spectrum, a power-law distribution is indicative of scale-free dynamics [37] –

the subject of this Review. In the case of the spatial power spectrum, a power-law

distribution is indicative of fractal geometry [85], such as the shape of coastlines and

mountain ranges and the famous Mandelbrot set.

There have been two extremes of attitude toward power laws. On the one hand, a school

of physicists were eager to seek a universal law of nature and saw the power-law

distribution as a signature that unites everything and provides an opportunity for deriving

a law that explains “how the nature works” [36]. Under this mind set, a simple model that

produced a power-law distribution was sometimes implicated as explaining all power-law

distributions across widely different systems. However, as has been stressed here and

elsewhere, diverse generative mechanisms can give rise to an identical power-law

distribution [9, 82, 86]. Moreover, in the case of scale-free dynamics, an identical power

spectrum between two signals does not imply that they share other, higher-order

statistical structures [9]. On the other hand, perhaps due to the “universal” quality that

was erroneously attached to the power-law distribution, many biologists including

neuroscientists have reacted negatively towards it. Thus, it is often considered that the

“1/f noise” is unspecific and could arise from instrument noise. However, several studies

carefully controlling for instrument noise found that it is orders of magnitude smaller in

power than the recorded brain activity, and resembles white noise much more [9, 59].

Although rigorous statistical assessment of the power-law distribution was not carried out

in all reports of such a phenomenon, a previous study applying goodness-of-fit test and

model comparisons [83] to the fMRI signal power spectrum found that the power-law

model was viable and provided better fit to the empirical data than alternative models

such as exponential and log-normal functions [17]. Lastly, given the diverse mechanisms

that can give rise to a power-law distribution, attaching a “power-law” label may not be

that important after all: biological data are messy and may never exhibit a curve as
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precise as the blackbody radiation. However, correctly characterizing the distribution of

the data is important if it may shed light on the properties and mechanisms of the signal

under study. For example, the tripartite shape of the human ECoG power spectrum

suggest that different network and cellular mechanisms may contribute to different

frequency ranges (see Modeling the power spectrum of ECoG and LFP activity). In this

sense, “scale-free” is a phenomenological, instead of mechanistic, definition. In

conclusion, overwhelming data now suggest that both brain oscillations and arrhythmic

brain activity do exist, and a theoretical framework that accommodates their co-existence

is sorely needed.
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Highlights

• Arrhythmic, scale-free brain activity is distinct from brain oscillations

• Scale-free brain activity contains rich temporal structures beyond power

spectrum

• Scale-free brain activity is relevant to task performance and arousal state

• Scale-free brain activity is altered in developmental and disease processes

• Computational modeling has shed light on its potential generative mechanisms
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Figure 1. Example rhythmic and arrhythmic activity in neuronal firing and field potentials
(A) Activity of two neurons in macaque Area 5 around motor responses. Top: Trial-

averaged spike rate histogram; the two neurons exhibit similar firing rates. Bottom: Each

tick mark in the raster corresponds to a single spike. 1-sec-long data from 20 trials are

shown for each neuron. Right: Inter-spike interval (ISI) histograms for these two neurons

within the time window indicated by the horizontal line. Neuron #1 exhibits an ISI

histogram approximating an exponential distribution – a signature of an arrhythmic, Poisson

process. Neuron #2 displays a peaked ISI distribution – an indication of rhythmic, regular

firing. Adapted from Maimon and Assad (2009) [3]. (B) Raw activity traces from three

ECoG electrodes in a neurosurgical patient. Electrodes #1 and #2 were over the left frontal

cortex, electrode #3 over left temporal cortex. Data were recorded using DC-coupled

amplifier with a 500-Hz sampling rate. Two 10-sec-long segments are shown. Arrows point

to examples of oscillations. (C) Power spectra for the three electrodes shown in B, averaged

over 83-min recording during the waking state. The spectra are presented in log-log scale,

under which a power-law distribution ( P ∝ 1/ f β ) manifests as a roughly straight line ( log

P ∝ −β log f ). Scale-free brain activity refers to the irregular, arrhythmic brain activity

contributing to this “1/f slope” of the power spectrum. Arrows point to peaks in the power

spectra corresponding to brain oscillations. Panels B and C are adapted from He et al. (2010)

[9].
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Figure 2. Nested frequencies (i.e., cross-frequency phase-amplitude coupling) in human waking
ECoG data under Laplacian transform
The Laplacian transform subtracts the signal from an electrode by the average of its nearest

neighbors, and thus represents local vertical current flux. (A) Nested-frequency patterns

across 116 electrodes in five patients. Phase was extracted from the 0.003 ~ 0.5 Hz band

(leftmost column), and four frequency bands centered at 1, 6, 11, and 16 Hz. Amplitude was

extracted from five frequency bands centered at 25, 50, 100, 150, and 200 Hz. Filters with a

smooth roll-off were used (for filter characteristics see Supplementary Note in Ref [9]). For

each frequency pair, the subplot shows a scatter-plot of all electrodes, each represented by

one dot. The ordinate value plots the cross-frequency coupling strength as assessed by the

modulation index [9, 38]. The red horizontal line (very close to the x-axis) indicates the

significance level (p < 0.05 after Bonferroni correction). The abscissa value plots the

preferred phase of the lower frequency, i.e., the phase of the lower-frequency fluctuation at

which the amplitude of the higher frequency is largest. Data are the same as published in He

et al. (2010) [9], except that the Laplacian transform, instead of an average reference, was

used. For frequency pairs indicated by the magenta rectangle, preferred phases clustered

around ±π, indicating that negative sharp transients in the time domain (B) may contribute to

the nested frequencies. (B) An example of raw ECoG activity trace containing the

appearance of negative field potential transients (nFPs) (arrow), which may underlie the

nested-frequency patterns for phases > 1 Hz (magenta rectangle in A).
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