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Abstract

The use of supervised classification to extract markers from primary flow cytometry data is an

emerging field that has made significant progress, spurred by the growing complexity of

multidimensional flow cytometry. Whether the markers are extracted without supervision or by

conventional gate and region methods, the number of candidate variables identified is typically

larger than the number of specimens (p < n) and many variables are highly intercorrelated. Thus,

comparison across groups or treatments to determine which markers are significant is challenging.

Here, we utilized a data set in which 86 variables were created by conventional manual analysis of

individual listmode data files, and compared the application of five multivariate classification

methods to discern subtle differences between the stem/progenitor content of 35 non-small cell

lung cancer and adjacent normal lung specimens. The methods compared include elastic-net,

lasso, random forest, diagonal linear discriminant analysis, and best single variable (best-1). We

described a broadly applicable methodology consisting of: (1) variable transformation and

standardization; (2) visualization and assessment of correlation between variables; (3) selection of

significant variables and modeling; and (4) characterization of the quality and stability of the

model. The analysis yielded both validating results (tumors are aneuploid and have higher light

scatter properties than normal lung), as well as leads that require followup: Cytokeratin+ CD133+

progenitors are present in normal lung but reduced in lung cancer; diploid (or pseudo-diploid)

CD117+CD44+ cells are more prevalent in tumor. We anticipate that the methods described here

will be broadly applicable to a variety of multidimensional cytometry problems.
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Analysis of flow cytometry data is usually performed in two steps. In primary analysis,

variables such as the proportion of events having given properties (e.g., percent CD3+ of

CD45+) are extracted from individual Flow Cytometry Standard (FCS) files. Secondary

analysis involves statistical comparison of the tabulated variables between groups or

treatments. Although the use of statistical classification methods to automate the extraction

of markers from raw or minimally processed FCS is an emerging field (1–4), the application

of the similar methodologies to secondary data analysis has not been exploited. Regardless

of the method of primary analysis, the number of candidate variables detected in

multidimensional cytometry data may exceed the number of specimens to be compared.

Thus, simple bivariate comparison, one variable at a time, lacks statistical power to detect

between group differences and is blind to correlations that may exist between variables.

Clearly, a multivariate approach is needed for the secondary analysis of the large number of

variables that are routinely extracted from multidimensional FCS files. When the number of

specimens is limited, the conventional approach of nonoverlapping training and validation

data sets is not feasible. In such cases, a naïve multivariate analysis may overfit the data, and

then optimistically estimate the magnitude of the association between the variables and the

group or treatment, resulting in findings that cannot be replicated. Further, small changes in

the data or classification method may change those variables are identified as significant

when intercorrelation is significant. There are a number of suitable contemporary

computational methods for variable selection and modeling, but they have fundamentally

different theoretical motivations, require tuning and can choose different variables as

"significant." Analysts who have success with one method on one data set tend to apply that

method to subsequent data sets. Thus, the results of a particular analysis may become reified

without a sense of their sensitivity to different variable selection methods or random

variation.

In this report, we propose an analysis workflow to address these issues. Given a previously

published set of variables assessed on a limited number of specimens (5), our goal is to

identify an appropriate analytical method to select variables related to a dichotomous

condition (nonsmall cell lung cancer versus normal lung), to build a model of the condition

as a mathematical function of the variables that can be used to classify subsequent

specimens and to characterize the robustness of the analysis. By focusing on a flow

cytometry data set previously analyzed using simple bivariate comparisons between tumor

and adjacent lung specimens, the present analysis will address hazards particular to flow

cytometry data: (1) highly correlated variables result in competing models that are difficult

to compare; (2) statistical tests summarized by p-values do not necessarily produce sets of

variables that reproducibly discriminate between conditions; (3) estimates of sensitivity and

specificity must be adjusted when the number of specimens is insufficient to form

independent training and testing sets. The proposed workflow, summarized here, and
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presented in detail as online Supporting Information, provides a practical approach to the

secondary analysis of multidimensional flow cytometry data.

METHODS

Terminology

Because the statistical and cytometry literature often attribute different meanings to the same

terms (e.g., parameter, sample), we have used the following terminology. A flow cytometry

assay assesses a limited number of features (e.g., forward light scatter, 525/40 fluorescence

intensity) on hundreds of thousands or millions of events (d, e.g., cells) that are typically

acquired from a limited number (n) of specimens (e.g., lung tumor specimens). Feature

expression can either be treated as continuous (e.g., fluorescence intensity of an event), or

dichotomous (present or absent on a given event). These features are then combined through

a gating process to define a number of markers (e.g., CD90+/CD44+). Variables (p) are

derived from markers as either: (1) ratios of the numbers of events having or not having

these markers as determined by a gating process (e.g., proportion of CD90+/CD44+ cells

among cytokeratin+ cells); (2) absolute number (events per volume) of events having a

given marker; or (3) the numerical value of a feature in a population of events defined by a

marker (e.g., the mean fluorescence intensity of CD90-PE among CD90+/CD44+/

cytokeratin+ events).

Acquisition of Data by Flow Cytometry

Eight-color, 11-feature data were collected for 16 paired nonsmall cell lung tumors/normal

lung specimens, plus three additional tumor specimens. All specimens were collected under

IRB approval (UPCI 99-053). Specimens, specimen processing, data acquisition, and

variable extraction using conventional (gate and region) analysis have been reported in

detail, including a MIFlowCyt checklist (5). Following artifact removal (6,7), the analysis

was focused on the comparison of stem/progenitor marker expression (CD44, CD90,

CD117, CD133) on tumor cells and cells from adjacent normal lung. After limiting the

analysis to CD45−/CD14−/CD33−/glycophorin A-cells, we subseted based on cytokeratin

expression (epithelial versus nonepithelial or pre-epithelial) and ploidy (2N vs.>2N),

yielding four classes of cells on which to assess variables (proportion of cells positive for

stem/progenitor markers, proportion with low versus high light scatter, Fig. 1). The reason

for using DNA content as a grouping variable is that, in tumor specimens, we could be

certain that the majority of aneuploid cells were of bona fide tumor origin (as opposed to

normal stromal or epithelial cells). The analytical regions in Figure 1, numbered 1–86, are

linked to variable names and descriptions in Table 1. The data for all listmode files were

analyzed using VenturiOne software (Applied Cytometry Systems, Dinnington, UK) in one

session to standardize the placement of analytical regions. Region data (event counts) were

exported to a comma-separated variable (.csv) file for statistical analysis. The data are

available to interested investigators by request to the corresponding author.

Data Analysis Workflow

We analyzed the data according to the following steps: (1) transformation and

standardization; (2) visualization and assessment of correlation between variables; (3)
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selection of significant markers and modeling; (4) characterization of the quality and

stability of the model. All of the analytic steps applied to the data in the .csv file were

performed using the open-source statistical package R (8). A diagram of the workflow (Fig.

S1) and the associated R code is included in the online Supporting Information.

Transformation and Standardization

Because the variables analyzed in this data set were proportions (e.g., proportion of

cytokeratin+ viable cells), it was necessary to address their statistical properties. First, when

a population of cells is divided into a set and its complement, the two proportions are

perfectly correlated (r = −1). Similarly, large fractions are often highly correlated. For

example, cytokeratin+ and cytokeratin negative, expressed as a proportion of nucleated

cells, are highly inversely correlated. Second, mid-range proportions (e.g., aneuploid tumor

cells as a proportion of cytokeratin positive cells) tend to be normally distributed, but

proportions that are close to 0 or 1 have asymmetric distributions over the specimens. Third,

proportion estimates on small denominators (<50 cells) are unreliable. Finally, zero

proportions do not necessarily indicate an impossible event, but, possibly, a rare, yet

informative event, especially when denominators are small. We addressed these issues by

unzeroing, stabilization, and standardization.

Unzeroing

Some numerical transformations (e.g., logarithmic) cannot operate on zeros or ones, and

some statistical classifiers perform worse on highly skewed data. We replaced zeros by a

random value between zero and one-tenth the smallest nonzero value and ones by a random

value between 1 and 1 − (1 − m)/10, where m is the largest value less than 1. Additional

details are presented in the Supporting Information.

Stabilization

Some statistical classification methods assume that the variables have Gaussian distributions

(e.g., Fisher’s linear discriminant analysis) or do not accommodate highly skewed data well.

We used the logit transform in our analysis because it is symmetric and its range is all

positive and all negative numbers. The logit and inverse logit transformations are shown in

Supporting Information Figure S2, where merits of various transformations are discussed.

Standardization

For each variable, we subtracted the mean and divided by the standard deviation, so that,

over specimens from all conditions, mean equals 0 and the observed standard deviation

equals 1. This was required because some computational algorithms are unstable when

operating simultaneously on values with multilog differences in scale.

Visualization of Data and Assessment of Correlation Between Variables

The transformed, standardized data were scanned for artifacts, influence points, and obvious

classifiers before analysis. Outliers, in the usual sense of very large (positive or negative)

values, are not present in transformed, standardized proportions. However, influence points
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(single values that induce correlations), such as clusters of 0 and 1 counts, were evident in

the data and required unzeroing as described above.

Initial Assessment of Variables for Classification

We performed comparisons of the individual variables versus the condition by t-tests and/or

rank sum tests to determine whether modeling was feasible (Table 2). Because a number of

significant differences were observed, we proceeded with the analysis. Although a small p-

value does not necessarily indicate a good classifier, if none of the p-values were significant,

we would have terminated the analysis.

Selection of Significant Variables and Modeling of Condition

We tested a number of methods in a resampling framework to determine if: (1) some

methods classify the specimens better than others; (2) there is agreement between the

methods on which variables are important; (3) there are any specimens that have particular

influence over the variables selected as important and/or coefficient estimates; and (4) the

estimated coefficients are sensitive to small perturbations in the data. We used two

resampling methods to address these issues: cross-validation and bootstrapping.

Cross-Validation

The data were partitioned into 10 disjoint subsets. At each of 10 iterations, a different subset

was set aside and modeling parameters were estimated from the other 9 subsets, pooled

together. We estimated the sensitivity and specificity, and set tuning parameters using the

set-aside test set.

Bootstrapping

In the nonparametric bootstrap (9), a sample of specimens, the same size as the original

sample specimen data set, was constructed by random draws from the original sample with

replacement. That is, once an observation was selected for the bootstrap sample, it was

replaced in the pool of eligible observations where it could be sampled again. All of the

methods were trained on the bootstrap sample, and the specimens that were excluded from

the sample (equal, on average, to (1 − 1/n)n ≈ 0.37 of the sample size, n) were treated as the

test set. These excluded samples are referred to as out-of-bag (OOB). The bootstrapping

process was repeated 500 times, each bootstrap iteration testing the full set of methods on

different training and test sets, both of which were drawn from the full sample. Once the

bootstrap iterations were completed, the average and the variability of the cross-validated

sensitivity, specificity, accuracy, selected variables, influential specimens, and estimated

coefficients of the different methods were estimated by the empirical distribution of

bootstrap estimates. Further discussion and software code appears in the online Supporting

Information.

Variable Importance

Within each bootstrap iteration, variables were chosen as either significant contributors to

the discriminator, or nonsignificant. The proportion of iterations in which a given variable

was considered significant is a measure of the robustness of its power as a discriminator.
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The correlation of selection between variables (where each variable is coded 1 if it is

selected, and 0 otherwise) was interpreted as a descriptor of structure; variables whose

selection indices are negatively correlated are possibly associated with a pathway.

Influential Observations

We also calculated the proportion of bootstrap iterations in which each test specimen was

correctly classified as tumor or normal lung. Specimens that are consistently misclassified

by one method, but not another, may indicate that a nonlinear partition may be required, or

that the specimen is dissimilar from other specimens with the same condition. A specimen

that is misclassified in close to ½ of the bootstrap iterations probably lies close to the

partition boundary.

Candidate Classifiers

We focused on three methods that reflect different philosophies of model building: diagonal

linear discrimination (DLDA), random forests, and elastic net. DLDA is frequently used in

very high-dimensional analyses; it is structurally very simple, and reduces computationally

complexity by ignoring interactions between the variables. Random forest is a

nonparametric machine learning method that itself uses a resampling method to form a

partition of the variable space that may be highly nonlinear. Elastic net is a “regularized”

version of logistic regression that is designed for stability in the presence of highly

correlated variables and has a built-in variable selection scheme. We also used the lasso

(which is a special case of elastic net), and a naïve classifier, best-single marker. All of these

methods were embedded in the bootstrap loop; all methods were applied to each bootstrap

sample, and then the results were compared. Details and code for all these methods are in

the online Supporting Information.

RESULTS

Visualization and Assessment of Correlation Within Subjects and Between Variables

Before logit transformation, centering, and scaling, we jittered 0 values to between 1/10 of

the smallest non-zero value and 0. Values of 1 were treated analogously. The intrasubject

correlation (between tumor and normal lung) on the 86 variables was measured on the 16

pairs of specimens (three tumor specimens did not have paired normal tissue). The median

of the 86 correlation coefficients was 0.22, and ranged from −0.63 to 0.87. The low mean of

the correlations indicated that an analysis based on differences within subject was unlikely

to be useful. We decided not to analyze the data as paired (tumor and normal specimens),

but to treat the specimens as independent. Scatterplots of variables (tumor versus normal)

with large coefficients indicated that many of the largest correlations (either positive or

negative) were artifactual. The distribution of the 86 × (86 − 1)/2 = 3655 pairwise

correlation coefficients (tumor vs. normal lung) is illustrated in Figure 2. A heat map and

dendrogram of the normal lung and tumor specimens in the lung data set did not

immediately indicate a dominant cluster of discriminating variables (Fig. S3). The closest

two single variables are CKN_44P (cytokeratin negative/CD44+) and CN2117N44P

(cytokeratin negative, euploid, CD117 negative/CD44+), which are highly correlated (r =

0.96) because the latter is a subset of the former.
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Initial Assessment of Variables for Classification

Table 2 displays the p-values of Student’s t and Wilcoxon rank sum tests comparing the

distributions between normal lung and tumor specimens for all of the variables, from most

significant (Student’s t) to least significant. It is seen that there are some significant

differences, so that further classification analysis is warranted, but that the distributions of

most variables in normal lung and tumor specimens are similar, so the final discriminators

are not expected to include many variables.

Sensitivity and Specificity

The sensitivity, specificity, and accuracy of the discriminators, estimated over the 500

bootstrap samples, are presented in Table 3. The bootstrapped estimates are calculated by

classifying the OOB samples (averaged over all bootstrap iterations), whereas the

resubstitution estimates are obtained by classifying the training samples (also averaged over

all bootstrap iterations). DLDA, random forests, elastic net, and the lasso produce essentially

equivalent accuracy; random forest is different from the other three in that its estimated

specificity is larger than its sensitivity. The differences between sensitivity and specificity in

these methods are more likely due to peculiarities of the example set than the methods

themselves. Best-1 accuracy is lower than the other four methods, which is not surprising,

given that it is restricted to a single variable. The bootstrapped estimates of sensitivity,

specificity, and accuracy are much less optimistic than the resubstitution estimates.

Resubstitution estimates of the operating characteristics of Best-1 were not as optimistic, but

the bootstrapped estimates were not as good as the other methods.

Figure 3 is a scatterplot of the estimates of sensitivity and specificity over all 500 bootstrap

samples for the five methods. This plot demonstrates the variability in sensitivity and

specificity that could occur when sampling from the population from which the study

sample was drawn. If there was no evaluation of the variability of estimation, then the

observed sensitivity and specificity could be any one of the graphed values, and it would not

be possible to determine how typical or atypical those estimates might be. It is seen that the

observed sensitivities and specificities (Table 3) are roughly at the modes in Figure 3.

Variables Selected

Table 4 presents the importance index of each variable on a scale of 0–500 (the number of

bootstrap iterations). The values for elastic net, random forest, DLDA, and lasso are much

larger than those for Best-1 discrimination because the total number of variables chosen over

500 bootstrap iterations of Best-1 is fixed at a total of 500. The table is ordered by the

average importance index over the five methods, where the top variables are, on average,

most important. There is a fairly large drop in importance after the fifth most important

variable, CKN_SM (cytokeratin negative, lymphoid scatter). Except for CKN_SM and

CPG2117N133P (cytokeratin+ aneuploid CD117 negative CD133+), the five most

important variables do not cluster together (Fig. S3), suggesting that they represent different

processes. Figure 4 shows the first two principal components of the top five variables. The

variables commonly chosen are mostly coherent on the average, but different methods can

be fairly discordant on the same bootstrap sample. Table 5 displays the concordance of the

five methods in choosing CKP_GT2N (cytokeratin+ aneuploid), the variable with the
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highest mean importance index, across the bootstrap samples. Even though elastic net and

lasso are similar in concept, they are discordant in 86/500 = 17.2% of the bootstrap samples.

Best-1, which is not smoothed or regularized in any way, is usually discordant with the other

methods.

Figure 5 displays the distributions of the numbers of variables selected by the different

methods across the bootstrap samples (Best-1 is not included because it always chooses

exactly one variable). As expected, the numbers of variables in the elastic net models with

the most variables were larger than similar numbers associated with the lasso (Fig. 5).

Reducing the mixing parameter α shifts the elastic net curve to the right, capturing more

variables, but not increasing the accuracy of classification (data not shown). Although

DLDA’s number of variables is smaller than the first two, it has a longer tail, describing a

few runs where over 20 variables were selected. Random forest tends to build more

parsimonious models, but also sometimes will indicate that 20 or even 30 variables are

useful in classifying specimens.

Classification of Individual Specimens

Table 6 shows the frequency with which each specimen was correctly classified (tumor or

normal lung) by each method over 500 bootstrap iterations. The column labeled c.v. is a

measure of concordance of the methods, with low coefficients of variation indicating better

concordance. All of the methods have difficulty with specimens 27 through 35.

DISCUSSION

The secondary analysis of multidimensional flow cytometry data can be daunting, in part

because there are arbitrary many ways that data can be parsed when conventional gate/

region-based analysis is used. During exploratory data analysis, such as the example

presented here, there is usually a fundamental objective that drives the analysis. In this case,

it was to discern any differences in the expression of stem/ progenitor markers between non-

small cell lung tumors and adjacent normal lung. As tumors are heterogeneous and also

contain much non-neoplastic tissue (stromal, vascular, and immune cells) our objectives

were to: (1) First, examine cytokeratin (a definitive epithelial marker) versus the stem/

progenitor markers, one at a time; and then (2) break the data into four classes (cytokeratin +

euploid, cytokeratin + aneuploid, cytokeratin negative euploid and cytokeratin negative

aneuploid) to study the light scatter properties and the coexpression of the stem/progenitor

markers in a pairwise fashion. As the latter categories are subsets of the former, it is

expected that many of the variables derived from them will be correlated. Another problem

inherent to multivariate cytometry data sets is that the number of variables (derived from

proportions of analytical regions) is great, often larger than the number of specimens. In this

example, we had 86 variables (p) and only 35 specimens (n). Conventional bivariate analysis

would require adjustment for the number of comparisons, greatly diluting the statistical

power to detect differences.

In this report, we offer an objective method to deal with multidimensional data sets where

there is the potential for highly correlated variables and where p >> n. We used five

different methods and found two, elastic net and the lasso, particularly useful for this data
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set, because they consistently chose a manageable number of variables (Fig. 5) that resulted

in excellent discrimination between tumor and normal (Fig. 4). Random forest and DLDA

were also useful and might prove superior for other data sets. Only best-1 was inadequate to

the purpose of this analysis, because it inherently chooses the single best discriminating

variable (Fig. 3). An area which was not addressed in this study is the effect of the variance

of individual measurements. As raw event counts vary between variables and between

samples, not all measured results are equally certain. Future analytical models can take this

into account.

Classifying multivariate data against known categories (tumor and normal) can accomplish

two important objectives: picking out differences of potentially biological importance for

further exploration, and model building for prospective classification of unknowns.

Requirements for accuracy are more relaxed for the first application, and considerably more

stringent if the model is going to be used prospectively to classify unknown individual cases.

In the present data set the model performed excellently for the first application, but

consistently misclassified specific individual cases (Table 6). Given that we evaluated 86

variables covering the expression and coexpression of four stem/progenitor associated

markers, the similarity in expression patterns between tumor and normal was striking (Fig.

S3), suggesting that even among the most deranged tumor cells, these proteins serve

important functions that are conserved. Among the most important markers that did

distinguish tumor and normal were those in routine use by pathologists, such as cytokeratin

+ aneuploid cells in tumors, and cytokeratin + small (low scatter), and euploid cells in

normal lung. In addition to these known discriminators, selection of which validates the

methodology proposed here, there are also several interesting leads (Table 4) such as the

expression of the stem/progenitor marker CD133 (CPG2117N133P) and the coexpression of

CD117 and CD44 (CP2117P44P). Indeed, CD133, coexpressed with the proliferation

marker Ki67 has recently been proposed as a marker of poor prognosis in non-small cell

lung cancer (19), but our comparison with normal tissue reveals a greater prevalence of

cytokeratin+ cycling CD117 negative/CD133+ cells in normal lung (chosen by all 5

methods, Table 4). Similarly coexpression of CD117, a lung stem cell-associated growth

factor receptor (20), in euploid (or pseudo-diploid) cells and CD44 a principal marker

associated with tumorigenicity in breast cancer (7,21) also distinguished tumor from normal.

Although small data sets such as ours cannot by their nature offer conclusive proof that such

markers are of mechanistic, diagnostic or prognostic significance, they provide a sound

rational for prospective studies and a model for confirmatory data analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Regions and gates used in mutivariate analysis. This example shows a lung adenocarcinoma.

Logical gates applied to each histogram are shown above the histogram frame. The “Clean

Non Heme” gate was created on CD45-/CD14-/CD33-/glycophorin A-singlet events with

DNA content ≥ 2N (not shown). The region numbers indicate the markers used for

multivariate analysis and are keyed to Table 1. CKP + cytokeratin+, CKN = cytokeratin

negative Euploid = gated on region 4 or 9. Aneuploid = gated on region 5 or 10. The euploid

and low light scatter regions were matched to tissue infiltrating lymphocytes (not shown).
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Figure 2.
Distribution of between-variable correlations in the example data set.
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Figure 3.
Specificity and sensitivity of 500 bootstrap samples.
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Figure 4.
Two most important variables versus principal component analysis discriminating between

tumor and normal lung. The plot on the left shows ability of the two most predictive

variables (cytokeratin+ aneuploid and cytokeratin+ aneuploid CD117 negative CD133+) to

distinguish between tumor and normal lung. The plot on the right shows the two principal

components of five most important variables (Table 4). Numbers refer to the specimen ID

column in Table 6. The case number indicates the frequency with which the case was

correctly classified (lower number more frequently classified correctly). [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Normolle et al. Page 14

Cytometry A. Author manuscript; available in PMC 2014 August 31.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://wileyonlinelibrary.com


Figure 5.
Numbers of variables chosen by individual method (Best-1 always chooses one variable).

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Table 1

Variable names and descriptions keyed to the analytical regions in Figure 1

REGION VARIABLE NAME DESCRIPTION (MARKER) DENOMINATOR (MARKER)

1 CKP Cytokeratin+ Singlet ≥ 2N DNA events

2 CKP_SM Cytokeratin+ lymphoid scatter Cytokeratin+

3 CKP_LG Cytokeratin +, > lymphoid scatter Cytokeratin+

4 CKP_2N Cytokeratin+ euploid Cytokeratin+

5 CKP_GT2N Cytokeratin+ aneuploid Cytokeratin+

6 CKN Cytokeratin negative Singlet ≥ 2N DNA events

7 CKN_SM Cytokeratin negative lymphoid scatter Cytokeratin negative

8 CKN_LG Cytokeratin negative > lymphoid scatter Cytokeratin negative

9 CKN_2N Cytokeratin negative euploid Cytokeratin negative

10 CKN_GT2N Cytokeratin negative aneuploid Cytokeratin negative

11 CKN_44P Cytokeratin negative CD44+ Cytokeratin negative

12 CKP_44P Cytokeratin+ CD44+ Cytokeratin+

13 CKN_90P Cytokeratin negative CD90+ Cytokeratin negative

14 CKP_90P Cytokeratin+ CD90+ Cytokeratin+

15 CKN_117P Cytokeratin negative CD117+ Cytokeratin negative

16 CKP_117P Cytokeratin+ CD117+ Cytokeratin+

17 CKN_133P Cytokeratin negative CD133+ Cytokeratin negative

18 CKP_133P Cytokeratin+ CD133+ Cytokeratin+

19 CPG2_SMALL Cytokeratin+ aneuploid lymphoid scatter Cytokeratin+ aneuploid

20 CPG290N44P Cytokeratin+ aneuploid CD90 negative CD44+ Cytokeratin+ aneuploid

21 CPG290P44P Cytokeratin+ aneuploid CD90+ CD44+ Cytokeratin+ aneuploid

22 CPG290N44N Cytokeratin+ aneuploid CD90 negative CD44 negative Cytokeratin+ aneuploid

23 CPG290P44N Cytokeratin+ aneuploid CD90+ CD44 negative Cytokeratin+ aneuploid

24 CPG2117N44P Cytokeratin+ aneuploid CD117 negative CD44+ Cytokeratin+ aneuploid

25 CPG2117P44P Cytokeratin+ aneuploid CD117+ CD44+ Cytokeratin+ aneuploid

26 CPG2117N44N Cytokeratin+ aneuploid CD117 negative CD44 negative Cytokeratin+ aneuploid

27 CPG2117P44N Cytokeratin+ aneuploid CD117+ CD44 negative Cytokeratin+ aneuploid

28 CPG2117N133P Cytokeratin+ aneuploid CD117 negative CD133+ Cytokeratin+ aneuploid

29 CPG2117P133P Cytokeratin+ aneuploid CD117+ CD133+ Cytokeratin+ aneuploid

30 CPG2117N133N Cytokeratin+ aneuploid CD117 negative CD133 negative Cytokeratin+ aneuploid

31 CPG2117P133N Cytokeratin+ aneuploid CD117+ CD133 negative Cytokeratin+ aneuploid

32 CPG2117N90P Cytokeratin+ aneuploid CD117 negative CD90+ Cytokeratin+ aneuploid

33 CPG2117P90P Cytokeratin+ aneuploid CD117+ CD90+ Cytokeratin+ aneuploid

34 CPG2117N90N Cytokeratin+ aneuploid CD117 negative CD90 negative Cytokeratin+ aneuploid

35 CPG2117P90N Cytokeratin+ aneuploid CD117+ CD90 negative Cytokeratin+ aneuploid

36 CP2_SMALL Cytokeratin+ euploid lymphoid scatter Cytokeratin+ euploid

37 CP90N44P Cytokeratin+ euploid CD90 negative CD44+ Cytokeratin+ euploid

38 CP90P44P Cytokeratin+ euploid CD90+ CD44+ Cytokeratin+ euploid

39 CP90N44N Cytokeratin+ euploid CD90 negative CD44 negative Cytokeratin+ euploid
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REGION VARIABLE NAME DESCRIPTION (MARKER) DENOMINATOR (MARKER)

40 CP90P44N Cytokeratin+ euploid CD90+ CD44 negative Cytokeratin+ euploid

41 CP2117N44P Cytokeratin+ euploid CD117 negative CD44+ Cytokeratin+ euploid

42 CP2117P44P Cytokeratin+ euploid CD117+ CD44+ Cytokeratin+ euploid

43 CP2117N44N Cytokeratin+ euploid CD117 negative CD44 negative Cytokeratin+ euploid

44 CP2117P44N Cytokeratin+ euploid CD117+ CD44 negative Cytokeratin+ euploid

45 CP2117N133P Cytokeratin+ euploid CD117 negative CD133+ Cytokeratin+ euploid

46 CP2117P133P Cytokeratin+ euploid CD117+ CD133+ Cytokeratin+ euploid

47 CP2117N133N Cytokeratin+ euploid CD117 negative CD133 negative Cytokeratin+ euploid

48 CP2117P133N Cytokeratin+ euploid CD117+ CD133 negative Cytokeratin+ euploid

49 CP2117N90P Cytokeratin+ euploid CD117 negative CD90+ Cytokeratin+ euploid

50 CP2117P90P Cytokeratin+ euploid CD117+ CD90+ Cytokeratin+ euploid

51 CP2117N90N Cytokeratin+ euploid CD117 negative CD90 negative Cytokeratin+ euploid

52 CP2117P90N Cytokeratin+ euploid CD117+ CD90 negative Cytokeratin+ euploid

53 CNG2_SMALL Cytokeratin negative aneuploid lymphoid scatter Cytokeratin negative aneuploid

54 CNG290N44P Cytokeratin negative aneuploid CD90 negative CD44+ Cytokeratin negative aneuploid

55 CNG290P44P Cytokeratin negative aneuploid CD90+ CD44+ Cytokeratin negative aneuploid

56 CNG290N44N Cytokeratin negative aneuploid CD90 negative CD44 negative Cytokeratin negative aneuploid

57 CNG290P44N Cytokeratin negative aneuploid CD90+ CD44 negative Cytokeratin negative aneuploid

58 CNG2117N44P Cytokeratin negative aneuploid CD117 negative CD44+ Cytokeratin negative aneuploid

59 CNG2117P44P Cytokeratin negative aneuploid CD117+ CD44+ Cytokeratin negative aneuploid

60 CNG2117N44N Cytokeratin negative aneuploid CD117 negative CD44 negative Cytokeratin negative aneuploid

61 CNG2117P44N Cytokeratin negative aneuploid CD117+ CD44 negative Cytokeratin negative aneuploid

62 CNG2117N133P Cytokeratin negative aneuploid CD117 negative CD133+ Cytokeratin negative aneuploid

63 CNG2117P133P Cytokeratin negative aneuploid CD117+ CD133+ Cytokeratin negative aneuploid

64 CNG2117N133N Cytokeratin negative aneuploid CD117 negative CD133 negative Cytokeratin negative aneuploid

65 CNG2117P133N Cytokeratin negative aneuploid CD117+ CD133 negative Cytokeratin negative aneuploid

66 CNG2117N90P Cytokeratin negative aneuploid CD117 negative CD90+ Cytokeratin negative aneuploid

67 CNG2117P90P Cytokeratin negative aneuploid CD117+ CD90+ Cytokeratin negative aneuploid

68 CNG2117N90N Cytokeratin negative aneuploid CD117 negative CD90 negative Cytokeratin negative aneuploid

69 CNG2117P90N Cytokeratin negative aneuploid CD117+ CD90 negative Cytokeratin negative aneuploid

70 CN2_SMALL Cytokeratin negative euploid lymphoid scatter Cytokeratin negative euploid

71 CN90N44P Cytokeratin negative euploid CD90 negative CD44+ Cytokeratin negative euploid

72 CN90P44P Cytokeratin negative euploid CD90+ CD44+ Cytokeratin negative euploid

73 CN90N44N Cytokeratin negative euploid CD90 negative CD44 negative Cytokeratin negative euploid

74 CN90P44N Cytokeratin negative euploid CD90+ CD44 negative Cytokeratin negative euploid

75 CN2117N44P Cytokeratin negative euploid CD117 negative CD44+ Cytokeratin negative euploid

76 CN2117P44P Cytokeratin negative euploid CD117+ CD44+ Cytokeratin negative euploid

77 CN2117N44N Cytokeratin negative euploid CD117 negative CD44 negative Cytokeratin negative euploid

78 CN2117P44N Cytokeratin negative euploid CD117+ CD44 negative Cytokeratin negative euploid

79 CN2117N133P Cytokeratin negative euploid CD117 negative CD133+ Cytokeratin negative euploid

80 CN2117P133P Cytokeratin negative euploid CD117+ CD133+ Cytokeratin negative euploid

81 CN2117N133N Cytokeratin negative euploid CD117 negative CD133 negative Cytokeratin negative euploid
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REGION VARIABLE NAME DESCRIPTION (MARKER) DENOMINATOR (MARKER)

82 CN2117P133N Cytokeratin negative euploid CD117+ CD133 negative Cytokeratin negative euploid

83 CN2117N90P Cytokeratin negative euploid CD117 negative CD90+ Cytokeratin negative euploid

84 CN2117P90P Cytokeratin negative euploid CD117+ CD90+ Cytokeratin negative euploid

85 CN2117N90N Cytokeratin negative euploid CD117 negative CD90 negative Cytokeratin negative euploid

86 CN2117P90N Cytokeratin negative euploid CD117+ CD90 negative Cytokeratin negative euploid
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Table 2

P-values of unpaired t- and rank-sum tests on tumor versus normal lung specimens. The 32 variables with the

smallest P-values (t-test) are shown

P-VALUES

VARIABLE T-TEST RANK SUM TEST

CKP_GT2N 0.00044 0.00099

CPG2117N133P 0.00055 0.00175

CKP_2N 0.00056 0.0014

CNG2117P44N 0.00576 0.02728

CKP_SM 0.00637 0.00934

CP2117P44P 0.01037 0.00417

CP2117N90N 0.01227 0.0113

CP2117P90N 0.01378 0.0254

CP90P44N 0.01406 0.04156

CNG2117P90N 0.02459 0.13389

CNG2117P133N 0.0254 0.32797

CN2117P90P 0.02604 0.07043

CP2117P90P 0.02838 0.02851

CN2117P90N 0.03012 0.08804

CN2117P44N 0.03157 0.02228

CP2117P44N 0.04039 0.10825

CP90P44P 0.04301 0.08205

CP2117P133N 0.04342 0.04512

CKP_117P 0.04358 0.10827

CP2117N90P 0.04361 0.07645

CKN_LG 0.04424 0.02766

CKP_LG 0.0519 0.01636

CP2_SMALL 0.05602 0.0417

CKN_GT2N 0.05917 0.08813

CN2117P133N 0.06373 0.14972

CPG2117P133N 0.06616 0.16938

CNG2117P90P 0.08081 0.35498

CP2117P133P 0.0812 0.08487

CKN_117P 0.08168 0.26727

CN2117N133P 0.09289 0.07113

CPG2117N90N 0.09721 0.16938

CKN_2N 0.14364 0.3625
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