Table 3.
E-NET | RANDOM FOREST | DLDA | LASSO | BEST-1 | ||
---|---|---|---|---|---|---|
Bootstrapped Estimates | Sensitivity | 0.696 | 0.623 | 0.691 | 0.694 | 0.659 |
Specificity | 0.659 | 0.692 | 0.617 | 0.658 | 0.548 | |
Accuracy | 0.679 | 0.654 | 0.658 | 0.678 | 0.609 | |
Resubstitution Estimates | Sensitivity | 0.895 | 1 | 0.895 | 0.895 | 0.684 |
Specificity | 0.938 | 1 | 0.875 | 0.938 | 0.750 | |
Accuracy | 0.914 | 1 | 0.886 | 0.914 | 0.714 |
Sensitivity is defined as true positives (TP)/(TP + false negatives (FN)), Specificity = true NEGATIVES (TN)/(TN + False positives (FP)), Accuracy = (TP+TN)/(TP+TN+FP+FN).