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Abstract

Epstein-Barr virus is a gammaherpes virus that is causally associated with several malignancies

and expresses multiple miRNAs in both normal and tumor cells. Since the identification of virally-

encoded miRNAs, various mRNAs have been identified as targets for regulation by EBV’s

miRNAs in host cells. We shall summarize these targets, the robustness of their identification, and

examine how the regulation of these targets by EBV contributes to the successful infection of its

host.

Introduction

Epstein-Barr Virus (EBV) is a successful human pathogen, and is now known to cause at

least 200,000 new cancers per year [1]. While initially identified in the cells of a Burkitt’s

lymphoma, much evidence has implicated EBV as causing several additional lymphomas

and carcinomas (reviewed in [2]). A new layer of virus-host interaction has emerged with

the discovery of virally-encoded miRNAs. MicroRNAs and their biogenesis have been

extensively reviewed previously [3]–[5]. Briefly, they are short (19–24 nt) single-stranded

RNA molecules that post-transcriptionally regulate gene expression by recruiting the RNA-

induced silencing complex (RISC) to target mRNAs [6]–[8]. Multiple studies using

computational and molecular biology techniques as well as deep sequencing have led to the

identification of at least 40 viral miRNAs encoded within 25 precursor transcripts [3], [9],

[10]. They are encoded within two regions of EBV’s genome: BART (Bam HI-A region

rightward transcript) and BHRF1 (Bam HI fragment H rightward open reading frame 1)

(Figure 1). The BHRF1 transcript also encodes the BHRF1 ORF, while the BART transcript

has not been confirmed to express other functional products besides its miRNAs. Since their

identification, the expression of these miRNAs has been extensively profiled in various

© 2014 Elsevier B.V. All rights reserved.
*Corresponding author: sugden@oncology.wisc.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Curr Opin Virol. Author manuscript; available in PMC 2015 August 01.

Published in final edited form as:
Curr Opin Virol. 2014 August ; 0: 61–65. doi:10.1016/j.coviro.2014.04.003.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



EBV-infected cells lines including Burkitt’s lymphomas, lymphoblastoid cell lines,

carcinomas as well as in tumor biopsies [11]–[18]. The abundance of individual miRNAs

within cell lines varies widely and is cell type specific. BART miRNAs were found to be

expressed in all types of EBV-associated latency, whereas expression of the BHRF1

miRNAs appears to be more restricted (ibid). The levels of the miRNAs measured in

carcinoma biopsies can exceed those in cell lines by more than 100-fold [18] making it

plausible that in vivo EBV’s miRNAs have more functions than found in cell culture.

MiRNAs provide a potent mechanism for EBV to modulate the cellular environment: they

are thought not to elicit an immunogenic response; they take up little genomic space; and

they also have the potential to regulate hundreds of targeted genes. Here we focus on

specific cellular processes that appear to be modulated by the currently identified targets of

viral miRNAs and explore their possible contributions to EBV’s lifecycle. We have also

used insights from HITS- and PAR-CLIP experiments to gauge the robustness of these

identifications.

Identifying and Validating Targets of EBV’s miRNAs

Leads to identifying the targets of cellular miRNAs can be found using bioinformatics

programs such as TargetScan [19]. Because these programs use the evolutionary

conservation of the seed sequences recognized in the target mRNAs in their identification,

they are not readily applicable to studies of EBV’s miRNA targets given that EBV has

evolved to infect a single host species. Therefore, validating the targets of EBV’s miRNAs

requires a set of successively more stringent tests. These include assays in which sequences

encoding the 3′ UTR of the presumptive mRNA target are ligated to luciferase as a reporter

and its regulation recorded in the presence of physiological levels of the miRNAs to be

tested. A necessary control experiment is to change the seed sequences in the 3′UTR and

demonstrate that the changes abrogate any inhibition of the luciferase activity by the test

miRNA. Finally experiments with PAR-CLIP allow identification of sites in mRNAs that

are modified by the juxtaposition of Argonaute in the RISC complex. If these sites are found

and correspond to the seed sequence recognized by an EBV miRNA, then we can conclude

that the mRNA is targeted by that EBV miRNA. Table 1 documents currently identified

target mRNAs of EBV miRNAs and the robustness of the experiments validating these

identifications. One caveat to consider is that the levels of EBV’s miRNAs in cell in culture

are far lower than in biopsies isolated from carcinomas so that studies of cells in culture may

miss many mRNAs that are targeted by EBV’s miRNAs in vivo.

EBV’s miRNAs Contribute to its Transformation of B lymphocytes

While the majority of functions ascribed to EBV’s miRNAs are to sustain latently infected

cells, several studies have expanded on their importance during the initial stages of infection

of B-cells. Mature BART and BHRF1 miRNAs were detected in primary B- cells infected

with either of two strains of EBV at two days post infection (dpi) and increased in

expression through at least the first eight dpi [13]. Cells infected with derivatives of EBV

null for the BHRF1 miRNA cluster grew more slowly when exposed to the same

multiplicity of infection relative to wild type genomes [20]–[22]. The BHRF1 cluster of
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miRNAs appeared to promote both transformation of infected cells and cell-cycle

progression [20]–[22]. In vivo studies using humanized mice to monitor EBV infection and

tumorigenesis revealed significant delays in viremia in mice infected with a derivative of

EBV lacking BHRF1 miRNAs [23]. Absence of the BHRF1 miRNAs however had no effect

on tumor formation and survival of mice relative to those infected with wild type virus [23].

Regulation of Apoptosis by EBV miRNAs

A common fate for B-lymphocytes in vivo is death by apoptosis. EBV infects B-cells and

evades apoptosis in its host cell by multiple means including its miRNAs (Table 1). The

BHRF1 miRNAs inhibited apoptosis early during infection of primary B cells and promoted

their proliferation as shown by infection with derivatives of EBV [22]. The BART miRNAs

sustained Burkitt’s lymphomas in part by inhibiting Caspase 3 [24]. The BART miRNAs

also have been reported to target the pro-apoptotic proteins PUMA (p53-upregulated

modulator of apoptosis) and Bim (BCL2L11) [25], [26]. Recent comprehensive HITS- and

PAR-CLIP analyses have identified CAPRIN2 and DAZAP2 which are involved in Wnt

signaling as targets and which may also function in apoptosis[27], [28]. In contrast, Choi

and colleagues reported that miR-BART15-3p promoted apoptosis in part by targeting

BRUCE (BIRC6), a member of the inhibitor of apoptosis (IAP) family in gastric carcinoma

cells [29]. The functional consequences of BRUCE inhibition are currently unclear but

appear inconsistent with the association of EBV with its host cell’s survival and

proliferation.

Role of EBV’s miRNAs in Immune Evasion

While EBV infects the majority of the adult population of the world, most of these

infections are asymptomatic and persist for the lifetime of the host. EBV has evolved

multiple strategies to avoid immune recognition in order to establish life-long, latent

infections in B-cells (reviewed in [30], [31]). New findings indicate that viral miRNAs also

attenuate the host’s antiviral immune response (Table 1). One of the earliest targets

identified for miR-BHRF1-3 was CXCL-11, an IFN-inducible T-cell attracting chemokine

[32]. CXCL-11 is one of the more abundantly expressed chemokines that interacts

selectively with CXCR3, a chemokine receptor expressed on T cells [32], [33]. These

findings show that viral miRNAs may contribute to immune evasion by modulating host

cytokine networks.

Nachmani et al. reported that a stress-induced Natural Killer (NK) cell ligand, MICB, was

targeted by miR-BART2-5p which could allow EBV-infected cells to escape recognition

and subsequent elimination [34]. NK cells play a critical role in detection of virus-infected

cells in part by using NKG2D receptors to detect release of molecules such as MICB, MICA

and members of ULBP family in response to viral infections ([34] and references therein). A

related virus KSHV (Kaposi’s Sarcoma-associated herpesvirus) was also found to regulate

expression of MICB through its miRNA, miR-K12-7 emphasizing the importance of

escaping NKG2D-mediated recognition and NK cell attack. Along with dampening NK cell

response, viral miRNAs may also regulate activation of the NLRP3 inflammasome and

subsequent production of pro-inflammatory cytokines such as IL-1β and IL-18 [35]. miR-
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BART15 was found to decrease expression of NLRP3 in reporter assays; its transient

transfection reduced endogenous levels of NLRP3 as well as IL-1β production following

inflammasome activation (ibid). Notably, miR-BART15 targets NLRP3 through the same

site as a cellular miR-223. Several additional targets of EBV’s miRNAs that could

contribute to viral immune evasion were identified through comprehensive PAR-CLIP

analyses and confirmed using reporter assays. Among these are SP100, LY75, PDE7A,

PELI1 though functional studies remain necessary to understand their biological

significance [28].

Conclusions

EBV is exceptional in encoding so many miRNAs. It is a successful human pathogen that

usually persists in people without causing disease. This success likely reflects its

evolutionary fitness as a virus to infect human beings. By studying EBV’s miRNAs, and

identifying their biological targets, we shall gain insights into how EBV succeeds as a

pathogen both at the cellular and organismal levels.
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Highlights

• EBV encodes at least 25 pre-miRNAs encoded within two gene clusters.

• Steady-state levels of these miRNAs vary significantly among EBV-positive

cell lines and tumor biopsies.

• Targets of EBV’s miRNAs mediate various cellular processes to promote cell

survival and proliferation.
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Figure 1. Non-coding EBV RNAs
This schematic illustration shows the locations of non-coding RNAs within EBV’s genome.

Along with the non-coding nuclear EBER RNAs, and a snoRNA [36], EBV encodes at least

25 pre-miRNAs located within two regions of the genome. The smaller subset of BHRF1

miRNAs is derived from transcripts mapping approximately between 53,000 and 56,000

bps. The majority of EBV miRNAs arise from highly spliced transcripts mapping

approximately between 139,000 and 153,000 bps. Also shown are the latent origin of

replication (OriP) and genes expressed in latently infected cells. Note: the figure is not

drawn to scale and is a linear representation of EBV’s circular genome which encompasses

approximately 165,000 bps.
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