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Abstract

Members of the Parvoviridae utilize glycan receptors for cellular attachment and subsequent

interactions determine transduction efficiency or pathogenic outcome. This review focuses on the

identity of the glycan receptors utilized, their capsid binding footprints, and a discussion of the

overlap of these sites with tropism, transduction, and pathogenicity determinants. Despite high

sequence diversity between the different genera, most parvoviruses bind to negatively charged

glycans, such as sialic acid and heparan sulfate, abundant on cell surface membranes. The capsid

structure of these viruses exhibit high structural homology enabling common regions to be utilized

for glycan binding and at the same time the sequence diversity at the common footprints allows

for binding of different glycans or differential binding of the same glycan.

Introduction

Viruses are durable nanomachines evolved to utilize an assortment of strategies to

manipulate a host cell's replication machinery for successful infection. The key initial step in

this process is the attachment to cell surface receptors. This is followed by internalization

into the cytoplasm and delivery of the viral genome to the appropriate replication

compartment; the cytoplasm for most RNA packaging viruses and the nucleus for those that

package DNA. Initial binding is often mediated by ‘attachment factors’ that concentrate the

virus on the cell surface and prime it to interact with secondary receptors or co-receptors for

internalization.

Glycans and glycoconjugates, displayed on cell surface, serve in communication as well as

primary receptors for many viruses. The variability of glycan structures expressed in

different species and in different tissues within the same species creates diversity in viral

tissue tropism [1]. Mostly, the glycoepitopes consist of negatively charged terminal sialic

acid (SIA) or sulfated oligosaccharide motifs of glycosaminoglycans (e.g. heparan sulfate

(HS)) and thus mediate electrostatic interactions with the viral capsid. The virus capsid
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receptor binding motif can be projections or depressions conformed on the assembled capsid

surface of non-enveloped viruses, or glycoproteins decorating the lipid membrane of

enveloped viruses.

The Parvoviridae, a family of ssDNA viruses, have evolved to ‘hijack’ the interaction

functionality of glycans for gaining cellular entry during infection. Receptor-mediated

attachment and entry are essential first steps in their infection [2-4]. Following an

introduction to the family, this review will discuss current knowledge on (I) glycan receptors

utilized for cellular entry and (II) mapped glycan receptor binding footprints with mention of

overlaps with transduction efficiency (for non-pathogenic members being exploited as gene

delivery vectors), and pathogenesis (for autonomous members) determinants.

The Parvoviridae

The Parvoviridae, small (∼260 Å diameter) non-enveloped T=1 icosahedral viruses,

package linear ssDNA genomes of 4 to 6 kb [5]. The family is divided into two subfamilies

based on host range: the Parvovirinae infect vertebrates and the Densovirinae infect insects

and arthropods [6]. Due to limited information on the Densovirinae with respect to receptor

utilization, this review will focus on the Parvovirinae. The Parvovirinae is further

subdivided into five genera: Amdovirus, Bocavirus, Dependovirus, Erythrovirus, and

Parvovirus, with type members Aleutian mink Disease Virus (AMDV), Bovine Parvovirus

(BPV), Adeno-associated virus serotype 2 (AAV2), Human Parvovirus B19 (B19), Minute

Virus of Mice (MVM), respectively, based on genomic architecture and protein sequence-

based phylogenetic analyses [6]. Their capsid open reading frame (cap) encodes two or three

(depending on virus) overlapping structural viral proteins (VP) which assemble the T=1

capsid [7]. The dependovirues rely on co-infection with a complex helper virus (such as

Adenovirus, Herpes Simplex Virus or Papillomavirus) for productive infection [8-13] and

are non-pathogenic. The other genera replicate independently of helper virus function

(‘autonomously replicating’) and contain nonpathogenic and pathogenic members [14-17].

The capsid structures for several parvoviruses, including the type member for each

Parvovirinae genera (Fig. 1), have been determined by X-ray crystallography and/or cryo-

electron microscopy and image reconstruction (cryo-reconstruction) (reviewed in [18,19]

and unpublished data). Despite low sequence similarity (e.g. 14% to 36% between genera),

the ordered VP region (VP2 or VP3 depending on virus) is highly conserved with a

superposable core eight-stranded β-barrel and αA helix (Fig. 1A). The tops of the loops

between these conserved regions are varied in sequence and structure (even within each

genus) and defined as variable regions (VRs) I-IX or VR1-8 for dependo and autonomous

parvoviruses, respectively [20,21]. The capsid surface is characterized by depressions at the

2-fold axes (dimple) and surrounding a cylindrical channel at the 5-fold axes (canyon), and

protrusions at or surrounding the 3-fold axes (Fig. 1B-F). A wall is located between the

depressions at the 2-fold axes and surrounding the 5-fold channel, the “2/5-fold wall” (Fig.

1B-F) [18,19]. The VRs cluster at the 5-fold axes, the 3-fold protrusions, and depression at

the 2-fold axes to create local variations of the characteristic capsid surface features

exhibited by members of each genus. Mutagenesis, biochemical, and structural studies
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demonstrate that residues in these VRs play important roles in viral life infection, including

viral-receptor binding (reviewed in [14,19,22]).

Glycan receptor utilization by the dependoviruses and capsid recognition

sites

Currently, over one hundred AAV genomic isolates have been reported [23-33], with

thirteen (AAV1-13) serotypes described for the human and non-human primate sequences.

Due to their ability to package and delivery foreign genes to different tissue types and the

lack of associated disease, AAVs are being developed and used as gene delivery vectors,

and serve as the first approved gene therapy treatment [34-40]. AAVs share ∼60 to 99%

identity and display differential cell and tissue tropisms as well as transduction efficiency in

vitro and in vivo [23,41]. For several of these viruses, cell infectivity and transduction is

reported to be dictated by the ability of their capsids to recognize cell surface glycans (Table

1) as primary attachment receptors. AAV1 binds both α2-3 and α2-6 N-linked SIA [42-44];

AAV2, AAV3, and AAV13 bind heparan sulfate proteoglycan (HSPG) [27,45-48]; AAV4

and AAV5 bind α2-3 O-linked and α2-3 N-linked sialic acids, respectively, ([42,49-52] and

our unpublished data); AAV6, a tissue culture adapted recombinant between AAV1 and

AAV2, binds both HS and α2-3 and α2-6 N-linked SIA [44,52-54], with SIA being the

determinant of transduction; AAV9 binds terminal N-linked galactose (GAL) [55,56]. The

nature of the glycosylation (if any) required for cellular recognition by AAV7, AAV8, and

AAV10-12 are not known. Thus, the human and non-human primate AAVs fall into 3

groups with respect to their glycan receptor usage: HSPG for AAV2, AAV3, AAV6, and

AAV13; SIA for AAV1, AAV4, AAV5, and AAV6; GAL for AAV9. Bovine AAV (bAAV)

utilizes terminal gangliosides, more commonly observed in glycolipids, and chitotriose, a

trimer of β1,4-linked N-acetyl-D-glucosamine, for cellular infection [57,58].

Cell binding, transduction assays, mutagenesis, and structural approaches have been utilized

to identify the capsid amino acid residues involved in receptor recognition for most of the

AAVs for which glycan receptors are known (Table 1; Fig. 2A-C), with the interaction

between AAV2 and HSPG the best characterized. Mutagenesis identified the AAV2 HS

binding footprint as five basic residues: R484, R487, K532, R585, and R588 (Fig. 2A-C),

with R585 and R588 (VP1 numbering) the most critical [45,46]. Cryo-reconstruction of the

AAV2-HS complex confirmed this binding site, as adjacent residues, at the inner wall of the

protrusions surrounding the 3-fold axis on AAV2 capsid (Fig. 2A-C) [59,60]. These residues

are located on VR-V, VR-VI, and VR-VIII. Structural and biochemical approaches

identified the HS binding site on AAV3B, a minor variant of AAV3, as R594 (in VR-VIII)

located also on the inner wall of the 3-fold protrusion but not overlapping with the AAV2

footprint (Fig. 2A-C) [61,62]. For AAV6, two separate mutagenesis studies identified two

non-adjacent residues as being important for HS recognition; K459 (VR-IV) located close to

the top of the 3-fold protrusion and K531 (VR-VI) located at the base of 3-fold protrusion

facing the 2-fold axis (Fig. 2A-C) [53,63,64]. Random capsid VP mutagenesis and in vivo

assays suggest that the SIA binding properties of AAV4 are controlled by residues K492,

K503, M523, G581, Q583, and N585. These residues are located at the top of the 3-fold

protrusion: K492 and K503 within VR-V, and G581, Q583, and N585 within VR-VIII. [65].
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Mutagenesis studies for AAV5 suggest the involvement of A581 (VR-VIII) in SIA binding

and transduction [66,67]. This residue is also located on the inner wall of the 3-fold

protrusion (Fig. 2A-C). By mutagenesis and computational molecular docking, the GAL

binding residues on AAV9 were identified as D271 (VR-I), N272 (VR-I), Y446, N470, and

W503 (VR-V) that form a pocket at the base of the 3-fold protrusion facing the 5-fold axis

(Fig. 2A-C) [56]. Residues Y466, N470, and W503, are the 3/26 reported to directly or

indirectly affect AAV9 GAL binding by AAV Barcode-Seq [68]. An analogous pocket on

AAV1 has been identified as its SIA binding site by structural mapping (unpublished data).

Residue K528 in AAV13, which is structurally equivalent to K531 in AAV6, dictates its HS

interaction [27]. Thus regardless of the glycan recognized, the 3-fold protrusion serves as the

binding region on several AAV capsids (Fig. 2A-C). These sites, mostly located in VRs,

overlap residues reported to affect the transduction properties of the AAVs (Table 1)

(reviewed in [22]).

Glycans receptor utilization by the autonomous parvoviruses and capsid

recognition sites

Pathogenic members of the autonomous parvoviruses are associated with serious diseases in

the young of the species infected and immunocompromised adults, while nonpathogenic

members establish asymptomatic but persistent infections (reviewed in [17]). The glycans

involved in cellular recognition are known for most of the type members of the autonomous

Parvovirinae, except amdovirus, and for genus parvovirus this information is available for

several members. BPV (bocavirus) binds to glycophorin A via O-linked α2,3-linked sialic

acid [69-71]. B19 (erythrovirus), a human pathogen, binds to the neutral glycosphingolipid

erythrocyte P antigen (globoside/Gb4) on erythroid progenitor cells [72,73], and another

structurally and biosynthetically unrelated glycolipid called paragloboside

(neolactotetraglycosylceramide or nLc4) [74]. However, Kaufmann and coworkers [75]

reported that recombinant B19 capsids do not bind to globoside Gb4 in vitro.

For several members of the parvovirus genus, terminal SIA serves as a glycan receptor

(Table 1), although for Canine Parvovirus (CPV) and Feline Panleukopenia Virus (FPV),

SIA recognition is not essential for infection, but rather utilized during hemagglutination

(HA) of erythrocytes [76]. CPV and FPV recognize both α2-3 and α2-6 linked N-glycolyl

neuraminic acid, a non-human SIA. Host cellular infection by CPV and FPV requires

recognition of their respective host transferrin receptor type-1 with differential N-

glycosylation dictating viral host specificity ([77-80]. For other members, for example H-1

Parvovirus (H-1PV), LuIII, MVM, and Porcine Parvovirus (PPV), SIA binding is essential

for infection and the recognition is to N-acetyl neuraminic acid. MVM utilizes terminal SIA

on an unknown glycoprotein for cellular recognition [4] and binds specifically to α2-3 N-

linked sialylated glycans including the s(Lex)3 motif [81,82]. This Lewis X motif is over

expressed in cancer cells and likely dictates MVM's oncotropism [83]. MVM exists in

several highly homologous strains, including the prototype strain (MVMp) and the

immunosuppressive strain (MVMi) which share 97% sequence identity. These viruses are

reciprocally restricted for growth in each other's permissive cell type, although both viruses

are able to infect the SV40 transformed human fibroblast cell line NB324K [84]. MVMp is
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non-pathogenic and results in an asymptomatic infection [85], while MVMi causes a lethal

infection and is neurotropic [86,87]. Additional recognition of α2-8 linked multi-SIA

glycans, over-expressed in neuronal cells, by MVMi likely mediates its neurotropism

[81,88]. Similar to MVM, H-1PV, and LuIII also recognize α2-3 linked SIA glycans,

especially the sLex motif ([89] and unpublished data). Significantly, these rodent

parvoviruses (MVM, H-1PV, and LuIII) exhibit tumor specific cytotoxic activity in vitro

and oncosuppressive activity in vivo and are under development as viral vectors for

anticancer gene therapy (reviewed in [90-92]). PPV binds to SIAs on cell surface

glycoproteins yet to be identified [93].

Similar to the dependovirues, a multitude of approaches have been utilized to characterize

the glycan recognition site for a number of the autonomous parvoviruses. Cryo-

reconstruction localized the B19 globoside footprint to the depression between the

protrusions surrounding the 3-fold axes of the capsid [94], similar to the HS and SIA sites

for the AAVs. The globoside footprint includes residues Q399, Q400, Y401, T402, D403,

Q404, and E406 (VP2 numbering, Table 1, Fig. 2D-F). For CPV, mutations of residues

R377K, E396K, R397G/E on the wall of the depression surrounding the 2-fold axis of the

capsid reduced or abolished HA, hence, SIA recognition [95-97]. Residues N93, G299,

A300, and N323 control CPV/FPV host range and pathogenicity determination as well as

transferrin receptor attachment [77,98-100]. These residues are located at the top and

shoulder of the 3-fold protrusions [101,102] (Fig. 3A-C). Mutagenesis, cell binding assays,

and structural studies indicate that the H-1PV SIA footprint contains I368 and H374 located

at the 2-fold depression ([89] and unpublished data). For MVM, mutagenesis, and structural

studies have also identified the depression at the 2-fold axis as the SIA binding site [103].

The binding pocket is shallow and surrounded by charged and hydrophobic residues that

include K241, M243, I362, K368, Y396, W398, D399, T401, F403, D553, Y558, and I578.

Significantly, the residues determining in vitro tropism (T317 and G321), conferring

fibrotropism on MVMi (D399,S 460, D553, Y558), in vivo pathogenicity (V325, I362,

K368), and those associated with the development of leukopenia (G321, A551, V575) are

localized in the vicinity of this SIA binding pocket [104-109] (Fig. 3D-F). In addition, tissue

tropism and pathogenicity determinants for ADV, CPV, and PPV overlap with this region

[14]. There is no information on residues controlling BPV, LuIII, or PPV capsid – SIA

interactions. The available information identifies the 2-fold (CPV and MVM) and 3-fold

(B19) depressions as important for glycan receptor engagement for the autonomous viruses.

Commonality in utilization and binding region are features of Parvovirinae

glycan interactions, although recognition determinants differ

A role for glycan recognition in dictating successful cellular infection and as a determinant

of tissue tropism is well established for the Parvovirinae. Evidence points to a role in

dictating transduction efficiency and host pathogenicity for dependo and autonomous

parvoviruses, respectively, due to overlap of the capsid residues involved. However, this

possibility requires further investigation given the ubiquity of SIA and HS which are the

most commonly recognized glycans. Thus parvovirus tissue (especially for the AAVs) and

host specificity likely requires post cell entry interactions, including the recognition of
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specific internalization receptors/co-receptors which are often glycosylated [110,111].

Regardless of the outcome of infection, pathogenic or non-pathogenic, commonality in

utilization and binding region is a feature of Parvovirinae glycan interactions, despite the

sequence diversity that exists between genus members (14-36%) and within each genera

(e.g. 50-66% for parvovirus genus).

The known interaction sites involve residues at the 3-fold depression (e.g. AAVs and B19);

pocket at base of 3-fold protrusion (AAV1 and AAV9), or 2-fold depression (e.g. CPV and

MVM) (Figs. 2 and 3). Significantly, both the 2- and 3-fold depressions are utilized to bind

SIA, e.g. in MVM and AAV4/AAV5, respectively, despite low sequence and structure

similarity at these capsid regions. In addition, analogous capsid regions/pockets are used to

bind different glycans, e.g. SIA, globoside, and HS at the 3-fold depression, and SIA and

GAL at the base of the 3-fold protrusions. Furthermore, while 3/5 AAV2 HS binding

footprint residues are conserved in most of the AAV serotypes, the critical R585 and R588

are not. For AAV3B and AAV6/AAV13, their HS binding residues, R594 and K531/K528,

respectively, are not conserved in other HS binding AAVs. For SIA binding, 4/6 SIA

binding residues in AAV4 (K492, K503, G581, and N585) are not conserved in AAV1 and

AAV5, the serotypes that also bind SIA and while AAV5's A581 position is structurally

conserved in other AAVs, including AAV2, the adjacent residues and structure are not. With

respect to the common pocket for SIA and GAL binding by AAV1 and AAV9, respectively,

N470, the most critical residue for the AAV9 phenotype, is G470 in AAV1. In B19, the

globoside binding pocket residues are not conserved in other genus type members. For

MVM, the SIA binding footprint residues are conserved in H-1PV consistent with a

common pocket, but not for SIA binding dependovirus members, likely leading to their use

of the 3-fold region for this interaction. Importantly, these glycan recognition sites overlap

with transduction and pathogenicity determinants. These observations suggest a parvovirus

capsid evolution to establish host recognition niches rather than conservation of glycan

binding pockets. Similar binding site localization points to structural motifs evolved to serve

an essential functional role and begin to establish a receptor binding pattern that could

inform efforts to use these capsids for targeted therapies or develop viral infection inhibitors.
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Highlights

• Glycan interactions are an essential first step in successful host infection by the

Parvovirinae subfamily of the Parvoviridae.

• The binding sites for glycans overlap with determinants of transduction

efficiency and pathogenicity for non-pathogenic and pathogenic members,

respectively.

• The Parvovirinae exhibit commonality in the glycans recognized across genera

and they utilize common capsid regions for binding to disparate glycans.

• Identifies capsid regions that can inform engineering efforts for tissue targeted

gene delivery therapies or development of viral infection inhibitors.
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Fig.1.
Parvovirinae capsid structure. (A) Structure superposition of the structurally ordered VP

region for type members of the Parvovirinae subfamily: amdovirus - ADV (orange);

bocavirus – BPV (yellow); dependovirus - AAV2 (blue); erythrovirus - B19 (green); and

parvovirus – MVM (red). The N-terminus (N), C-terminus and variable regions (VRI-IX,

VR1-8) are labeled, the conserved core eight-stranded β-barrel and αA are delineated by a

dashed box. (B-F) Depth cued (from capsid center to surface: blue-green-yellow-red) capsid

surface representation of the viruses shown in (A). A viral asymmetric unit (AU, black

triangle), bounded by a 5-fold axis (filled pentagon) and two 3-fold axes (filled triangles)

separated by 2-fold axis (filled oval), is shown on the AMDV capsid image in (B). The

topological features of the parvovirus capsid, such as 3-fold protrusion, 2-fold depression, 5-

fold canyon and 2/5-fold wall are labeled on the AMDV image. A horizontal color bar for

radial distance (Å) from the center of the capsid and a horizontal scale bar (100Å) for
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diameter measurements are provided. Panel (A) was generated using the PyMol program

[112] and (B-F) were generated using the UCSF-Chimera program [113].
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Fig.2.
Capsid surface images for AAV2 and B19. (A) Capsid surface image of AAV2 on which the

residues involved in glycan receptor binding for AAV2, AAV3B, AAV4, AAV5, AAV6,

AAV9, and AAV13 are highlighted along with residues determining transduction

phenotypes. The view is approximately down the icosahedral 2-fold axis. (B) A zoom of the

receptor binding footprints in the section delineated by a dashed box in (A). (C)

Stereographic Roadmap projection [114] of the glycan footprint shown in (A) viewed down

the threefold axis. Residues are labeled by type (three letter code) and number (VP1
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numbering). The amino acid residues that are exposed on the capsid exterior are visible in

this image. The boundary for each residue is shown in black, and a color key is provided.

The AU is depicted as in Fig. 1B. (D, E, and F) Capsid surface image of B19, zoom of the

dashed box in (D) and Roadmap projection, respectively, of the globoside footprint at the 3-

fold axis. The image labels are as in (A-C). Panels (A, B, D, and E) were generated using the

UCSF-Chimera program [113] and (C and F) were generated using the RIVEM program

[114].
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Fig. 3.
Capsid surface images for CPV and MVM. (A-C) Capsid surface image of CPV, zoom of

the dashed box in (A), and Roadmap projection, respectively, of the residues involved in

SIA binding and host tropism/pathogenicity/transferrin receptor binding. (D-F) Capsid

surface image of MVM, zoom of the dashed box in (D), and Roadmap projection,

respectively, of the residues involved in SIA binding, tissue tropism, and pathogenicity. The
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image labels are as in Fig. 2. Panels (A, B, D, and E) were generated using the UCSF-

Chimera program [113] and (C and F) were generated using the RIVEM program [114].
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