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Abstract The hot and arid lowlands of southwestern Saudi Arabia are home to two common lia-

nas, Cocculus pendulus and Leptadenia arborea. This paper attempts to relate the adaptation of

these two climbing woody perennials to such a harsh environment to the anatomy and hydraulic

characteristics of their wood. The stems of these lianas have wood with wide xylem vessels and high

hydraulic conductivity which should enhance water flow to the upper canopy despite their severe

twisting. Hydraulic conductivity is further helped by the simple perforation plates of xylem vessels.

The circular thickening of xylem walls gives them strength and reduces the risk of their collapse and

the ensuing embolism in the advent of high tension created by severe water deficit and high evapo-

transpiration demand. Wide vessels, on the other hand, are more susceptible to embolism. This

problem may be overcome by reducing the solute potential of xylem sap by hydrolysis of starch

grains which were found to be abundant in the vicinity of the vessels. This should help absorb water

by the deep roots from the capillary fringes of the typically shallow water table in this particular

habitat. Furthermore, the abundance of ray parenchyma cells between xylem groups of both lianas

provides great flexibility with minimum damage to water conduits in the stem during climbing and

twisted growth. It was concluded that these wood features in both lianas are crucial for survival

under the harsh conditions of arid Tihama plains of southwestern Saudi Arabia.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

Lianas are woody plant climbers that begin life as terrestrial

seedlings, but need the physical support of nearby trees (or
any other supports) for their weak stems and branches to lean
on and ascend to get better exposure to sunlight (Gentry, 1991;
Maheshwari et al., 2009). Climbing can also put their canopies

beyond the reach of most herbivorous animals. However, the
twisting that their stems undergo while climbing can cause
physical damage and deformation to their tissues; as a result,

water flow to the upper canopy can be constrained, especially
if these species grow in dry habitats.

The low lands of southwestern Saudi Arabia (Tihama

plains of Jazan province) represent a harsh habitat with
prolonged periods of drought. The mean annual precipitation
is 150 mm while the mean annual temperature is 30–31 �C,
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making this region among the hottest and driest in Saudi Ara-
bia (Abdel-Rahman and Balegh, 1974; Masrahi, 2012). More-
over, the rainy season coincides with summer when

evaporation is highest (Masrahi, 2012). According to Walter’s
classification of climatic zonobiomes, Tihama plain of Jazan
represents a hot desert (Breckle, 2002). The eastern part of

the plain and the adjacent rocky hills (100–700 m above sea
level) have some relatively ‘‘mesic’’ habitats in dry wadi
(ravines) beds and around villages. The dominant vegetation

consists of scattered xerophytes like Acacia spp., Panicum tur-
gidum and Salvadora persica as well as halophytic vegetation
along the coast (Masrahi, 2012).

Despite its harsh dry climate, Tihama plain is home to two

common lianas, Cocculus pendulus (J.R. & G. Forst.) Diels
(Menispermaceae) and Leptadenia arborea (Forssk.) Schweinf.
(Apocynaceae-Asclepiadoideae) (Masrahi, 2012). The former

is a white-stemmed liana, grows in the dry sandy plain of Tiha-
ma, while the latter has light brown stems with thick corky
bark in the older stems and grows in the eastern part of the

plain and adjacent rocky hills, as well as around villages. These
species climb by their twining stems over shrubs and trees,
especially Acacia spp. The wide distribution of these two lianas

in such harsh habitats is peculiar since most lianas are only
found in humid forests or along river banks (Gentry, 1991);
this implies a high degree of adaptation to unfavorable cli-
matic conditions especially drought.

The objective of the present study was to investigate stem
wood anatomy of two lianas, C. pendulus and L. arborea,
and its ecological significance in the context of the hot desert

of southwestern Saudi Arabia.

2. Materials and methods

Stems of C. pendulus and L. arborea plants were collected dur-
ing March and April, 2012 from Tihama coastal plain and low
rocky habitats east of Tihama in Jazan province, southwestern

Saudi Arabia (Fig. 1). The stem were cut and stored in 70%
ethanol until examined. Transversal sections of the stems were
cut with a sharp razor. The sections were then stained with

neutral red (Foster, 1965) and examined under an optical
microscope (Zeiss Scope A1 with an AxioCam camera,
Germany) to estimate the average xylem vessel diameter and
frequency. The vessel diameter values presented are the means
Figure 1 Study area and samp
of more than 25 determinations as recommended by the
IAWA Committee (1989). Vessel frequency (VF) represents
the number of vessels per mm2 of stem’s cross-sectional area.

The vessels with a diameter between 25 and 100 lm were con-
sidered narrow; those with a diameter larger than 100 lm were
considered wide while the vessels with a diameter less than

25 lm were not considered because of their limited contribu-
tion to water conductivity (Ewers et al., 1997; Gutiérrez
et al., 2009). Relative hydraulic conductivity (HC) was esti-

mated using the modified Hagen–Poisseuille equation
(Carlquist, 2001), while vulnerability to cavitation (vulnerabil-
ity index, VI) was calculated using the equation proposed by
Carlquist (1977), as follows:

HC ¼ r4VF

VI ¼ VD=VF

where r is vessel radius in lm, VF is vessel frequency (N/mm2)
and VD is the vessel diameter in lm.

Another set of stem samples were examined with a scanning
electron microscope (SEM). The samples were placed on the
double side carbon tape on an aluminum stub. The specimens

were examined without coating by a field emission SEM
(QUANT FEG 450, Amsterdam, Netherlands).

Leaf stomatal density (N/mm2) was estimated microscopi-

cally, while leaf surface to volume ratio (S/V) was determined
according to Mauseth (2000). These leaf anatomical features
greatly affect water flow in the xylem.

Data were statistically analyzed using student t-test.

3. Results

The growth habit of the stems of C. pendulus and L. arborea is
illustrated in Figs. 2 and 4, respectively. The transverse-section
(TS) of mature stems of the two species reveals cambial vari-
ants represented by anomalous secondary growth (Figs. 3

and 5, respectively). TS of mature stems of C. pendulus showed
successive rings of cambia (successive rings of xylem alternat-
ing with phloem) (Figs. 2b, 3a and b). Ray parenchyma cells

revealed a dense accumulation of starch grains (Fig. 3d). TS
of mature stems of L. arborea (Figs. 4b, 5a and b) showed seg-
mented groups of xylem with inter-xylary phloem separated by

relatively large rays. The segmented groups of xylem are
ling localities of tow lianas.



Figure 2 Cocculus pendulus, (A) Stems growing on Acacia tortilis with the nature of twining (in the frames). (B) Cross-section of the stem

reveals successive rings of cambia.
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sheathed with fibers. Ray parenchyma cells of this species also
showed a dense accumulation of starch grains (Fig. 5d). Stem
xylem parenchyma cells were more abundant in L. arborea
compared to C. pendulus.

Table 1 shows the quantitative anatomical features of stem
wood and leaves of the two species. Vessel diameter of both
species was large but L. arborea had wider vessels than C.

pendulus (P < 0.001).
Vessel frequency was low in the stems of both species, with

no significant difference between them (P > 0.05). Calculated

hydraulic conductivity was high in both species but was higher
in the stems of L. arborea than in the stems of C. pendulus by
about 6 fold. Perforation plates of xylem vessels of both
species were simple. The type of wall thickening of both species
was circular (Figs. 3c and 5c). Vulnerability index was high
(more than 1) for both species but L. arborea showed higher
vulnerability index values than C. pendulus by about 2.5 fold.

The lower surface of C. pendulus leaves had a higher mean
stomatal density than the upper surface (P < 0.001). In con-
trast, L. arborea had similar stomatal densities on the upper

and lower sides of its leaves (P > 0.05). The Upper surfaces
of the leaves of the two species did not differ in stomatal den-
sity, whereas the lower surfaces of C. pendulus leaves showed

higher stomatal densities than L. arborea. Leaf surface to vol-
ume ratio was higher in C. pendulus than in L. arborea
(P < 0.05).



Figure 3 Cocculus pendulus, (A and B) Scanning electron photomicrograph and photomicrograph of stem cross-section reveal wide

vessels (wv) and ray parenchyma (rp). (C) Scanning electron photomicrograph of a vessel shows simple perforation plate and circular

thickening of wall. (D) Scanning electron photomicrograph of Xylem parenchyma reveals a dense accumulation of starch grains.
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4. Discussion

The occurrence and survival of any plant species depend on the

degree of its adaptation to its habitat. In xeric habitats, like the
Tihama plains of Jazan, plants differ widely in their capacity to
cope with drought, the most limiting factor to growth in such

context. Adaptations exist to explain these differences, which
can be mainly attributed to a plant’s capacity to maintain a
favorable water status (Gutterman, 1993; Kozlowski and

Pallardy, 2002). Many adaptations of woody plants have been
identified in their stems, chief among them is the low resistance
to water flow in vascular tissues (Kozlowski and Pallardy,
2002).

The two studied lianas had wide xylem vessels in their
stem’s wood with high calculated hydraulic conductivity. Typ-
ically, liana stems tend to have unusually wide (large diameter)

xylem vessels (Carlquist, 1985, 1991; Rowe and Speck, 2005;
Angyalossy et al., 2012). In fact, the wide vessels appear to
compensate also for the limited cross-sectional area of the

stems which can achieve great lengths while remaining propor-
tionately narrow in diameter; they appear to do so by spending
greater amounts of energy on elongation than on radial

growth. In doing so, the cylinder of tissue is modified in
which more effective water-conducting cells (vessel elements)
are produced at the expense of mechanical cells (fibers) in

contrast to the situation in self-supporting woody plants (trees
and shrubs) (Carlquist, 1985). Wide vessels also offer low
friction and deliver larger volumes of water per unit time
(Zimmermann, 1983; Mauseth, 1988; Ewers et al., 1991;

Sperry, 1995).
The two lianas have high water conducting capacity. Simple

perforation plates of xylem vessels of the two lianas should

enhance the conductivity of water and reduce the resistance
to water flow while the circular thickening of xylem walls gives
them strength against collapse under increased tension

(Mauseth, 1988; Baas et al., 2004). Strength of xylem is also
enhanced by sheathing with fibers as in L. arborea. This species
also had wider vessels and higher hydraulic conductivity than
C. pendulus; this may be related to the relatively ‘‘mesic’’ nat-

ure of L. arborea’s habitat.
However, whereas increased vessel diameter greatly

increases water conduction efficiency, it also decreases safety

and renders vessels more vulnerable to cavitation, that is, the
formation of air bubbles within the conduits resulting in
breakage of water columns. Conduit diameter is directly

related to cavitation frequency (Sperry, 1995). Cavitation can
precipitate an air embolism; the embolism spreads from
element to element through the perforations on xylem walls,



Figure 4 Leptadenia arborea, (A) Stems growing on Acacia ehrenbergiana.Nature of twining on fence (in the frame). (B) Cross-section of

the stem.
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and the entire vessel becomes useless (Zimmermann, 1983;
Mauseth, 1988; Evert, 2006). The resulting reduction in water

supply to the leaves can lead to water stress and then eventu-
ally death of the plant (Zimmermann, 1983). Vulnerability
index of both species showed high values, but L. arborea was

2.5 times more vulnerable than C. pendulus. This vulnerability
due to wood structure may explain why most lianas grow in
very moist areas, such as rain forests or along riverbanks,

where water stress never occurs. Lianas make up about one-
fifth of all plant types in these habitats (Gentry, 1991).
The lack of safety mechanisms against drought-induced embo-

lism in such lianas would not be surprising (Carlquist, 1985).
Lianas tend to avoid areas prone to extreme drought.
Generally, in most habitats with limited water resources, lianas
represent only a small proportion of the flora. For instance, in
southwestern Saudi Arabia, liana species represent only
about 0.8% of the total flora (Masrahi, 2012). Furthermore,

the advantage of the climbing habit diminishes when arboreal
canopies are infrequent as is the case in this area (Carlquist
and Hoekman, 1985). Nevertheless, some of them do

occur in places where drought is occasional and moderate,
but even in this case, they generally lose their leaves during
the dry season (Gartner et al., 1990; Angyalossy et al.,

2012).
In both species, ray parenchyma cells near the vessel groups

showed a dense accumulation of starch grains, which, besides

supporting growth, may enhance water flow and reduce the
risk of embolism by hydrolysis into soluble sugars which enter
the vessels and reduce the solute potential of the sap as shown
to be the case in other lianas (Carlquist, 1985, 2001).



Figure 5 Leptadenia arborea, (A and B) Scanning electron photomicrograph and photomicrograph of stem cross-section reveal wide

vessels (wv) and ray parenchyma (rp). Note that xylem groups are sheathed by fibers (f), and stem covered by thick corky bark. (C)

Scanning electron photomicrograph of a vessel shows simple perforation plate and circular thickening of wall. (D) Scanning electron

photomicrograph of Xylem parenchyma reveals a dense accumulation of starch grains.

Table 1 Anatomical characters of C. pendulus and L. arborea.

Species VD (lm) VF (N/mm2) HC PP TWT VI SF of leaf (N/mm2) S/V ratio of leaf

Upper Lower

Cocculus pendulus 128.4 ± 44.4* 32 ± 14 530872.4 Simple Circular 4 25.6 ± 4.6 59 ± 8.2* 9 ± 1.3**

Leptadenia arborea 168.6 ± 48.8* 16 ± 3 3156387.5 Simple Circular 10.5 29.3 ± 2.3 30 ± 8 7.5 ± 0.8**

VD= Vessel diameter, VF = Vessel frequency, HC= Hydraulic conductivity, PP = Perforation plates, TWT= Type of wall thickening,

VI = Vulnerability index, SF of leaf = Stomatal frequency of leaf, S/V ratio of leaf = surface to volume ratio of leaf.
* Significance at P < 0.001.

** Significance at P < 0.05.
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As phreatophytes, lianas have deep root systems (com-
monly grow 5–10 m deep) that proliferate in the capillary

fringe (phreatic zone) just above the water table (Nilsen and
Orcutt, 1996; Andrade et al., 2005; Johnson et al., 2013). Thus,
these two lianas seem to have a relatively stable supply of
ground water. This idea may be supported by the fact that

the depth of ground water table in Tihama plains generally
varies between 5 and 20 m depending on proximity to
wadi courses (Müller et al., 1984). The two lianas, especially

C. pendulus, frequently grow on Acacia species, mainly
A. ehrenbergiana and A. tortilis, which grow mainly along wadi
courses (Masrahi, 2012).

Ray parenchyma in the stems of both species separates the
groups of xylem into sectors. L. arborea had a greater abun-
dance of parenchyma compared to C. pendulus. Parenchyma
between wood segments provides great flexibility, permitting

lianas to adapt to shifts induced by growth around supporting
trees. This permits torsion of the stems with minimum damage
to vessels and sieve tubes (Sieber and Kučera, 1980; Carlquist,

2001; Rowe and Speck, 2005). Parenchyma is also responsible
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for the repair of the vascular system by formation of new cam-
bia which can replace deactivated conducting cells with new
functional ones. Redundancy of conducting tissues, when it

is scattered throughout a stem, provides a degree of safety that
permits non injured xylem and phloem to continue conduction
even though some parts of a stem are injured (Angyalossy

et al., 2012). This was evident in L. arborea whose stems tend
to twist severely around its support (Fig. 4a – in the frame).

In Tihama plains, C. pendulus and L. arborea behave as

evergreens with dense canopies overwhelming their hosts
(Y.S. Masrahi, unpublished observations). Therefore, water
supply to their leaves does not seem to be jeopardized even
during the long dry season. Factors influencing water supply

play a central role in the adaptation of plants to their environ-
ment (Nobel, 2009). The flow of water from the soil to the
leaves requires regulation of plant water potential by stomatal

control and leaf area adjustment which may be necessary to
maximize water uptake on the one hand, while avoiding loss
of hydraulic contact with the soil water (due to vessel embo-

lism) on the other. It is well known that hydraulic limits are
the cause of partial or complete foliar dieback in response to
drought (Sperry et al., 2002), which was not observed in the

dense canopies of C. pendulus and L. arborea.
The process of moving water to the site of evaporation with

minimum energy investment is a major factor driving the
architecture and physiology of plants, including the function

of stomatal regulation (sperry et al., 2002). In general, liana
stems (like the two studied here) are quite narrow in relation
to the amount of foliage they supply with water, but wide ves-

sels are thought to hydraulically compensate for their narrow
stem diameters (Ewers et al., 1990). In the case under study,
wood anatomical features favor high hydraulic conductivity

which is necessary to maintain the high midday transpiration
and photosynthesis rates observed in these C3 plants (Y.S.
Masrahi, unpublished data). Stomatal frequency of both spe-

cies was low and lie within the range of xerophytes (15–80 sto-
mata/mm2) (Gibson, 1982; Nobel, 2009). However, surface to
volume ratio (S/V) of leaves was high as for xerophytic plants.
S/V ratio affects transpiration, photosynthesis and water stor-

age capacity. High S/V values (>3) suit mesic habitats
(Mauseth, 2000). A high S/V means great surface area (for
photosynthesis and transpiration) and small internal volume

(for water storage). Great surface area of leaves compensate
for low stomatal frequency in both species. Compared with
L. arborea, C. pendulus had a larger S/V ratio and a higher sto-

matal frequency essentially on the lower surface which reduces
transpiration.

To conclude, it appears that the main adaptations of both
lianas to the harsh conditions in lowlands of southwestern

Saudi Arabia are related to stem wood-structure. This wood
had large xylem vessels and high hydraulic conductivity. The
stem is divided into sectors of xylem groups with ray paren-

chyma where starch grains accumulate. These reserves can be
hydrolyzed into soluble sugars which can improve the upward
flow of water and repair air filled vessels. Furthermore, these

wood features minimize damage to the hydrosystem in the
climbing stems and aid the healing process when injury occurs.
Frequently growing on Acacia spp. along wadi courses

may also support survival by having deep roots to reach
the capillary fringes above the relatively shallow ground water
table.
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