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Marine biodiversity currently faces unprecedented
threats from multiple pressures arising from human
activities. Global drivers such as climate change
and ocean acidification interact with regional eutro-
phication, exploitation of commercial fish stocks
and localized pressures including pollution, coastal
development and the extraction of aggregates and
fuel, causing alteration and degradation of habit-
ats and communities. Segregating natural from
anthropogenically induced change in marine eco-
systems requires long-term, sustained observations of
marine biota. In this review, we outline the history of
biological recording in the coastal and shelf seas of
the UK and Ireland and highlight where sustained
observations have contributed new understanding
of how anthropogenic activities have impacted on
marine biodiversity. The contributions of sustained
observations, from those collected at observatories,
single station platforms and multiple-site pro-
grammes to the emergent field of multiple stressor

2014 The Author(s) Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2013.0339&domain=pdf&date_stamp=2014-08-25
mailto:nova@mba.ac.uk


2

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A372:20130339

.........................................................

impacts research, are discussed, along with implications for management and sustainable
governance of marine resources in an era of unprecedented use of the marine environment.

1. Introduction
Marine and coastal ecosystems are naturally spatially and temporally variable, but are also
experiencing unprecedented changes in response to global anthropogenic forcing of atmospheric
processes coupled with additional human activities operating at global, regional and local scales.
Sustained observations of biota from multiple trophic levels across broad geographical scales are
required to separate climate-driven signals from the noise of natural fluctuations to disentangle
responses of species, communities and ecosystems to global drivers from regional and local-
scale impacts [1]. Policy directives implemented to manage anthropogenic pressures in the face
of such change also require knowledge of past, present and potential future ecosystem states.
Thus, timeseries are the primary resource enabling tracking of the status and functioning of
ecosystems while defining targets for environmental stewardship and ensuring sustainable use
of natural resources.

A rich history of sustained observations of marine biota stretching back to the 1800s exists
for shelf and coastal waters in the UK and Ireland. In this review, ‘sustained observations’ and
‘timeseries’ are both defined as, ‘where there is a commitment to maintain scientific research and
monitoring beyond the usual length of a scientific research programme, typically three to five
years’ [2]. Many broadscale and long-term observations extend across multiple decades, and in
some cases, more than a century for the coastal and shelf seas. Others provide baselines at time-
slices spanning the start of the industrialized fishing at sea, and the current era of accelerating
anthropogenic activity and resultant pressures.

A summary of sustained biological observations within UK and Irish regional shelf and
coastal seas highlights the milestones in scientific monitoring of marine biodiversity since
formal scientific recording began in the mid-nineteenth century. Against this background, the
applications of multi-decadal broadscale observations of the shelf seas and the contribution of
near shore and coastal observatories at fixed stations to regional-scale studies are discussed. We
highlight the major scientific findings and review how these timeseries are proving invaluable
for forecasting future states of natural resources in response to unprecedented exposure to
multiple anthropogenic stressors. The relevance of these sustained observations to national and
international policy drivers is then explored to develop a prospectus for twenty-first century
sustained biological observing.

2. The history of sustained biological observations in the coastal and near shore
marine environment

Concerns about the sustainability of commercial fisheries were apparent by the middle of the
nineteenth century and accelerated with increasing industrialization of the fishing industry. These
issues prompted the establishment of the Marine Biological Association of the United Kingdom
(MBA) in 1884 and the construction of its research laboratory in Plymouth, England in 1888.
Investigations into physical, chemical and biological components of the Western English Channel
ecosystem and at satellite laboratories in the North Sea commenced from the 1880s (see [1] for
review). This expanded to include zooplankton and larval fish timeseries in the open waters of the
English Channel, North Sea (from the Lowestoft Laboratory, precursor MAFF/CEFAS laboratory)
and the continental shelf off southwest England as part of the UK contribution to the International
Council for the Exploration of the Sea (ICES) international research programme [3].

Baseline studies of subtidal benthos in the Western English Channel in the 1890s were
resurveyed, including the Holme grid off Plymouth (surveyed 1958–1963) as part of a larger
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Figure 1. Map of UK sustained observations of biodiversity: dark circles, MarClim survey sites; pale circles, continuous plankton
recorder circles 2012 surveys. Black triangles: (1) Loch Hyne; (2) Port Erin; (3) Dove plankton; (4) Dove benthos; (5) Western
Channel Observatory. Figure by Dr A. McQuatters-Gollop.

survey of the benthos of the English Channel [4] (figure 1). More recent evaluations of the benthic
fauna have been made based on data collected in the 1970s with surveys of a reduced section of
the Holme Grid continuing on a semi-regular basis since 2007 [5].

A grid of sustained observing stations was set up in the western English Channel by the MBA
as part of the ICES investigations in 1903 (figure 1). Station E1 (20 nautical miles from Plymouth,
approx. 72 m depth, phytoplankton) and L5 (two nautical miles inshore from E1, approx. 60 m
depth, zooplankton, larval fish) have been sampled on a monthly basis since 1903, but major
gaps exist in both timeseries. The MBA have sampled fish in a ‘standard haul’ around station L4
(10 nautical miles from Plymouth, approx. 51 m depth) for almost 100 years to date. In response to
the cessation of funding for E1 and L5 in 1987, sampling at L4 was initiated in 1988 by Plymouth
Marine Laboratory (PML) and continues on a weekly basis [6].

The University of Liverpool’s Port Erin Marine Laboratory on the Isle of Man maintained
sustained observations at locations in the Irish Sea, measuring temperature, salinity, oxygen
nutrients and chlorophyll from 1904 to provide baseline environmental data for the interpretation
of biological investigations conducted at the laboratory [7]. Subtidal benthos was also monitored
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across several decades within the 1900s and changes linked to long-term scallop-dredging activity
[8]. Following the closure of the laboratory in 2006, responsibility for the timeseries has been
subsumed by the Isle of Man Government Laboratory (figure 1).

Demersal fish surveys and studies of the Plymouth herring fishery began in the 1900s
providing a baseline for comparative studies a century later [9]. With the decline of the herring
fishery, attention returned to mackerel [10]. Analysis of these observations combined with
historical records dating back to the thirteenth century showed that switches between herring
and pilchard had occurred since the Middle Ages [11]. Herring was also the subject of one of
the few multi-decadal observations of marine biota initiated in Ireland by the Marine Institute
between the 1960s and 1990s [12]. Both datasets showed higher growth rates in the cooler 1960s
and 1970s than the warmer 1980s and 1990s, with climate rather than fishing pressure being the
driver of long-term change in both regions [11,12].

Sir Alister Hardy developed the continuous plankton recorder (CPR) in the 1920s to provide
spatio-temporal maps of plankton to interpret changes in English east coast herring stocks and
place biological variation in the context of hydrometeorology and climate change. After trials on
the Discovery Expedition to Antarctica in 1924, the CPR was deployed on merchant ships leaving
from UK ports from 1931. The CPR has been based at several institutions with its current home
at the Sir Alister Hardy Foundation for Ocean Science, Plymouth [13]. The CPR now covers the
Atlantic Ocean and has completed 6.3 million survey miles (figure 1).

The first systematic, large-scale rocky intertidal surveys of the UK began in the English
Channel in the 1930s [14] and 1950s [15], expanded around the UK and Ireland by A. J. Southward
and D. J. Crisp in the 1950s and 1960s [16]. A team, led by J. R. Lewis from University of Leeds
Robin Hood’s Bay Marine Laboratory, North Yorkshire, studied the distribution, abundance and
breeding of intertidal invertebrates (1960s–1980s) and were among the first to link climate to
breeding cycles and success in endotherms [17]. The Robin Hood’s Bay laboratory closed in 1983,
with some data being rescued from a skip by M. A. Kendall and later digitized by Mieszkowska.
The Southward, Crisp and Lewis surveys were restarted in 2002 under the MBA MarClim Project
(www.marclim.co.uk; figure 1) and form the most spatio-temporally extensive rocky intertidal
timeseries globally. MarClim rescued additional historical survey data for keystone species,
invasives and those of current conservation importance, restarting surveys by incorporating the
site locations into the MarClim UK annual survey network [18]. These data are instrumental
in understanding climate impacts on marine biodiversity, ecosystem structure and functioning
[19,20]. Newcastle University Dove Marine Laboratory maintains three long-term timeseries:
monthly pelagic plankton station Z (approx. 6 nautical miles offshore, approx. 20 m depth)
initiated by Evans in 1968, biannual benthic stations P (12 nautical miles offshore, approx. 80 m
depth) and M1 (approx. 6 nautical miles offshore, approx. 55 m depth) started by Buchanan in
1971 to track marine productivity (figure 1).

Annual surveys of organisms within Lough Hyne, Cork, Ireland, since 1980 have detected
the arrival and proliferation of invasive non-native and climate indicator species and long-term
changes in the abundance of invertebrates leading to restructuring of intertidal and shallow
subtidal communities [21] (figure 1). The sustained observations of rocky shore species carried out
by staff at Sherkin Island Marine Station, Cork (1975–1990s) have also documented fluctuations
in sessile invertebrates and macroalgae related to climate [22].

Some of the most extensive sustained observations of marine mammals are maintained by the
Sea Mammal Research Unit (SMRU) at St Andrews, Scotland. SMRU has been recording grey seal
pup abundances annually since 1960 and counts of moulting common seals since 1988 around
the UK. Surveys investigating small cetacean abundances were conducted in European Atlantic
waters and the North Sea (1994–2007).

Sustained observations have also been established by government agencies and government
funded organizations in recent decades in the form of surveillance and compliance monitoring
to track changes in ecosystem or protected area status, report against policy targets and develop
status indicators [23]. The Clean Seas Environment Monitoring Programme cruise was initiated
in the 1980s as part of a drive to coordinate UK marine monitoring. As part of this cruise, fish

http://www.marclim.co.uk
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and benthos samples are taken at 25 fixed timeseries stations in intermediate and open sea areas
around England and Wales.

The UK Seabird Monitoring Programme, led by the Joint Nature Conservation Committee in
partnership with regional government authorities and ornithological trusts, has been tracking
seabird populations in the UK and Ireland since 1969 [24]. The Irish Scheme for Cetacean
Observation and Public Education started in 2003 to promote public volunteer recording of
whales, dolphins and porpoises in Irish waters [25]. Observations of cetaceans by volunteers
from 16 groups across Wales have been coordinated by Natural Resources Wales (née Countryside
Council for Wales) since 1990 [26]. Similar schemes run by the UK Wildlife Trusts represent the
contribution that citizen science can make to sustained observations of marine species.

3. Insights from sustained observations into ecological patterns and
process-based responses to environmental and anthropogenic change in
UK regional seas

(a) Shelf-wide surveys
CPR tows have generated over 250 000 samples and represent the largest marine biological
dataset in the world. As early as 10 years into the timeseries Hardy was detecting links between
fluctuations in plankton and herring abundances [27]. Data from CPR tows have been used to
show how zooplankton in the North Atlantic and North Sea have undergone the largest detected
biogeographic range shifts in any natural system (greater than 10◦ latitude polewards) in response
to climate warming [28]. Changes in planktonic community structure have become especially
notable after the 1983–1988 ‘regime shift’ with a shift in dominance from the Arctic-Boreal Calanus
finmarchicus to the Lusitanian Calanus helgolandicus [29]. These changes have also impacted higher
trophic levels, negatively affecting Northeast Atlantic cod, salmon and sandeel during warm
periods throughout the twentieth century via match/mismatch of zooplankton food resources
for larval and juvenile fish and apex predators [30–32].

The Centre for Environment, Fisheries and Aquaculture Science (CEFAS) is responsible for
sustained observations of fish across several UK regional seas. The annual groundfish survey of
the North Sea was initiated in 1977 and since 1991 has formed part of the International Bottom
Trawl Survey series, which is coordinated by ICES. Recording of the North Sea young fish survey
for inshore coastal waters of the central and southern North Sea began in the 1960s and intensified
in the 1970s, with annual surveys from 1981 to 2010, when the surveys finished. These data show
abundance of small fish and demersal species with a low maximum length have steadily increased
in absolute numbers over large parts of the North Sea during the past 30 years. Although fishing
appears to be the major driver of these changes it cannot fully explain the observed trend [33].

Analyses of a standard survey covering the whole of ICES Divisions VIIa and VIIf since 1993,
with additional tows northeast of Division VIIg have revealed an increase in the proportion of
mature fish coinciding with rising SST and a decline in recruitment and stock biomass at high
rates of fishing mortality [34]. A detailed study of demersal fish in ICES Division VIIe of the
Western English Channel (1989–2011) charts fluctuations in abundance and size classes for plaice,
sole, lesser spotted dogfish, blonde and thornback rays and declines in spotted ray and spurdog
abundances [35]. The data from the quarter 4 westerly groundfish survey (2002–2011) comprising
107 tows demonstrated a decline in length–frequency distribution of fish in both target and non-
target categories in response to commercial exploitation [36].

CEFAS data showed a slow but progressive decline in the trophic level of the demersal
community (1982–2000) [37]. Assessment of a more extensive segment of the timeseries found that
change had only occurred during the past two decades and that effects of fishing on the trophic
structure of fish communities were more complex than previously assumed. A heterogeneous
latitudinal response to warming detected within the dataset reflects a northward shift in the mean
latitude of abundant, widespread thermal specialists. By contrast, a southward shift of small,
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abundant warm water species with limited occupancy and a northern range boundary in the
North Sea was observed [38].

Meta-analyses of fisheries-independent data from the FishBase dataset (http://www.fishbase.
org) of sustained observations including those collected by CEFAS, Defra and UK scientific
institutes examined the impacts of climate change for over 100 million individual fish sampled
over 1.2 million km2 from 1980 to 2008 across the continental shelf seas around the UK and
Ireland. The findings demonstrated responses to warming in 72% of common species, with
three times more species increasing in abundance than declining. These trends are reflected in
international commercial landings [39]. Profound reorganization of the relative abundance of
species in local communities occurred despite decadal stability in the presence–absence of species,
with the majority of common northeast Atlantic fishes responding significantly to warming [39].
Climate warming has also driven vertical distributional shifts in demersal fish in the North
Sea with the whole demersal fish assemblage deepening by approximately 3.6 m following the
thermal gradient to cooler waters [38].

(b) Nearshore observatories
The Western Channel Observatory, run by PML and the MBA, forms a central hub for
long-term sampling including the E1, L4 and L5 observing stations. Decadal-scale changes
in phytoplankton, zooplankton and larval fish abundance, with subsequent changes in fish
stocks and pelagic community composition, across the twentieth century have been linked to
cyclical environmental patterns (‘Russell cycle’) [40] changes in weather and pervasive global
warming [41].

Between 1953 and 1972, the MBA completed over 1500 trawls for the standard haul in the
waters off Plymouth [1], with trawls continuing on a quasi-monthly basis to date. The data show
how climatic warming between (1970s–2000s) has driven changes in inshore fish assemblages
of the English Channel towards dominance by ‘warmwater’ species [9]. Dichotomous size-
dependent responses of species to climate change and commercial fishing over a century
scale included rapid responses of small-bodied species to the prevailing thermal environment,
suggesting their life-history traits predisposed populations to respond quickly to changing
climates. Larger species declined in abundance and size, reflecting expectations from sustained
size-selective overharvesting [42]. Climate change has also influenced the phenology of the squid
Loligo forbesi, with migration shifting earlier between the warmest and coldest years (1953–
1972) in the Western English Channel [43]. Temperature has a contrasting influence on the
migration phenology of the Boreal flounder, Platichthys flesus that migrates from estuarine habitat
to spawning grounds at sea earlier in cooler years [44].

Benthic faunal samples taken at various locations near the Plymouth L4 station and Eddystone
lighthouse since 1895 have demonstrated significant differences in community composition
between the early-, mid- and late-1900s, with a reduction in echinoderm diversity, decreased
abundance of large molluscs and increased small-bodied mollusc and amphipod abundances
[5]. The study area is an important beam trawling and scallop-dredging ground and the
observed differences are concomitant with changes associated with disturbance from demersal
fishing activities.

The benthic time-series sites maintained by the Dove Laboratory are used to investigate multi-
decadal dynamics of the North Sea ecosystem. Analyses of these data have established links
between the zooplankton and benthos abundances with periods of cooling and warming [45].
Links to changes in benthic assemblages and in some instances extirpation of species in the central
North Sea have also been made [46].

A 25 year study at Hinkley Point, Bristol Channel from 1980 showed a striking stability in
the population dynamics of the crustacean Crangon crangon, [47], whereas sole recruitment in
this nursery area was positively correlated with water temperatures and growth was positively
correlated with the winter North Atlantic oscillation (NAO). The results of this long-term
monitoring show how climate change impacts can vary with species and trophic level.

http://www.fishbase.org
http://www.fishbase.org
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(c) Coastal surveys and timeseries
The MBA-led Marine Biodiversity and Climate Change Project (MarClim) has carried out annual
rocky intertidal surveys at 120 sites around the UK since 2002 and at 63 sites during 2003 in
Ireland. MarClim data have shown some of the fastest shifts in biogeographic range limits for
any species in response to pervasive climate change, with poleward extensions of northern
boundaries for Lusitanian gastropods Phorcus (Osilinus) lineatus and Gibbula umbilicalis, the
macroalga Bifurcaria bifurcata, barnacle Perforatus perforatus and limpet Patella depressa [18,48]. By
contrast, Boreal species such as the barnacle Semibalanus balanoides and the kelp Alaria esculenta
have declined in abundance in response to warming [18]. These species track both periods of
previous warming and cooling in the UK climate and the onset of pervasive warming in the
mid-1980s, demonstrating their importance as sensitive climate indicator species [18]. Rates of
change are species-specific, with resultant changes to biodiversity and ecosystem functioning [20].
The long-term impact of extreme weather events is also tracked by MarClim. The reef building
polychaete Sabellaria alveolata suffered severe mortalities throughout Wales during the cold winter
of 1962/1963 but has recolonized locations close to its northern range limit during the period of
recent climate warming [49,50].

Species-specific responses to climate change result in changes to community and ecosystem
structure. The MarClim Cellar Beach timeseries (annual since 1952) shows a tight relationship to
local SST with Lusitanian Chthamalid barnacles being more abundant after warmer years, and the
Boreal S. balanoides more abundant after cooler years [16,51]. In contrast to the strong influences
detected for plankton, no significant relationship to the larger climate indices of the NAO or the
AMO is evident [52].

Long-term timeseries of bivalve populations in Dublin Bay, Ireland, have yielded valuable
information about the decline in bivalve populations during the 1980s and 1990s but little change
in overall biodiversity [53,54]. The majority of species showed a decline in numbers in the decade
1985–1995 with Cerastoderma edule becoming locally extinct. Older records suggest that these low
numbers may not be exceptional, and may also be tied in to a 6–7 year cycle. Between 1995 and
2001, there was a recovery in most species per sites, and a spectacular 10-fold increase in the
numbers of Tellina tenuis [53].

4. Impact of sustained observations on the global research field of climate
impacts

Major advances in our understanding of how marine biodiversity have been impacted by
local and regional-scale pressures have been made from analyses of the individual datasets
from sustained observations. Long-term data have demonstrated the importance of factors
underlying recruitment fluctuations in commercial species, periodic failures and switches in
pelagic fisheries [55] and the influence of fluctuating climate driving marine ecosystems [17]
including phenological shifts in migrations [43,44], and phenology of plankton including larval
stages [42]. The importance of potential mismatches between the phenology of food and larval
fish in a period of climate change has been demonstrated [56], providing substantive evidence for
Cushing’s long-espoused theory on match–mismatch [57].

The multi-decadal timespan and wide spatial coverage of MarClim data has allowed the
development and testing of predictive ecological climate models that have been instrumental
in forecasting changes to individual species and intertidal biodiversity that have wider temperate
implications and have been cited globally. These include dynamic species distribution models to
predict population abundances of intertidal species at specific sites based on SST and wave fetch
and the relative roles of local environmental temperature versus basin-scale oscillations [52,58].

The UK Marine Environmental Change Network (MECN), established in 2003 as a focal
centre for long-term marine data from around the British Isles and Ireland, aims to separate
global, regional and local anthropogenic impacts from natural fluctuations. Over 300 timeseries
of biological sustained observations were brought together by MECN to detect the existence of
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potential regime shifts across benthic and pelagic foodwebs. State-space models detected a step-
change consistent with a regime shift in the central and southern North Sea in 1989 and again
in 1994, whereas pervasive long-term trends were observed in the northern and southern North
Sea [59].

Global meta-analyses of the rates of species range shifts in response to climate change have
also heavily used the UK sustained observations datasets. Poloczanska et al. [60] calculated
average global rates of species range shifts of 72 km per decade using a timescale between
1960 and 2009. These long-scale assessments feed into important global assessments such as the
Intergovernmental Panel for Climate Change Fifth Assessment Report [61].

5. Science-policy applications
Marine policy for UK regional seas was initiated in 1969 with the publication of, ‘Conservation
policy in the shallow seas’ by the Natural Environment Research Council (NERC), and the then
Nature Conservancy Council (NCC) [62]. At the time, a suitable evidence base on environmental
change was lacking and therefore little could be done to address issues raised. The impetus
towards a formal marine conservation policy for the UK came from an NCC/NERC working
party convened in 1975 that recommended ‘a study of the many factors regulating the natural
fluctuations in marine communities should be seen as a basic and continuing contribution to a
marine conservation programme’ [63].

The establishment of new legislation in the 1980s increased environmental awareness, and
the requirement for basic data on the distribution of habitats and species became paramount.
This led to a vast expansion in data collecting activities in the 1980s through projects such as the
Marine Nature Conservation Review [64]. While the need for data was never greater, funding
for many long-term marine sustained observations was withdrawn, with approximately 40% of
timeseries across Europe stopped [65]. Since the 1980s, significant legislation has been developed
supporting the sustainable use of marine ecosystems. The 1992 UN Convention on Biological
Diversity prompted a worldwide response to address the crisis of a sustained biodiversity loss
and underpins current legislation.

The UK marine monitoring and assessment community made a commitment to provide
coordinated advice on the state of the UK seas and climate change impacts using high-
quality, robust and peer-reviewed evidence. The UK Marine Science Strategy was established
to summarize how marine ecosystem state and trends relate to the governmental vision of having
‘clean, healthy, safe, productive and biologically diverse oceans and seas within one generation’,
prompting the Marine and Coastal Access Act 2009 with high-level priorities, including sustained
long-term monitoring to underpin the provision of this evidence [66].

The European Marine Strategy Directive was created to more sustainably use the marine
environment across Europe and achieve Good Environmental Status (GES) of Europe’s seas by
2020 through the provision of 11 descriptors [67]. CPR data have been used to develop UK and
OSPAR pelagic indicators of the state of planktonic communities [68], sustained observations of
North Sea fish have been instrumental for fish stock indicators [69] and MarClim datasets have
been used in development of several UK benthic indicators of GES for Descriptors 1 Biodiversity,
four Foodwebs and six Seabed Integrity [70].

Sustained observations are also proving instrumental in the communication of climate change
impacts through the Marine Climate Change Impacts Partnership (MCCIP) Annual Report Cards
[71], Charting Progress State of the UK Seas assessments [72], the National Ecosystem Assessment
[73], including MarClim, CPR, MBA and CEFAS fish and benthic timeseries, SMRU, British Trust
for Ornithology and the UK Seabird Monitoring Programme.

6. Strategy for sustained observations in the twenty-first century
Many timeseries are extremely vulnerable with threats to funding. Some have ceased and
others run on an ad hoc funding basis with insufficient funds for sample processing and data
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analysis. MCCIP published the results of a survey on knowledge gaps for climate impacts
research and policy in the UK and Ireland in 2012 [74]. This noted that both UK and Scottish
strategy documents include ‘responding to climate change and its interaction with the marine
environment’ as one of three high-level priorities. Therefore, there is a clear requirement for the
policy community to understand the current state of marine climate change research, much of
which stems from sustained observations.

MECN acted as a hub for UK sustained observations between 2002 and 2012. No funding
currently exists for networking activities between the organizations responsible for the timeseries.
A more linked approach to funding sustained observations of marine biodiversity between the
government agencies and departments and the UK Research Councils would ensure extant
timeseries continue with a long-term financial commitment to funding as opposed to the current
annual applications and renewal of funding.

Nationally accredited marine biodiversity data centres including the Data Archive for
Seabed Species and Habitats DASSH, Fisheries Data Archive Centre FishDAC and the
National Biodiversity Network are Medin-accredited data archives. Establishing DOI status
for sustained observations held by these data archive centres would greatly assist with the
demonstrations of how widely used the data are in scientific research programmes and policy-
related assessments.

As financial resources become squeezed, data collection by Citizen Science programmes
could become crucial to fill in gaps. Citizen Science projects have a long history in the UK,
developing from the rise of the amateur naturalist in the late 1800s and the establishment of
Natural History Societies. For example, over 40 000 volunteer birdwatchers have contributed to
long-term data collected by BTO since 1933 and made significant contributions to the scientific
literature on bird ecology. Seasearch established in 1981 has collected more than 300 000 species
records from volunteer divers around the UK and Ireland. The data have recently informed the
recommendations of Marine Conservation Zones around the UK. Many other projects are in their
infancy, for example OPAL, The Big Sea Survey, ClimateWatch and Marine Metre Squared and
could be used to fill existing data gaps.

7. Concluding comments
Sustained observing needs sustained funding. Such funding along with associated networks is
essential to maximize coverage to disentangle local and regional change from global trends.
Long-term observations also generate hypotheses for experimental testing in the laboratory and
field; they enable calibration and validation of models providing predictive power and therein
exploration of future scenarios. They also show nonlinear responses of complex marine systems
to multiple stressors leading to regime shifts. Such scientific insights are essential for not only
better understanding of the oceans, but also for their sustainable management in a rapidly
changing world.
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