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The understanding of neural activity patterns is fundamentally linked to an

understanding of how the brain’s network architecture shapes dynamical pro-

cesses. Established approaches rely mostly on deviations of a given network

from certain classes of random graphs. Hypotheses about the supposed role

of prominent topological features (for instance, the roles of modularity, network

motifs or hierarchical network organization) are derived from these deviations.

An alternative strategy could be to study deviations of network architectures

from regular graphs (rings and lattices) and consider the implications of such

deviations for self-organized dynamic patterns on the network. Following this

strategy, we draw on the theory of spatio-temporal pattern formation and pro-

pose a novel perspective for analysing dynamics on networks, by evaluating

how the self-organized dynamics are confined by network architecture to a

small set of permissible collective states. In particular, we discuss the role of pro-

minent topological features of brain connectivity, such as hubs, modules and

hierarchy, in shaping activity patterns. We illustrate the notion of network-

guided pattern formation with numerical simulations and outline how it can

facilitate the understanding of neural dynamics.
1. Background: self-organized dynamic patterns in complex
brain networks

A wide range of biological systems are organized in a network-like fashion.

Accordingly, the large and diverse field of network science has since its very begin-

ning resorted to biological examples to motivate, propose and refine methods for

the analysis of complex networks (e.g. [1–3]). In this way, network science has

become a new important paradigm for the understanding of biological systems.

Clearly, one of the most fascinating examples of a biological network is the

brain. The way in which the brain’s network topology shapes, organizes and con-

strains dynamical processes has received a great amount of attention in recent

years and has provided new perspectives in theoretical neuroscience [4,5].

Another diversely explored paradigm for the understanding of biological sys-

tems is the concept of self-organized patterns, where collective modes of the system

emerge from the local interactions of components (e.g. [6]). Diverse forms of dis-

tributed computation and global organization are implemented in biological

systems via such local interactions, from the rich ornaments of seashells and the

diversity of animal coat patterns to the myriad of fractal structures in biology

and pattern-forming colonies of bacteria. Particularly fascinating are patterns

changing with time, resulting in spatio-temporal patterns, such as propagating

waves and aggregation streams. Bacteria form large branched and nested aggrega-

tion-like patterns to immobilize themselves against water flow (see Levine &

Ben-Jacob [7] for a review of various such forms of pattern formation). The individ-

ual amoeba in Dictyostelium discoideum colonies initiates a transition to a collective

multicellular state via a quorum-sensing form of communication: a cAMP signal

propagating through the community in the form of spiral waves and the
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subsequent chemotactic response of the cells leads to branch-

like aggregation streams (e.g. [8–10]). So far, however, these

patterns have been mostly discussed for regular interaction

architectures, such as lattices.

In this review, we explore a novel view where these two

paradigms, network science on the one hand and self-

organized pattern formation on the other, are functionally

integrated. We discuss some recent findings regarding dynam-

ical processes in topologically complex brain networks, to

demonstrate the occurrence of pattern formation guided by the

characteristic network architecture. Furthermore, we illustrate

with a few simple examples that network-guided pattern forma-

tion is a universal and unifying approach for understanding a

heterogeneous set of observations about neural dynamics in

structured graphs. Our goal, thus, is to provide the first steps

in a unifying framework for these diverse perspectives, explain-

ing how dynamics and topology are tuned in a synergistic

fashion via network-guided biological self-organization.

We focus on the organization of excitable dynamics on

graphs. On regular graphs (i.e. rings and lattices), the natural

approach of describing dynamical processes is by resorting to

the language of large-scale spatio-temporal patterns emerging

from local interactions in a self-organized fashion. The exact

layout of the patterns is typically determined by random fluctu-

ations or by systematic differences between the nodes of the

graph. Here, we show that on a graph with less regularity, pat-

terns can be confined by the network architecture to a few

network-compatible modes. This phenomenon of network-

guided pattern formation can facilitate the interpretation of

neural dynamics.

The logic of this paper is as follows. First, in §1c, we

describe some fundamental topological features of brain net-

works that have received attention over the past few years, in

particular, their heterogeneous degree distribution (§1c(i)),

resulting in the existence of hubs; as well as modules

(§1c(ii)) and a hierarchical organization of networks

(§1c(iii)). Next, in §2, we introduce two minimal dynamical

models, helping us to probe these dynamics for the phenom-

enon of network-guided pattern formation, specifically, in

§2b reaction–diffusion dynamics as the prototype of

pattern-forming dynamical systems, and in §2c a simple

three-state model of excitable dynamics, which has been

employed in various systems for studying the interplay of

network topology and dynamics. Finally, in §3, we attempt

to derive from these observations some tentative general

conclusions for the organization of brain dynamics.
(a) Theories of spatio-temporal pattern formation
Theories of spatio-temporal pattern formation have contributed

fundamentally to a deep understanding of natural processes,

particularly in biology. One striking example is Turing’s con-

cept of reaction–diffusion processes, which has a vast range

of applications—from biology to social systems [11]. At the

same time, these theories (or classes of models) are well

embedded in the broader framework of self-organization.

Self-organization is the emergence of large-scale patterns,

based on collective dynamical states, from local interactions.

Clearly, on regular architectures (such as rings or lattices),

the emergence of patterns can be easily assessed. In more intri-

cately connected systems, such collective states have been

described only for simple cases such as synchronization [12].

Over the past few years, some progress has been made in
extending the concept of patterns on graphs to more general

forms of dynamics, for example, to reaction–diffusion systems

[13] and to a wave-like organization of excitable dynamics

around hubs [14].

(b) Merging the perspectives of pattern formation and
complex networks

Very much in the light of Nakao & Mikhailov [13] and

Müller-Linow et al. [14], we want to understand what the net-

work equivalents of classical spatio-temporal patterns are,

and how, for example, the presence of hubs and modules

in networks relates the processes behind spatio-temporal

patterns to the theory of complex systems.

In Müller-Linow et al. [14], it was shown that different topo-

logical features of complex networks, such as node centrality

and modularity, organize the synchronized network function

at different levels of spontaneous activity. Essentially, two

types of correlations between network topology and dynamics

were observed: waves propagating from central nodes and

module-based synchronization. These two dynamic regimes

represent a graph-equivalent to classical spatio-temporal pattern

formation. Remarkably, the dynamic behaviour of hierarchical

modular networks can switch from one of these modes to the

other as levels of spontaneous network activation change.

In addition, several other studies have attempted to relate

notions of spatio-temporal pattern formation with dynamics

on graphs. Wang et al. [15] emphasized that a certain form of

noise-induced pattern formation, spatial coherence resonance,

is suppressed by the presence of long-ranging shortcuts and, in

general, a small-world network architecture. Liao et al. [16]

rediscovered the target waves around hub nodes previously

described by Müller-Linow et al. [14]. They emphasized that

large portions of the graph can be enslaved by such patterns

(see also [17,18]). The interesting phenomenon of synchron-

ization waves described by Leyva et al. [19] resorts to an

embedding of the network in real space. Synchronization

waves in this context are characterized by the degree of

information transmission.

The waves-to-sync transition in hierarchical graphs (con-

centric waves around hubs are gradually substituted by

synchronous activity within modules) with an increasing rate

of spontaneous activity (as described by Müller-Linow et al.
[14]) is one example of such collective modes selected for and

stabilized by the graph’s topology and dynamical parameters.

The dominant (and functionally important) feature of hierarch-

ical graphs is that hierarchy (independently of its exact

definition) shapes every topological scale. Other graph properties

(such as modularity or a broad degree distribution) typically

reside on a single scale. Therefore, potentially a large number

of self-organized, collective modes can ‘lock tot’ hierarchical

topologies. We argue that this ‘versatility’ of hierarchical net-

works is the main reason for their ubiquity in biological systems.

(c) Essential aspects of the organization of brain
networks

Brain networks can show features of different prototype net-

works (figure 1). For example, an individual brain network

might possess properties of small-world, modular or hierarch-

ical networks. Network topology might also differ at different

scales of network organization, for instance, showing random

or regular axonal connectivity at the scale of small neuronal
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Figure 1. Prototype network topologies and brain connectivity examples. (a) Erdös – Rényi random network. (b) Regular or lattice network with dense connectivity
between neighbours. (c) Modular network with two modules. (d ) Hierarchical modular network with two modules consisting of two sub-modules each. (e) Rat
thalamocortical network of 23 brain regions [20]. ( f ) Cat connectivity among 55 cortical and subcortical regions [21,22]. (g) Connectivity among 30 regions of the
primate (macaque monkey) visual cortex [23,24]. (h) Connectivity among 33 human brain regions (left hemisphere) based on DSI [25]. In all panels, regional nodes
are arranged on a circle, with node colour indicating the degree of the node, that is, the number of its connections (light grey: low degree; dark grey: high degree).
Nodes are arranged to minimize the step distance along the circle between connected nodes, thus also indicating regions of densely connected network modules
(module borders are indicated through bars outside the circle).
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populations and modular connectivity for cortico-cortical fibre

tracts [26]. Generally, however, biological neural networks do

not conform completely to any of such benchmark networks.

Instead, they combine different topological features, including

a non-random degree distribution, the existence of network

modules as well as the hierarchical combination of such fea-

tures at different scales of organization. These features are

reviewed in the following paragraphs.
(i) Heterogenous degree distribution
The term random network typically refers to Erdös–Rényi

random networks [27], in which potential connections

between nodes are established with a probability p. This

probability, for a sufficiently large network, is equivalent to

the edge density of the network; that is, the connection dens-

ity. In the creation of random networks, the process of

establishing connections resembles flipping a coin where an

edge is established with probability p (and not established

with probability q ¼ 1 2 p). Thus, the distribution of node-

degrees follows a binomial probability distribution. Neural

networks, however, also contain highly connected nodes, or

hubs, that are unlikely to occur in random networks.

Examples for such highly connected hubs are subcortical

structures, such as the amygdala and hippocampus, or corti-

cal structures, such as the frontal eye field and the lateral

intraparietal region [28,29]. Therefore, neural systems have

a heterogeneous degree distribution containing hubs and

share some of the features of scale-free networks [28,30].
(ii) Modules
Another near-ubiquitous feature of brain networks is the occur-

rence of modules, within which network nodes are more
frequently or densely linked than with the rest of the network

[24,31]. Modularization may be a consequence of the increasing

specialization and complexity of neural connectivity in larger

brain networks [32]. Sensory organs and motor units require

functional specialization, which begins with the spatial aggre-

gation of neurons into ganglia or topologically into modules

(figure 1c), as in the roundworm Caenorhabditis elegans
[33–35]. For the cortical network of the cat (figure 1f ), modules

correspond to large-scale functional units for fronto-limbic,

somatosensory-motor, auditory and visual processing. Spatial

and topological modules do not necessarily overlap [36]; how-

ever, both tend to be well connected internally, with fewer

connections to the rest of the network. There exist a wide

range of different algorithms to detect clusters of a network

(e.g. [24,37,38]).

(iii) Hierarchy
Another reflection of network complexity is the combination,

or encapsulation, of topological features at different scales of

network organization, which may be termed hierarchy. For

example, small modules may be encapsulated in larger

modules, which in turn may be contained in even larger mod-

ules, resulting in hierarchical modular networks (figure 1d)

[39,40]. One example of such hierarchical modularity is the

cortical visual system of the non-human primate, the rhesus

macaque monkey. Here, the visual module consists of two

network components (figure 1g): the dorsal pathway for pro-

cessing object movement and the ventral pathway for

processing objects’ features such as colour and form

[23,24,41]. Alternative concepts of network hierarchy exist

that are based on a sequential network organization or a

local versus global access of network nodes (such as in

networks with hubs).
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Figure 2. Cellular automation model of a reaction – diffusion system: (a) interaction potential of elements as a function of the distance (adapted from Young [47]);
(b) example of a pattern arising in a one-dimensional system (a ring graph); dark colour: high inhibitor, light colour: high activator. Parameters are: r1 ¼ 1, r2 ¼ 3,
W1 ¼ 1, W2 ¼ 20.3, H ¼ 3. (Online version in colour.)
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Out of these topological features, hierarchy, though poorly

conceptualized at the moment, is particularly interesting.

Hierarchical organization is an essential attribute of complex

biological networks. It implies across-scales information

exchange between local signal processing and global inte-

gration [42]. Moreover, hierarchy is linked to aspects of top-

down control, regulation and efficiency (e.g. [2,43,44]) and

can hint on developmental principles at evolutionary and

ontogenetic scales. For example, gene duplication and area

specialization have been discussed as generators of hierarchical

neural systems. While there has been impressive progress in

understanding biological systems at each hierarchical level

(e.g. modelling of single neurons, neuroimaging of the whole

brain), the across-scales organization of these systems (i.e.

how properties on one scale imply functional features on

another scale) is much less well understood, but see Breakspear

& Stam [45]. In general, hierarchical network features have been

rarely analysed and are only poorly understood at the moment.
2. Observations: features of dynamic patterns in
complex brain networks

(a) Benchmark networks, brain connectivity examples
and model dynamics

We show four different examples for structural brain networks

(figure 1e–h), two of which are analysed below regarding the

link between topology and dynamics: first, the rat thalamo-

cortical network of 23 cortical and subcortical regions based

on tract-tracing studies [20]; second, the cat brain network of

55 cortical and subcortical regions based on tract-tracing

[24,31,46]; third, the rhesus monkey network of 30 brain

regions of the visual cortex, excluding the less well-character-

ized areas medial dorsal parietal and medial intraparietal,

based on tract-tracing [23,24]; and finally, the network of 33

human cortical regions in the left hemisphere based on diffu-

sion spectrum imaging (DSI) [25]. For visualization purposes,

all nodes were arranged such that the step distance along a

circle was minimized for connected nodes, resulting in the

modular grouping of densely interconnected sets of nodes [31].

Patterns arising in these networks are explored with two

different simple dynamics, a reaction–diffusion system and a

basic excitable model.
(b) An example of network-shaped self-organized
dynamics: Turing patterns on graphs

Let us start with a thought experiment based upon Turing pat-

terns arising in one-dimensional reaction–diffusion systems.

In particular, let us consider these patterns established on a

discretized one-dimensional system, that is, a (closed) chain

of elements.

In order to study such dynamics on arbitrary networks, we

here resort to a cellular automaton representation of reaction–

diffusion dynamics, similar to the one discussed by Young [47].

The update rule for each node is given by

xi(tþ 1) ¼ Q H þW1

X
d(i,j)�r1

xj(t)þW2

X
r1,d(i,j)�r2

xj(t)

0
@

1
A,

(2:1)

where d(i,j) denotes the (topological) distance between nodes i
and j and Q(x) yields 1 for x . 0 and 21 otherwise. The quan-

tity H can be considered as an external field biasing the balance

of activator (þ1) and inhibitor (21) states. Figure 2a sketches the

interaction potential underlying the system from equation (2.1),

characterized by the range r1 and strength W1 of the activator

and the range r2 and strength W2 of the inhibitor. An example

of the patterns arising in this system is shown in figure 2b.

Starting from random initial conditions, rapidly a pattern of

alternating spatial regions dominated by the activator (light

colour) and the inhibitor (dark colour), respectively, emerges.

This is a striking feature of Turing patterns: in spite of the

spatial isotropy, some neighbouring elements are in identical

states, whereas others display sharp differences. Here, the

dynamics self-organize on a spatially homogeneous system

(a chain ‘network’).

The overlay of 100 such asymptotic patterns (figure 3a)

shows that each spatial site is equally likely to host any of

these two regions.

Let us now disrupt the spatial homogeneity by adding

a few long-ranging shortcuts. We see (figure 3b) that the

range of possible patterns self-organizing on these systems

becomes confined by the spatial inhomogeneities. This is the

general phenomenon we would like to call network-shaped
self-organization.

Figure 4 shows the result of activator–inhibitor dyna-

mics (as given by equation (2.1)) on the empirical networks



(a) (b) 

Figure 3. The network is represented on the inside: (a) 100-node ring graph, representing a regular one-dimensional space with periodic boundary conditions; (b) small-
world graph obtained from (a) by adding 10 random shortcuts. Around the network, the asymptotic high-activator (white) and high-inhibitor (black) regions are shown as
rings for 100 runs, each starting from random initial conditions. The outside ring represents the activator – inhibitor asymmetry (number of runs with high activator minus
number of runs with high inhibitor computed across the 100 runs shown) for each node. While the patterns average out on the ring graph (a), the shortcuts select certain
topology-compatible modes, leading to systematic high-activator and high-inhibitor regions (b). Parameter values are the same as in figure 2. The representation of
asymptotic states arranged around the network is the same as indicated below the space – time plot in figure 2b. (Online version in colour.)

(a) (b)

(c) (d )

Figure 4. Simulation of network dynamics with the same layout as for figure 3, but for the empirical networks shown in figure 1e – h: (a) rat thalamocortical
network, (b) cat cortical network, (c) macaque visual cortex and (d ) human cortical network (left hemisphere). (Online version in colour.)
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from figure 1, i.e. for rat, cat, macaque and human.

The two main observations are that (i) the phenomenon

of network-guided self-organization is also seen in

the network topologies derived from empirical data and
(ii) apparently, the confinement of patterns is not trivially

linked to select topological features (degree, modularity,

etc.), but rather seems to arise from the interplay of several

of these features.
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Figure 5. Schematic of the minimal topological situations underlying co-
activation of nodes: (a) co-activation by a common neighbour, (b) sequential
activation due to direct links and (c) enslavement of nodes by a short (here
three-node) cycle. (Online version in colour.)
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(c) Influence of specific topological features on
excitable network dynamics

In a range of previous investigations on excitable dynamics on

graphs [14,48–50], we have identified several examples of

network-shaped self-organization and, in particular, specific

topological features serving as ‘organizers’ of self-organized

dynamical modes. In the following, we illustrate some of

these topological organizers, particularly hubs, modules and

network hierarchy.

We use a three-state cellular automaton model of excitable

dynamics, representing a stylized biological neuron or popu-

lation. The model has been termed SER model, as each node

can be in an susceptible/excitable (S), active/excited (E) or

refractory (R) state. The model operates on discrete time

and employs the following synchronous update rules.

A transition from S to E occurs when at least one neigh-

bour of the S state node is active. After one time step in the

state E, a node enters the state R. The transition from R to S
occurs stochastically with the recovery probability p, leading

to a geometric distribution of refractory times with an aver-

age of 1/p. The model may also include spontaneous

transitions from S to E with a probability f (e.g. [14,48,49]).

In Hütt et al. [50], a model variant with a relative excita-

tion threshold was used. For a node i with ki neighbours, the

transition from S to E occurs when at least kki neighbours are

active. The parameter k thus serves as a relative excitation

threshold. In such a relative-threshold scenario, low-degree

nodes are easier to excite (requiring a smaller number of

neighbouring excitations) than high-degree nodes.

For p ¼ f ¼ 1, we have a deterministic model, which was

investigated in detail in Garcia et al. [18], where the role of

cycles in storing excitations and supporting self-sustained

activity was elucidated. The respective influence of hubs

(high-degree nodes) and modules in shaping activation pat-

terns has been investigated with a focus on spontaneous

excitations [14,49]. By determining the length of unperturbed

propagation of excitations, such spontaneous excitations

select the ‘topological scale’ on which such patterns can be

systematically formed. Relatedly, a phenomenon of stochastic

resonance (noise-facilitated signal propagation) has been evi-

denced in so-called ‘sub-threshold’ networks, that is, for

which a single input excitation does not propagate to the

output nodes [50].

The discrete dynamics facilitate a discussion of how exci-

tation patterns are shaped by topological features, due to the

possibility of exhaustively mapping all system states and the

feasibility of computing large numbers of network and

parameter variations. The approach allowed us to assess quali-

tatively contributions to functional connectivity and the

relationship between structural and functional connectivity.

Let xi(t) [ {S, E, R} be the state of node i at time t. It is

convenient to discuss the excitation pattern instead

ci(t) ¼
1, xi(t) ¼ E
0, xi(t) ¼ S _ R

�
:

In this way, we can define a co-activation matrix,

Cij ¼
X

t

ci(t)cj(t),

and also a time-delayed co-activation matrix (or signal
propagation matrix),

C(þ)
ij ¼ Ci!j ¼

X
t

ci(t)cj(tþ 1):

Figures 5 and 6 compare several minimal topological

situations in the context of possible contributions to these

matrices. Figure 5a shows a three-chain with an excitation

entering at the middle node, leading to a joint excitation at

the other two nodes and, consequently, a contribution to Cij.

Even though other entry points of excitations, as well as an

embedding of this small network ‘motif’ into a larger network

lead to a multitude of other contributions to both Cij and Ci!j,

we can nevertheless deduce that common neighbours lead to

an increase in synchronous activity. When a link is added to

the two nodes under consideration (thus moving from a

three-chain to a three-node loop), the sequential excitation of

the two nodes becomes possible (in addition to the previous

modes), thus allowing for a contribution to Ci!j.

Figure 5c illustrates a more sophisticated contribution to

network-shaped self-organization, namely the enslavement

of nodes by periodic activity of short cycles. This phenomenon

has been analysed in detail in Garcia et al. [18].

(i) Heterogeneous degree distribution
A heterogeneous degree distribution means that some nodes

have more connections than others, resulting in the occur-

rence of hubs, which also have characteristic dynamic

features. First, hubs are more active than low-degree nodes.

Second, Garcia et al. [18] showed that the node degree is

linked to the directed propagation of activity: high-degree

nodes (hubs) act as ‘senders’, whereas low-degree nodes act

predominantly as ‘receivers’ of activity. The reasons for this

behaviour are indicated in figure 6 which illustrates the mini-

mal topological mechanism of how propagating waves

organize around hubs (as explored by Müller-Linow et al.
[14]): single incoming excitations at a hub are amplified and

spread out in a time-synchronous fashion. On a long time

scale, the overlay of many such events leads to substantial

contributions to Cij in cases where nodes i and j have the

same distance from the hub.

(ii) Modules
In sparsely connected graphs, events of apparent transfer

of activity between nodes correspond to actual causal transfers.



(a) (b) 

Figure 6. Schematic of the minimal topological situations leading to ring waves around hubs: (a) an incoming excitation activates the hub and leads to a sub-
sequent excitation of all susceptible nearest neighbours; (b) susceptible nodes with a distance of 2 from the hub are then synchronously activated in the following
time step. (Online version in colour.)
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In such graphs, there may exist a correlation or even

anti-correlation between structural links and co-activations,

depending on the parameters of the specific dynamic model.

For instance, in the simple deterministic SER model outlined

above, sparse random graphs show an anti-correlation between

structural links and co-activations [18]. In denser networks, not

all apparent transfers of activity correspond to actual causal trans-

fers. In particular, in dense local neighbourhoods of networks,

that is, within modules, the local (anti-)correlation between

links and co-activations becomes reshaped by the larger scale net-

work features. Specifically, common input of activity from within

the same modules results in modular co-activations and appear-

ance of correlation between pairwise links and co-activations

[18]. This is an important finding, because it suggests that the fre-

quently made observation between structural and functional

links in brain connectivity [51,52] is primarily induced by the

modular organization of such networks.
(iii) Hierarchy
Hierarchy can be expressed by different topological features of

a network, such as a combination or encapsulation of features,

or sequential arrangements of connectivity. Consequently,

there may be different ways in which hierarchy shapes neural

dynamics. For example, in hierarchical networks combining

modular and hub features, one can observe either hub- or

module-driven dynamics of the kind discussed above. These

dynamics switch depending on the amount of spontaneous

node activation or noise in the system [14]. Therefore, this par-

ticular hierarchical arrangement provides a transition between

different dynamic regimes.

Neural systems are implicitly and explicitly hierarchical.

They are explicitly hierarchical, because in many cases the func-

tional components are spread over many scales in space and

time (e.g. single ion channels up to brain areas). They are

implicitly hierarchical, because their organization and underlying

interaction patterns (at a specific spatial or temporal scale) often

have a nested and layered structure. This implicit hierarchical

organization (the network-related hierarchy) has been impli-

cated in a variety of optimal behaviours and dynamic

functions by merging different topological features (e.g.
modularity and integration). Moreover, hierarchy is related to

the compressibility of random walks [53], to the coexistence of

time scales [12], to the range of possible responses upon stimu-

lation [14] and to the storage of patterns in the networks [54].

The impact a hierarchical structure leaves in dynamical pro-

cesses can qualitatively be described as multi-scale patterns:

the distribution of dynamical values across the graph remains

invariant under topological coarse-graining (or, more specifi-

cally, it obeys well-defined scaling relationships, when such

coarse-graining is performed iteratively [44]).

More generally, hierarchical (modular) networks facilitate

network-sustained activity [40,55,56], which is a precondition

for criticality. The link between network topology and criti-

cality can be made explicit via the topological dimension,

which is finite for some (in particular, sparse) hierarchical

modular networks, resulting in expanded parameter regimes

for criticality, so-called Griffiths phases [57].
3. Conclusion
(a) A new perspective of neural network dynamics
If the brain were a lattice, neural activity would necessarily pro-

duce rich and diverse spatio-temporal patterns, such as spiral

waves, synchronous oscillations and concentric waves emanat-

ing from periodically firing pacemakers. Noise would be able

to interact with the deterministic dynamics to produce coherent

activity from, for instance, subthreshold activity. The system

would thus display noise-facilitated, noise-induced and

noise-sustained patterns, according to well-established prin-

ciples of self-organizing patterns. Quite obviously, the brain

is not a lattice. Neither can a random graph serve as a plausible

representation of the intricate overlay of structural elements on

all scales observed in real biological neural networks.

Here, we have formulated a new perspective on neural

dynamics by drawing on concepts of spatio-temporal pattern

formation. The heterogeneous network architecture is then

viewed as a structural property confining patterns to few pos-

sible, network-compliant modes. Typical network analyses

highlight and investigate deviations from random graphs.



0

0
(a) (b) (c)

(d ) (e) ( f )

10

10

20

20

30

30

40

40

50
50

no
de

 in
de

x

0

0

5

5

10

10

15

15

20

20

25

25

node index

no
de

 in
de

x

0 5 10 15 20 25
node index

0 5 10 15 20 25
node index

0 10 20 30 40 50 0 10 20 30 40 50

m
ac

aq
ue

 v
is

ua
l c

or
te

x
ca

t c
or

tic
al

 c
on

ne
ct

iv
ity

Figure 7. Cortical connectivity of the cat (a – c) and macaque visual cortex (d – f ), together with the resulting activation patterns. Column (a,d ): adjacency matrix
(intra-module links are represented in black and inter-module links are represented in grey). Column (b,e): average co-activation matrix Cij binarized with a threshold
of 0.46. Column (c,f ): time-delayed co-activation (or signal propagation) matrix Ci!j binarized with a threshold of 0.28. Figure adapted from Garcia et al. [18].

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130522

8

Our perspective draws attention to the deviations from

regular graphs, as these deviations are the pattern-confining

structural elements.
(b) Specific implications for understanding brain
dynamics

What concrete evidence exists for network-guided self-

organization in neurobiological data? Based on the topological

ingredients discussed in §1c and the subsequent detailed analy-

sis of different dynamical processes on graphs in §2, the notion

of network-guided pattern formation points to several building

blocks of excitation patterns relevant to neural dynamics and

shaped by network topology:

(1) hubs leading to the propagation of waves [14],

(2) modules leading to localized synchronization, which in

turn results in a strong agreement between structural

and functional connectivity (as discussed by Garcia

et al. [18]); and

(3) hierarchical network organization with the potential of

facilitating self-sustained activity, criticality, as well as

transitions between different dynamical behaviours (see,

in particular, Müller-Linow et al. [14] for the latter point).

Indeed, characteristic spatio-temporal patterns and their

implications for functional neural dynamics have been demon-

strated in different models of biological neural networks as

well as for empirical data. For instance, in the large-scale thala-

mocortical model of Izhikevich & Edelman [58], the authors

describe the emergence of waves and rhythms on different

scales. Additional empirical examples are spreading depression
waves associated with retinal migraine [59] and spiral wave

dynamics in the neocortex [60].

The spatial embedding of the networks can be a principal

factor for the arising patterns: activity is spreading to nearby

or adjacent patches of neural tissue, in which case networks

form a grid or lattice on the brain surface [61]. Qualitatively

speaking, patterns are observed in spite of the network, rather

than due to the network. By contrast, the phenomenon dis-

cussed in this paper addresses the possibility of self-organized

patterns where spatial embedding is not the determining

factor of the dynamic behaviour. In biological terms, connec-

tions might link distant brain regions disturbing spatially

localized dynamics [36,62]. Moreover, these long-distance con-

nections might not even affect delays for activity diffusion

due to increased axon diameter or myelination [63]. In these

cases, the network topology as such dictates the permissible

self-organized patterns.

The most striking example of network-guided self-

organization has been discussed in Moretti & Munoz [57],

where network heterogeneity generates regions in the network

with long activity transients (see also [64,65]). In Moretti &

Munoz [57], such Griffiths phase dynamics were suggested as

a mechanism for self-sustained activity and critical dynamical

states that do not require a careful parameter tuning. Similar

to the Turing patterns arising from reaction–diffusion dynamics

and the excitation waves around hubs discussed on §2c(i) and

figure 6, these dynamics are (less regular) forms of collective

dynamic behaviours emerging from local interactions.

Criticality is one example of pattern-like self-organized

collective dynamics. The importance of critical dynamical

states, associated with power-law distributions of activity,

has been intensely debated in neuroscience (e.g. [66,67]).
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Remarkably, the network prerequisites discussed for Grif-

fiths phase dynamics and a resulting expanded parameter

range for criticality (in particular a specific ‘spectral fingerprint’

[57] which can be directly computed from the adjacency matrix)

are similar to the requirements for Turing instability on graphs

[13] and the synchronizability of graphs [68].

A series of observations on the agreement of structural and

functional connectivity recently established using a simple

model of excitable dynamics on graphs [18] provide further

evidence for network-guided self-organization, in particular,

the observation that modules enhance the match between

structural and functional connectivity in the (dense) modules,

while a broad degree distribution tends to reduce the match

due to the organization of activity around hubs. Figure 7, as

well as the discussions by Garcia et al. [18], provide detailed

accounts of these associations. The effects captured by the sche-

matic representations of local dynamics shown in figures 5

and 6 are the underlying microscopic mechanisms for the

coactivation patterns observed in figure 7.

Modular node activations, and anti-correlations of

different modules, are a prominent and conspicuous feature

of functional neural dynamics (e.g. Fox et al. [69]). They

have been reproduced in a variety of large-scale com-

putational modes (e.g. [70,71]). Our thinking suggests that
this phenomenon may primarily result from the spatio-

temporal pattern formation in modular neural networks,

rather than depend on particular parameters of the local

node dynamics.

As a further example, in Hütt et al. [50], it has been

observed that signal coherence (measured by the amount

of interdependent excitations) is enhanced by noise in a

resonant fashion, with noise being provided by sponta-

neous excitations. This collective effect is similar to the

well-known phenomenon of spatio-temporal stochastic

resonance [72].

Finally and generally, the structural ingredients of self-

sustained activity have been intensely discussed over the

past few years (e.g. Deco et al. [71,73]). Network-guided

self-organization may provide a promising novel framework

for better understanding the network requirements for such

collective dynamic states of neuronal activity.
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Organization of excitable dynamics in hierarchical
biological networks. PLoS Comput. Biol. 4,
e1000190. (doi:10.1371/journal.pcbi.1000190)

15. Wang QY, Perc M, Duan ZS, Chen GR. 2010
Spatial coherence resonance in delayed
Hodgkin – Huxley neuronal networks.
Int. J. Mod. Phys. B 24, 1201 – 1213. (doi:10.1142/
S0217979210055317)

16. Liao X, Xia Q, Qian Y, Zhang L, Hu G, Mi Y. 2011
Pattern formation in oscillatory complex networks
consisting of excitable nodes. Phys. Rev. E 83,
056204. (doi:10.1103/PhysRevE.83.056204)

17. Qian Y, Huang X, Hu G, Liao X. 2010 Structure and
control of self-sustained target waves in excitable
small-world networks. Phys. Rev. E 81, 036101.
(doi:10.1103/PhysRevE.81.036101)

18. Garcia GC, Lesne A, Hütt M, Hilgetag CC. 2012
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