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Cognitive function depends on an adaptive balance between flexible dynamics

and integrative processes in distributed cortical networks. Patterns of zero-lag

synchrony likely underpin numerous perceptual and cognitive functions. Syn-

chronization fulfils integration by reducing entropy, while adaptive function

mandates that a broad variety of stable states be readily accessible. Here, we

elucidate two complementary influences on patterns of zero-lag synchrony

that derive from basic properties of brain networks. First, mutually coupled

pairs of neuronal subsystems—resonance pairs—promote stable zero-lag syn-

chrony among the small motifs in which they are embedded, and whose effects

can propagate along connected chains. Second, frustrated closed-loop motifs

disrupt synchronous dynamics, enabling metastable configurations of zero-

lag synchrony to coexist. We document these two complementary influences

in small motifs and illustrate how these effects underpin stable versus meta-

stable phase-synchronization patterns in prototypical modular networks and

in large-scale cortical networks of the macaque (CoCoMac). We find that the

variability of synchronization patterns depends on the inter-node time

delay, increases with the network size and is maximized for intermediate

coupling strengths. We hypothesize that the dialectic influences of resonance

versus frustration may form a dynamic substrate for flexible neuronal

integration, an essential platform across diverse cognitive processes.
1. Introduction
Understanding large-scale cortical dynamics and their relationship to the under-

lying anatomy is key to unlocking the computational principles of the brain.

Despite cytological differences at the microscopic level, the repetitive design of

mesoscopic motifs—circuits, columns and local hierarchies—is a stand-out fea-

ture of brain anatomy. By promising a way of scaling up in size, this repetitive

principle is likely crucial to the success of the very large-scale computational mod-

elling efforts currently underway. From this view, it is the larger scale structural

connectivity and topological constraints of macroscopic anatomy that plays the

crucial role in sculpting information processing in the cortex [1,2]. According to

this modern connectionist approach, the anatomical network is fundamental

because the functionally specialized and integrative roles of cortical regions

come from their interactions with other brain regions, not only from their micro-

scopic particularities. Functional network is a widely used approach to study one

of the major current paradigms of neuroscience: the relationship between struc-

ture and dynamics [3]. While the physical structure remains roughly constant

on the time scale of minutes to hours, the dynamic states of cortical regions

evolve in a coordinated way to perform a multitude of tasks, which vary on far

shorter time scales. Although some states of brain dynamics are very general

and common, at least among individuals of a same species, others are very

particular, and perhaps unique.

Spanning different neuronal scales, synchronization is an important dynam-

ical feature that can increase the effectiveness of interactions between brain

regions, for example by aligning neuronal spikes from different regions into

critical windows for spike-time-dependent plasticity [4]. Indeed, an emerging
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paradigm considers synchronization as the key feature that

modulates cortical interactions [5]: accordingly, its maximum

effectiveness is achieved when two mutually interacting

areas are phase coupled. The synchronization strength between

regions is thus fundamental, and a functional network is com-

posed of nodes that are linked by highly correlated pairs. The

interactions between brain regions, in turn, are not static but

rather erratic, depending on their dynamics and past activity

[6–8]. Such a dynamic balance of integration and instability

likely underlies the need for cortical function to switch accord-

ing to the changing environmental needs [9–11]. Hence,

variable and flexible dynamics, which depends on coupling

delay [12] and the balance of excitation and inhibition [13], is

a hallmark of adaptive cognitive behaviour.

Understanding dynamic functional networks is not only an

important topic, but also a rather complex one. As with any

problem endowed with complexity, a wise strategic approach

is required. A standard way to reduce the level of complexity

is to divide the problem into pieces. Often, however, it is

not clear which is the best way to split the problem. Neuronal

systems are clearly more than the sum of their parts: extrapo-

lations thus demand careful analysis. The fingerprints of

small motifs have already become a standard procedure

to understand the structure of complex networks [14–19].

A recent, promising approach to understanding the relationship

between structure/dynamics on complex networks consists of

studying the structure/dynamics relationship in network

motifs [20–23]. This rests on the premise that the dynamical fea-

tures of network motifs plays a role in shaping the dynamics and

synchronization of complex networks [21,22].

The connections between cortical regions in the brain,

as derived from the primate cortical network, obey a few

general principles that may inform the study of structure/

dynamic analyses [24]: first, the brain topology is hierarchical

with cortical regions occupying the highest positions in the

hierarchy [25–27]. Second, spatial clustering leads to a mod-

ular architecture, in which nodes are strongly interconnected

with regions within the same cluster (SC)—typically nearby

in space—than with regions outside their cluster [28,29].

Third, some nodes can be classified as hubs because they

have a degree larger than the average node degree of the

network [17,30–32]. These principles have been linked to evo-

lutionary and functional advantages as well as optimization

arising from the physical and metabolic constraints under

which brains operate on evolutionary time scales [33,34].

These general network properties can also shape the dynamics

and synchronization of cortical networks [35–37]. However, a

complete understanding of how the structural constraints of

the anatomical connectivity influence dynamics is lacking, par-

ticularly regarding the mechanisms underlying the variability

of synchronization.

Here, we analyse the synchronization patterns as they

arise in small motifs, prototypical modular structures and

cortical networks. We aim to identify factors that enrich the

landscape of synchronized cortical states. The paper is struc-

tured as follows: in §2 we describe mesoscopic dynamics as

they arise from small motifs of coupled neural masses. In

§3 we retrace recent work that highlights the stablizing role

of reciprocally coupled pairs (which we call resonance

pairs) on the motifs (small subnetworks of three nodes) in

which they are embedded. This influence is contrasted with

that of closed loops, which introduce frustration into the

system. Frustrated motifs hence disrupt stability and
synchrony, introducing metastability and variability. In §4–6

we study these two competing influences in small constructed

modular networks. Subsequently in §7 we examine structural

networks derived from tracing studies of the macaque brain,

using the distribution of motifs to link the observed dynamics

to those on our prototypical networks.
2. Neuronal network dynamics
We employed numerical methods to study neuronal dynamics

on large-scale cortical networks. Each node was considered as a

conductance-based neural mass model [36,38,39], described

in detail in appendix A. This approach reduces the dimension-

ality of a cortical region in each node to three nonlinear

differential equations, which govern the dynamics of the

excitatory subpopulation, the inhibitory subpopulation and

the fraction of open potassium channels. Analysis of such a

reduced model is required to render the problem of large-

scale cortical dynamics tractable. Distributed cortical regions

are coupled together through long-range excitatory connec-

tions with a delay of 10 ms (unless otherwise stated) to

account for finite axonal conduction speed [40]. In our meso-

scale model, the dynamic variables start from random initial

conditions. Exploring the phase space can lead to different

basins of attraction and different transient dynamics, causing

considerable trial-to-trial variability, consistent with experi-

ments [41–43]. This variability is an intrinsic feature of

many large-dimensional systems. Occasionally, such variabil-

ity can also arise from transitions between metastable states.

The following results should not be interpreted as determinis-

tic outcomes of the model, but instead as likely statistical

outcomes revealed through a large number of repetitions of

the same numerical experiment. Deeper statistical features, in

contrast, are remarkably persistent. For instance, nodes oscil-

late with two dominant frequencies, a slow approximately

10 Hz and a fast approximately 100 Hz time scale, and two

mutually coupled nodes typically synchronize in anti-phase

synchrony [23].
3. Resonance pairs in frustrated motifs promote
variable synchronization patterns

We begin our analysis by focusing on three-node motifs,

whose enumeration (M1, M2,. . ., M13) follows the seminal

work of Sporns & Kötter [15]. As illustrated in the time

traces for the common driving motif (M3) in the weak-

coupling regime, robust synchronization between the driven

nodes (1 and 3) does not occur (figure 1a), nor between

directly coupled nodes (figure 1b). The lack of synchroniza-

tion is also evident from the cross-correlation functions for

one (figure 1c) and for an average of 40 trials (figure 1d).

By contrast, strong zero-lag synchronization between these

nodes (1 and 3) occurs in motifs (such as M6 and M9) that

possess a reciprocal connection between at least one pair of

nodes (figure 1e– l ). A crucial feature of the dynamics of

these synchronized motifs (M6 and M9) is that whereas the

pair of edge nodes 1 and 3—which are indirectly connected

via node 2—synchronize in-phase, the pairs of neighbouring

nodes (1–2 and 2–3) synchronize in anti-phase at the slow

rhythm. Even with a coupling delay of 10 ms, owing to the

internal dynamics of the neural mass models, the phase
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difference between the neighbouring nodes amounts to about

60 ms. Hence, mutually connected nodes enhance the synchron-

ization in these small motifs, an effect that we previously showed

that can propagate along chains of connected nodes [23].

Importantly, this tendency of synchronized neighbouring

nodes to oscillate in anti-phase cannot be satisfied for all

motifs: for some configurations, for example when three

nodes are mutually connected among themselves (motif

M13), this tendency of synchronized neighbouring nodes to

oscillate in anti-phase is frustrated. Typically in this motif

(figure 1m–p), two out of the three pairs show anti-phase

synchronization: when this happens, the third pair shows

in-phase synchronization. For example, nodes 2 and 3 are

in-phase for the case illustrated in figure 1m,n. Hence, this

corresponds to an example of frustrated dynamics because

although each pair shows a tendency to oscillate in anti-

phase, only two out of the three pairs can accomplish this

anti-phase configuration at any one time.

Startingfromrandominitialconditions in this frustratedmotif

(M13), one cannot predict which pair of nodes will synchronize in

phase. Hence, the average zero-lag cross-correlation across trials

between nodes 1 and 3 (figure 1i–l ), as well as any other pair

of nodes (figure 1p), is markedly diminished following the

incorporation of the mutual connection between nodes 1 and

3. However, the selection of whichever two nodes have the maxi-

mum cross-correlation at zero-lag after each trial (and assigning

them the labels 1 and 3 a posteriori) reveals that the maximum

zero-lag synchronization in this frustrated motif can also

be strong: we called M~13 the auxiliary motif M13 that has

nodes 1 and 3 labelled a posteriori to maximize the zero-lag

synchronization between them (figure 1q–t).
4. Synchronization mode selection by symmetry
breaking

The preceding analyses illustrate the effect that the resonance

pair has on promoting synchronization and, conversely, how

frustration destabilizes the stable state in weakly coupled

small motifs. We next studied the robustness of these results

with respect to the coupling strength (figure 2a). Nodes 1 and

3 do not show in-phase synchrony for the common driving

(M3) or frustrated (M13) motifs, but they synchronize even

for very weak coupling for motifs which have resonance

pairs (M6 and M9). Another motif that also exhibits zero-

lag synchronization between nodes 1 and 3 is motif M~13.

This shows that for sufficiently strong coupling, one pair of

nodes synchronizes in phase in the frustrated motif. Despite
the unpredictable character of the particular pair of nodes

that synchronize when parameters across all nodes are iden-

tical, a small mismatch (such as a 10% reduction in the input

current over one neural mass model) breaks the symmetry,

converting the distinct node to an apex. For example, a mis-

match in node 2 favours phase synchronization between

nodes 1 and 3 over the other pairs 1–2 and 2–3 (figure 2b).
5. Synchronization on modular networks
We now focus our analyses on canonical modular structures

comprising two local communities connected through a

single hub. In these prototypical modular networks, we set

nodes to be mutually connected with every node within each

module, and the hub is mutually connected to all other

nodes. Such modular structures, even for the smallest cluster

size of only two nodes per module (figure 3a), contain frustra-

ted motifs within clusters. In addition, this type of modular

structure shares another common feature with small motifs:

the hub plays the role of the apex node in motif M9, and the

clusters mimic the outer nodes (figure 3a).

To compare synchronization in modular structures

against those in motifs, we focused on the cross-correlation

between two nodes belonging either to the SC or to different

clusters (DCs). For each trial, the pair of nodes was selected a
posteriori as the two nodes exhibiting maximum zero-lag

cross-correlation. This was then averaged over all trials. The

maximum phase synchronization between nodes belonging

to DCs resembles the phase synchronization between nodes

1 and 3 in motif M9, whereas the maximum phase synchron-

ization between nodes belonging to the SC resembles motif

M~13 (figure 3b,c). This confirms that the motif structure is

indeed influential in shaping these modular dynamics.

In the weak-coupling regime, the maximum synchroniza-

tion between DCs is remarkably similar to the synchronization

between nodes 1 and 3 for motif M9 (figure 3b). However, for

stronger coupling, when the synchronization within clusters

grows, the synchronization between DCs decays. As a result,

the synchronization between clusters is only stronger than

local synchronization for very weak coupling (see black arrow

in figure 3b).

We next tested the role of the intra-cluster connection

strength in shaping the long-distance synchronization between

clusters. This was achieved by multiplying the coupling

strength of the intra-cluster connection c by a weight factor

w � 1. For this experiment, we used a modular structure with

a larger cluster size, as shown in figure 4a. As illustrated in
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figure 4b,c, the synchronization strength increases for both SC

and DC as the weight w is reduced. However, although

our measures of synchronization improve for very low w, the

variability of the synchrony pattern is reduced because

the frustration is diminished. Hence, in the case of weak

intra-cluster connectivity, the system exhibits a strong tendency

to evolve to a state of global synchronization in which all

cluster nodes are in phase with each other, and in anti-phase

synchrony with the hub node.

Setting the weight ratio w ¼ 1 and comparing the max-

imum zero-lag synchronization in modular structures

with DC sizes (grey curve of figure 3b against red curve of

figure 4b), we find that the synchronization inside a cluster is

stronger for larger cluster sizes. Having the maximum syn-

chronization inside a cluster that grows with the size is an

expected result because for larger clusters, the total coupling

is stronger by construction (nodes inside a cluster are all-to-
all connected), and the number of candidate pairs to synchro-

nize also grows. On the other hand, an unexpected result

appears when comparing the synchronization between clus-

ters for DC sizes (blue curve of figure 3b against red curve

(w ¼ 1, dots) of figure 4c): in this case, the larger cluster

gives rise to a weaker synchronization between clusters.

These results indicate that for w ¼ 1, there is a competition bet-

ween SC and DC synchronization, in which the presence of SC

synchronization prevents the synchronization between DCs.
6. Variability of synchronization patterns
Even frustrated motifs show a small set of stable patterns of syn-

chronization. Owing to the larger number of nodes and the

presence of several frustrated motifs within each cluster, modu-

lar structures exhibit a larger number of stable patterns of
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synchronization. By performing multiple trials with random

initial conditions, it is possible to estimate the variability of

phase synchrony by counting the number of different outcomes

that are found in a quasi-stationary regime.

To measure the variability of phase synchrony, we dichot-

omized pairs as either synchronized or not synchronized for

each trial of 2 s (discarding a transient period of 500 ms)

depending on whether the cross-correlation coefficient was

greater than a threshold u. Figure 5a illustrates different pat-

terns of zero-lag synchronization obtained from the

network studied in figure 4a for different coupling strengths,

in which white (black) stripes represent synchronized (unsyn-

chronized) pairs. We then estimated the variability by

counting the number of different patterns and dividing by

500, the total number of trials.

The analysis of the phase synchronization—defined as the

maximum cross-correlation at any lag (figure 5b)—reveals a

strong dependence of the synchronization variability on the

threshold u. The appearance of a maximum synchronization

variability at intermediary coupling strength is evident for

sufficiently high threshold. Next, we restricted the synchroniza-

tion to zero-lag phase synchronization, such that a synchronized

pair is identified only if the zero-lag cross-correlation coefficient

was above u (figure 5c). Hence, we see that the zero-lag syn-

chronization variability is also optimized for an intermediary

coupling strength: the synchronization is too sparse for very

weak coupling and conversely too stable for strong coupling.

Moreover, as the number of nodes, resonance pairs and frus-

trated motifs grow with size, the maximal variability also

grows with the cluster size (figure 5d).
7. Macaque cortical networks
(a) Statistical features of macaque structural networks
We first re-visit some basic network features, such as

modularity and motif distribution, as expressed in cortical net-

works of the macaque. These will guide our structure–function
analyses. In particular, we study three binary CoCoMac net-

works: the visual cortex (with N ¼ 30 nodes; figure 6a), the

visual and sensorimotor areas (with N ¼ 47 nodes; figure 6b)

and the larger macaque cortical network (composed of N ¼ 71

nodes; figure 6c). These are collated cortical networks of

the macaque (CoCoMac [44,45]), available at the brain

connectivity toolbox [18].

A modular decomposition of these networks [18,46,47]

suggests that these three networks have two, four and

four modules, respectively. Analyses of the frequency of

structural counts of the 13 configurations of three-node

motifs (figure 6d ) for the macaque networks reveal

substantial differences with respect to the presence of inter-

modular connectivity (figure 6e–g). Motifs M12 and M13

are typically composed entirely by intra-modular connections

(blue bars, bottom). By contrast, motifs M4, M6 and M9

appear more often connecting inter-modular nodes, either

by exclusively inter-modular connections (red bars, top)

or by a combination of inter- and intra-modular connec-

tions (white bars, middle). The participation index (see

appendix A), which quantifies the inter- to intra-modular

connectivity ratio of each node [17,18,48], shows that many

nodes with low degree exhibit strictly intra-modular connec-

tions (null participation index; lower left-hand corner of

figure 6h). Conversely, high-degree nodes typically intercon-

nect modules (upper right-hand corner). Between these

extremes, there exists a tremendous variety, such that nodes

of intermediate degree may connect within and/or between

modules. Interestingly, network motifs also show some

degree-dependent statistical patterns in these macaque net-

works. High-degree nodes, for example, tend to occupy the

apex position of motif M9 (figure 6i) [17]. This feature suggests

that nodes in the apex position of this bi-directionally connected

three-node chain may play an influential role on the dynamics

of distant segregated areas. Additionally, excluding nodes

with very low degree, the prototypical frustrated motif M13

appears to be expressed roughly independently of the node

degree (figure 6j). This indicates that although this frustrated
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motif appears more often inside clusters, frustration can be a

general feature affecting both hubs as well as peripheral nodes.

(b) Synchronization patterns on macaque cortex
We finally extend our analyses of the variability of synchroniza-

tion patterns to these macaque cortical networks. Consistent

with the dynamics on our prototypical modular networks

(figure 5b), the variability of network patterns of zero-lag syn-

chronization for the visual cortical network also exhibits a

maximum for a moderate coupling strength (figure 7a). While

our results have so far been restricted to a delay coupling of

10 ms, it is important to note that the coupling delay also has

a strong effect in the synchronization of the network and its

variability (figure 7b): maximum variability appears for short

(10 ms or less) and very long (more than 40 ms) delays, with

a minimum for intermediate values (15–20 ms). Also consistent
with our prototypical networks, the dynamics on the larger cor-

tical networks exhibit a richer variability of patterns of zero-lag

synchronization (figure 7c).
8. Discussion
Adaptive brain function rests upon the ability of cortical net-

works to balance the competing constraints of variability and

stability. Using the dynamics on network motifs, we investi-

gated the influence of structural connectivity on the diversity

of synchronization patterns. We identified resonance and frus-

tration as two major principles in sculpting the variability

of the functional networks: reciprocal pairs enhance zero-

lag synchronization via resonance-induced synchronization;

Frustration decomposes stable synchronized dynamics into

multiple competing stable solutions. Together, the two



0

0.2

0.4

0.6

0.8

1.0

10–3 10–2 10–1

va
ri

ab
ili

ty

coupling

t = 10 ms t = 10 ms

0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
5 10 15 20 25 30 35 40 45 50

delay (ms)

c = 0.01

q = 0.50
q = 0.55
q = 0.60
q = 0.65
q = 0.70

q = 0.70
q = 0.75
q = 0.80

30 35 40 45 50 55 60 65 70 75
no. nodes

c = 0.01

(a) (b) (c)

Figure 7. Variability of synchronization patterns in cortical networks. Maximum variability of zero-lag synchronization, as measured in figure 5c, for the macaque
visual cortex (N ¼ 30) for varying coupling strength (a), and for varying coupling delay (b). (c) Variability of zero-lag synchronization for different macaque cortical
networks. (Online version in colour.)

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130532

8

principles appear to give rise to metastable dynamics in sys-

tems of different sizes, from motifs to cortical networks.

We propose that in larger networks, these dyadic influ-

ences reflect the contrasting deployment of these motifs

with respects to their modular organization. Assuming that

modules contain larger clustering, motif M13 represents a

key connectivity pattern within modules. An important con-

tribution of this frustrated motif is to enrich the dynamical

landscape of synchronized cortical states. This property of

frustrated systems to enrich and diversify the dynamics is

general and occurs in other systems [49–53]. However, to

the best of our knowledge, this is the first time it has been

related to large-scale cortical dynamics.

The over-representation of motifs M9 and M6 is a consist-

ent and characteristic property of cortical networks [15,17,23].

Taking into account that apex regions typically connect dis-

tant regions, in agreement with previous work [54–56], our

results suggest that one functional role for these hubs is to

promote the synchronization between segregated regions

belonging to DCs. According to this proposition, these con-

nections would enrich the variability of synchronization

between clusters, which in our model occurs more sparsely

than inside clusters.

Changes in brain connectivity have been associated with

pathological brain states, such as schizophrenia [57] and mul-

tiple sclerosis [58]. Our results show that two crucial features

of the structural connectivity that shape the cortical dynamics

are the number of resonant pairs and frustrated motifs.

Future work could investigate whether these two structural

elements (resonant pairs and frustrated motifs) are altered

in neurological and psychiatric illnesses characterized by

network dysplasia [59].

In addition to changes in structural connectivity, many

pathological brain states are also associated with alterations

in neuronal synchrony, which may be either reduced (e.g.

autism [60] and schizophrenia [61,62]) or increased in levels

of synchrony (e.g. epileptic seizures [63] and Parkinson’s

disease [64]). A balanced amount of synchronization is an

essential feature of healthy neuronal dynamics [9–11]. Con-

sistent with experiments and simulations in networks of

spiking neurons [13], our numerical analyses of large-scale

oscillatory cortical (modular and macaque) networks show

that the maximum variability of synchronization patterns

occurs for moderate coupling: weaker coupling reduces the

variability because fewer pairs can synchronize and the set

of possible outcomes is restricted; stronger coupling reduces

the variability because the networks often become globally
synchronized, and a smaller set of stable states is favoured

over others. Such changes might plausibly underlie the

reduction in consciousness associated with anaesthesia [65].

This finding of maximal variability for moderate coupling

reinforces the importance of homeostatic regulatory mechan-

isms to maintain the brain close to its optimal region of the

parameter space [11]. Our results are also consistent with

prior analyses of the role of delays [12,66] and network size

in shaping the cortical dynamics.

While resonance-induced synchronization has been shown

to hold for synchronized pairs, regardless of their phase relation

[23], frustration requires the synchronization between pairs of

nodes to be in anti-phase. Anti-phase synchronization is a

common phase relationship between separated cortical regions

found in a variety of experimental sets [13,67] and models

[23,54,68]. The phase relation of the synchronization depends

on many factors such as the balance between excitation and in-

hibition within a cortical region [13], and the coupling strength

between regions [68]. More importantly, however, anti-phase

becomes the dominant regime when inter-region synapses

involve a substantial conduction delay [68]. For this reason,

we argue that our model, which favours anti-phase synchron-

ization, is a suitable model for the purpose of understanding

the dynamics in large-scale cortical networks, in which long-

distance connections are invariably associated with conduction

latencies [40]. Extension of our conclusions to other systems

should fundamentally depend on whether anti-phase synchron-

ization, the condition for frustration to occur, is the stable

solution for two coupled nodes.

We have used a simple way of estimating the complexity of

the landscape of cortical activity states. The advantage of this

measure is that it is clear and intuitive to count the number

of different possible dynamic outcomes. Future work could

focus on more sophisticated measures of dynamic variability,

based on the system entropy [69], phase reconfiguration [70]

and the temporal dwelling in the various stable solutions

[71]. Links to empirical measures of dynamic functional con-

nectivity should also be forged [8]. In addition, while we

here forge a link between motifs and modules when bridging

scales, future work could focus more closely on these related

larger scales (of modules) as well as the shaping influence of

the largest structural backbone in the primate cortex, namely

the rich club [72].
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Appendix A

(a) Neural mass models
The conductance-based neural mass model we used represents

a mesoscale cortical region [38], which is derived from the bio-

physical Morris–Lecar model [73]. After adaptation to connect

areas [74] with synaptic interactions [75], it reached its most

recent formulation, which is suitable for modelling whole

brain activity in large-scale networks [23,36,39]. Each cortical

region was described by the neural mass model of spontaneous

cortical dynamics

dVi(t)
dt

¼� {gCa þ rNMDAaee [(1� c)Qi
V(t)

þ ckQj
V(t� t)l]}mCa(Vi(t)� VCa)

� {gNamNa þ aee[(1� c)Qi
V(t)

þ ckQj
V(t� t)l]}(Vi(t)� VNa)

� gKWi(t)(Vi(t)� VK)� gL(Vi(t)� VL)

� aieZi(t)Qi
Z þ aneI0,

(A 1)

dZi(t)
dt
¼ b(aniI0 þ aeiV(t)Qi

V(t)) (A 2)

and
dWi(t)

dt
¼ f[mK �Wi(t)]

tW
: (A 3)

where V is the mean membrane potential of the excitatory pyr-

amidal neurons, Z is the mean membrane potential of the

inhibitory interneurons and W is the average number of open

potassium ion channels. The neural-activation functions ex-

hibit a sigmoidal-saturating growth with V that governs the

fraction of open channels mion

mion ¼ 0:5 1þ tanh
Vi(t)� Tion

dion

� �� �
: (A 4)

Finally, Qi
V and Qi

Z are the average neuronal firing rate of exci-

tatory and inhibitory subpopulations of region i. Assuming

Gaussian distributions, they are described by the following

sigmoidal activation functions:

Qi
V(t) ¼ 0:5QVmax 1þ tanh

Vi(t)� VT

dV

� �� �
(A 5)
and Qi
Z(t) ¼ 0:5QZmax 1þ tanh

Zi(t)� ZT

dZ

� �� �
: (A 6)

In the above equations, the following set of parameters

was used [75]: gCa(¼1.1), rNMDA(¼0.25), aee(¼0.4), VCa(¼1),

gNa(¼6.7), VNa(¼0.53), gK(¼2), VK(¼20.7), gL(¼0.5),

VL(¼20.5), aie(¼2), ane(¼1), I0(¼0.3), b(¼0.1), ani(¼0.4),

aei(¼2), TCa(¼20.01), TNa(¼0.3), TK(¼0), dCa(¼0.15),

dNa(¼0.15), dK(¼0.3), f(¼0.7), tW(¼1), QVmax(¼1), VT(¼0),

dV(¼0.65), QZmax(¼1), ZT(¼0) and dZ(¼0.65). The above

equations also include other varying parameters: the coup-

ling strength between cortical regions c, the synaptic delay

between cortical regions t and j(¼1,. . ., N ), which are the

afferent regions of region i. Consistent with the average

values reported in macaques [40], we typically used a con-

stant delay of 10 ms. Although axonal delays between two

given regions are typically distributed and specific roles

have been attributed to non-homogeneous delays (e.g. to

shape the EEG power spectrum [76]), as a first approxima-

tion here we consider only homogeneous delays. Small

delay mismatches have been shown not to affect the synchro-

nization in neuronal motifs qualitatively [23], but the

functions of delay diversity and distributed delays remain

to be investigated in large-scale network models. The

model was simulated in MATLAB (Math Works) using the

function dde23.
(b) Participation index
The participation index P quantifies how connected nodes are

with regions belonging to other modules [17,18,48]. It is

defined as

Pi ¼ 1�
XNM

m¼1

kim

ki

� �2

, (A 7)

where the summation m runs over all identified modules

NM; ki and kim stand for the degree of node i and the

number of edges from node i to nodes within module m,

respectively.
References
1. Passingham RE, Stephan KE, Kötter R. 2002 The
anatomical basis of functional localization in the
cortex. Nat. Rev. Neurosci. 3, 606 – 616.

2. Sporns O. 2010 Networks of the brain, vol. 1, p. 375.
Cambridge, MA: MIT Press.

3. Honey CJ, Thivierge JP, Sporns O. 2010 Can structure
predict function in the human brain? Neuroimage
52, 766 – 776. (doi:10.1016/j.neuroimage.2010.
01.071)

4. Masquelier T, Hugues E, Deco G, Thorpe SJ. 2009
Oscillations, phase-of-firing coding, and spike
timing-dependent plasticity: an efficient learning
scheme. J. Neurosci. 29, 13 484 – 13 493. (doi:10.
1523/JNEUROSCI.2207-09.2009)

5. Fries P. 2005 A mechanism for cognitive dynamics:
neuronal communication through neuronal
coherence. Trends Cogn. Sci. 9, 474 – 480. (doi:10.
1016/j.tics.2005.08.011)

6. Breakspear M. 2004 ‘Dynamic’ connectivity in neural
systems: theoretical and empirical considerations.
Neuroinformatics 2, 205 – 226. (doi:10.1385/
NI:2:2:205)

7. Hutchison RM et al. 2013 Dynamic functional
connectivity: promises, issues, and interpretations.
NeuroImage 80, 360 – 378. (doi:10.1016/j.
neuroimage.2013.05.079)

8. Zalesky A, Fornito A, Cocchi L, Gollo LL,
Breakspear M. 2014 Time-resolved resting-state brain
networks. Proc. Natl Acad. Sci. USA 111, 10 341 –
10 346. (doi:10.1073/pnas.1400181111)

9. Friston KJ. 2000 The labile brain. I. Neuronal
transients and nonlinear coupling. Phil.
Trans. R. Soc. Lond. B 355, 215 – 236. (doi:10.1098/
rstb.2000.0560)

10. Breakspear M. 2002 Nonlinear phase
desynchronization in human
electroencephalographic data. Human Brain Mapp.
15, 175 – 198. (doi:10.1002/hbm.10011)

11. Friston K, Breakspear M, Deco G. 2012 Perception
and self-organized instability. Front. Comput.
Neurosci. 6, 44. (doi:10.3389/fncom.2012.00044)
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