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The mammalian brain operates in multiple spatial scales simultaneously, ran-

ging from the microscopic scale of single neurons through the mesoscopic scale

of cortical columns, to the macroscopic scale of brain areas. These levels of

description are associated with distinct temporal scales, ranging from millisec-

onds in the case of neurons to tens of seconds in the case of brain areas. Here,

we examine theoretically how these spatial and temporal scales interact in the

functioning brain, by considering the coupled behaviour of two mesoscopic

neural masses (NMs) that communicate with each other through a microscopic

neuronal network (NN). We use the synchronization between the two NM

models as a tool to probe the interaction between the mesoscopic scales of

those neural populations and the microscopic scale of the mediating NN.

The two NM oscillators are taken to operate in a low-frequency regime with

different peak frequencies (and distinct dynamical behaviour). The micro-

scopic neuronal population, in turn, is described by a network of several

thousand excitatory and inhibitory spiking neurons operating in a synchron-

ous irregular regime, in which the individual neurons fire very sparsely but

collectively give rise to a well-defined rhythm in the gamma range.

Our results show that this NN, which operates at a fast temporal scale, is

indeed sufficient to mediate coupling between the two mesoscopic oscillators,

which evolve dynamically at a slower scale. We also establish how this syn-

chronization depends on the topological properties of the microscopic NN,

on its size and on its oscillation frequency.
1. Introduction
The mammalian brain is composed of a myriad of coupled neurons that interact

dynamically. It possesses a rich topological structure and exhibits complex

dynamics, operating as a noisy, nonlinear and highly dimensional system.

Neuronal activity evolves at temporal scales ranging from a few milliseconds

to tens of seconds, and emerges from neuronal assemblies that extend from

micrometres to several centimetres. Owing to a complex functional hierarchy

between cell groups, the brain is able to store information for long periods of

time, process multiple sensory inputs efficiently and produce coherent output

in the form of actions and thoughts.

Even though the brain has been studied for centuries, a full theoretical descrip-

tion of its normal and pathological functioning is still missing. Owing partly to the

lack of a full description of the anatomical connectivity, and partly to our incom-

plete knowledge of the interplay between different neural processes, the brain is

still the great unknown organ. Its study is usually partitioned into different

research fields devoted to distinct brain structures (such as the thalamus, amyg-

dala, hippocampus, etc.), cortical functional areas (motor, visual, auditory

cortex, etc.) or particular microscopic circuits, from the level of cortical columns
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Figure 1. Diagram representing the coupling between different scale-based models. Two groups of neuronal populations, described by neural mass (NM) models,
are coupled through a neuronal network (NN). The NMs represent the average dynamics of three coupled neural populations: pyramidal (P), excitatory interneurons
(EI) and inhibitory interneurons (II). The NN consists of a set of 4000 excitatory and inhibitory interconnected neurons. Only a subset of neurons of the NN is coupled
with the NMs. The coupling strength between the NMs and the NN is given by the three parameters, g1, g2 and g3. g1 quantifies the coupling from the pyramidal
population of the NMs to the NN subpopulation. g2 and g3 represent the intensity of the excitatory and inhibitory couplings, respectively, from the NN subpopu-
lation to the NMs’ pyramidal population. (Online version in colour.)
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down to single-neuron responses. Moreover, studies of the

global activity of the brain usually focus for convenience on

specific cognitive or motor tasks, in order to compare them

with a control state such as spontaneous activity at rest.

The various aforementioned approaches deal with differ-

ent scales of description, from the macroscopic to the

microscopic level. Accordingly, different computational

models have been developed to account for the activity at

each scale. Single neurons, for instance, can be characterized

by detailed biophysical models that consider ion-channel

dynamics, as initially proposed by Hodgkin & Huxley [1,2],

or by more abstract models of neural excitation such as the

integrate-and-fire model [3,4] or the FitzHugh–Nagumo

model [5,6]. The set of equations representing each neuron’s

membrane potential can be coupled in a way that mimics

the synaptic junction. Thus, given a connectivity matrix,

one can ideally build any neuronal network (NN) in silico
from its individual constituents, and thereby move towards

the mesoscopic level of neuronal assemblies. This allows

the brain to be traditionally investigated in a reductionist

way, using different simplified levels of description. This

approach has been very fruitful in unveiling several mechan-

isms that lay at the basis of the observed neural tissue

behaviour [7–10].

Another set of models, named neural mass (NM) models

[11–14], avoid the single-neuron perspective and consider

instead the averaged behaviour of the neuronal population.

This mesoscopic description is more phenomenological than

the single-neuron models, in the sense that it represents

directly the collective behaviour of the network, without sin-

gling out individual cells. Moreover, single neurons operate

at time scales faster than NM models. The former exhibit

action potentials that last about 1 ms, while the coordinated

activity of neuronal tissue, which emerges from the synchron-

ization of multiple spikes, operates on time scales up to tens

of seconds. Within a neuronal population all temporal scales

work simultaneously, and the relative relevance of the differ-

ent scales might change depending on the biological process.

For instance, spike-timing precision is key to synaptic plas-

ticity, and therefore to the formation of functional cell

assemblies [15,16]. On the other hand, the frequency of collect-

ive oscillations is relevant for the synchronization of distant

areas, and thus for their effective interaction within specific

information-processing tasks [17,18].

Recently, large-scale models of the brain have received

special attention. So far, global brain activity has been
modelled by dividing the brain into discrete volume

elements, or voxels, and coupling them according to statis-

tical correlations and structural information [19–21]. Both

the Human Brain Project and the Brain Activity Map project

propose integrated views to bridge the gap between the be-

haviour of single neurons and the functions of the full brain

[22], but this quest is still in its infancy.

While new theoretical studies have attempted to connect

the microscopic (NN) and mesoscopic (NM) descriptions of

brain tissue, by directly applying mean field approaches to

derive the latter from the former [23,24], these strategies are

fraught with limitations and hard-to-justify assumptions.

Here, we propose an alternative approach to explore scale

interaction, by considering a system formed by two NMs

that are coupled exclusively via an intermediate population

described by a spiking NN model. Our results show that

the two mesoscopic oscillators are able to lock their dynamics

through the mediation of the microscopic population. In that

way, we use synchronization as a tool to probe the interaction

between the two scales of description. We also examine

which characteristics of the NN connectivity allow the effi-

cient cross-talk between dynamical scales, i.e. to determine

whether which are the microscopic features that modulate

the mesocopic activity. The paper is organized as follows.

In §2, we describe the model used in this study. The results

are presented in §3 and discussed in §4.
2. Dynamical model and methods
As mentioned above, our model combines two different levels

of description (figure 1). The NM description evolves at a

slow scale and represents the average dynamical evolution of

a set of three different neural populations (pyramidal, exci-

tatory interneurons and inhibitory interneurons) [11]. The fast

scale, on the other hand, is represented by a conductance-

based neural network formed by excitatory and inhibitory

neurons. In this case, the time course of every neuron’s trans-

membrane potential is given by the dynamics of voltage-

dependent ion channels. We have merged these two levels of

description in a simple dynamical structure, shown in figure 1,

in which two NM models are coupled with a subpopulation

of neurons belonging to the NN.

The two NMs are set to oscillate in two different well-

defined frequencies, corresponding to two slightly different

brain rhythms. The NN also displays a collective oscillatory
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dynamics with a different frequency. Here, we investigate how

both the inter-scale coupling strength and the features of the

NN contribute to the cross-talk between the three systems.
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(a) Dynamics of the neuronal network
The neural network is composed of 4000 neurons (80% exci-

tatory and 20% inhibitory). Each neuron forms 400 chemical

synaptic connections on average with other neurons of the

network. The dynamics of the transmembrane potential of

the soma of each neuron is described by the following set

of differential equations:

Cm
dV
dt
¼ �gKn4(V � Ek)� gNam3h(V � ENa)

� gL(V � EL)� Isyn þ Iext, (2:1)

where gK, gNa and gL are the maximum conductances for the

potassium, sodium and the leak currents, respectively, and

Isyn is the synaptic current coming from the neighbouring

neurons. The dynamics of the sodium and potassium chan-

nels is represented by the time-varying probabilities of a

channel being in the open state:

dx
dt
¼ F[ax(V)(1� x)� bx(V)x], x ¼ m, h, n, (2:2)

where x stands for the activation (m) and inactivation (h) of

the sodium channels and the activation of the potassium

channels (n). The rate functions ax and bx for each gating

variable, together with all the NN parameters used through-

out this paper are given in [10].

The synaptic current Isyn is described using a conduct-

ance-based formalism

Isyn ¼ gsyn(t)(V(t)� Esyn), (2:3)

where gsyn is the synaptic conductance, and Esyn is the rever-

sal potential of the synapse. For Esyn greater than the resting

potential Vrest the synapse is excitatory (mediated by AMPA

receptors); otherwise it is inhibitory (mediated by GABA

receptors). We consider two temporal time constants, td

and tr (decay and rise synaptic time) for the dynamics of

the synaptic conductance

gsyn(t) ¼
ĝsyn

td � tr
exp �

t� tj

td

� �
� exp �

t� tj

tr

� �� �
: (2:4)

We have chosen the maximal conductances ĝsyn such that the

postsynaptic potential (PSP) amplitudes are within physio-

logical ranges: the excitatory postsynaptic potential (EPSP)

in the range from 0.42 to 0.83 mV and the inhibitory postsyn-

aptic potential (IPSP) in the range from 1.54 to 2.20 mV. In

order to modify the activity time scale of the NN, we have

changed td for the GABAergic synapses, varying according-

ly the inhibitory conductances ĝsyn in such a way that the

maximum amplitude for gsyn(t) is maintained.

All neurons receive an additional train of excitatory pre-

synaptic potentials, coming from brain areas other than

those explicitly modelled by the NMs, which contributes to

the external current term Iext in equation (2.1). Those spikes

follow a heterogeneous Poisson process with a mean event

rate, which varies following an Ornstein–Uhlenbeck (OU)

process. The instantaneous rate l(t) of this external excitatory

train of spikes is generated according to

dl

dt
¼ �l(t)þ s(t)

ffiffiffi
2

t

r
h(t), (2:5)
where s(t) is the standard deviation of the noisy process and

is set to 0.6 spikes s– 1. The correlation time t is set to 16 ms,

leading to a 1/f power spectrum for the l time series that is

flat up to a cut-off frequency f ¼ 1/(2pt) ¼ 9.9 Hz. The term

h(t) is a Gaussian white noise.

This NN model is able to reproduce the well-known syn-

chronous irregular regime [25], in which recurrent activity

leads to collective oscillations at the population level while

single neurons fire irregularly. The emergent rhythmicity is

achieved by a balance between the excitatory and inhibitory

synaptic currents and can be explained by periodic changes

of the excitability in the network, i.e. periodic modulation of

the distance to threshold. Despite the fact that excitatory neur-

ons are dominant in the network, the stronger synaptic

inhibitory conductances and the higher firing rate of the inhibit-

ory neurons allow the system to reach a balance between

excitation and inhibition. In order to obtain collective oscil-

lations in the alpha (gamma) band, we set the decay synaptic

time to be td ¼ 15 ms (5 ms).
(b) Dynamics of the neural mass model
The description of the mesoscopic neuronal ensemble is based

on a model proposed by Jansen & Rit [11]. This model charac-

terizes the dynamics of a cortical column by using a mean field

approximation. In this sense, Jansen’s model describes the

average activity of three cortical populations; excitatory

and inhibitory interneurons and pyramidal cells. All three

populations form a feedback circuit. The main pyramidal

population excites both interneuronal populations in a feed-

forward manner and the excitatory (inhibitory) interneurons

feed back in an excitatory (inhibitory) manner into the pyram-

idal population. The dynamical evolution of these three

populations is introduced considering two different transform-

ations. Each population transforms the total average density of

action potentials reaching their afferent synapses from different

origins,
P

mpm(t), into an average postsynaptic excitatory or

inhibitory membrane potential yi(t). This transformation can

be introduced in the model using the differential operator

L(yi(t); a) ¼ d2yi(t)
dt2

þ 2a
dyi(t)

dt
þ a2yi(t)

¼ Aa
X

m
pm(t)

" #
,

(2:6)

and correspondingly L(yi)(t);b) for the inhibitory integra-

tion of the average density of action potentials, with b
and B substituting a and A above. A and B are related

with the maximum heights of the EPSP and IPSP, res-

pectively, whereas a and b represent the inverse of the

membrane time constants and the dendritic delays. Here,

A ¼ 3.25 mV, a ¼ 0.1 kHz, B ¼ 22 mV and b ¼ 0.050 kHz for

NM1 (figure 1), leading to oscillations at approxi-

mately 11 Hz; and A ¼ 3.25 mV, a ¼ 0.1 kHz, B ¼ 21.5 mV

and b ¼ 0.048 kHz for NM2, which consequently exhibits

oscillations at approximately 4.5 Hz.

The second dynamical transformation in the model is the

conversion of the net average membrane potential into an

average density of spikes. This conversion is done at the

somas of the neurons that form the population and is

described mathematically by a sigmoidal function

S(m(t)) ¼ 2e0

1þ er(n0�m(t)) : (2:7)
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Here e0 ¼ 0.0025 kHz determines the maximum firing rate of

the neural population, n0 ¼ 0.6 mV sets the net PSP for which

a 50% firing rate is achieved, r ¼ 0.56 mV21 is the steepness

of the sigmoidal transformation, and m(t) corresponds to

the net PSP input into the population being considered. The

average density of action potentials produced by the presyn-

aptic population acting upon the postsynaptic population,

pi(t), turns out to be proportional to S(m(t)), where the pro-

portionality constant weights the contact between the

populations, and gives the range of efficiency of the synaptic

interaction. Combining equations (2.6) and (2.7), we obtain

the complete model for the NMs

_y0 (t) ¼ y3(t),
_y1 (t) ¼ y4(t),
_y2 (t) ¼ y5(t),

_y3 (t) ¼ AaS[y1(t)� y2(t)]� 2ay3(t)� a2y0(t),
_y4 (t) ¼ Aa( pe(t)þ C2S[C1y0(t)])� 2ay4(t)� a2y1(t)

and _y5 (t) ¼ Bb( pi(t)þ C4S[C3y0(t)])� 2by5(t)� b2y2(t),

9>>>>>>=
>>>>>>;
(2:8)

where y0(t) is the EPSP produced by the pyramidal population

on the interneuron populations, and y1(t) is the EPSP acting

upon the pyramidal population and arriving from (i) the exci-

tatory interneurons, (ii) other areas of the brain and, in our

model, (iii) the neural network (see equation (2.11)). Finally,

y2(t) is the IPSP acting upon the pyramidal population and

arriving from the inhibitory interneurons and, in our model,

the neural network (see equation (2.12)). The intra-columnar

connectivity constants values are defined in terms of Ci, with

i ¼ 1, . . . ,4. We use the values given in Jansen et al. [11].
(c) Inter-scale coupling terms
The effect of the mass models upon the neural network also

contributes to the Iext term of the NN (see equation (2.1)),

together with the external excitatory Poissonian train

of spikes. Hence, each neuron of the NN receives a train of

excitatory spikes whose mean firing rate, FR, is given by

FR(t) ¼ EFR(t)þ kg1S(y1(t)� y2(t)), (2:9)

where S(y1(t) 2 y2(t)) translates the PSP of the pyramidal

population of the NM which affects that particular neuron

(or both NMs if that is the case) into a spiking rate. g1

and k control the strength of this coupling. Here g1 ¼ 200,

while k will be a varying parameter. EFR(t) corresponds to

aforementioned Poissonian train of spikes:

EFR(t) ¼ kEFRlþ lOU(t), (2:10)

with kEFRl being the mean external firing rate and lOU(t) an

OU process (see equation (2.5)) representing the fluctuations

around the mean. We have set kEFRl ¼ 8:5 kHz. The NN acts

upon the NM models through pe(t) and pi(t) (see equation

(2.8))

pe(t) ¼ kplþ kg2MUA(t) (2:11)

and

pi(t) ¼ kg3MUA(t), (2:12)

where MUA(t) is the multiunit activity coming from the

neural network, i.e. the sum of spikes over the subset of neur-

ons coupled to the NMs, calculated within a sliding window

of length 1 ms. kpl is a constant input coming from other areas

of the brain distinct from those considered explicitly in our

model (kpl ¼ 0:160 kHz for both NMs). g2, g3 and k are
scaling factors that take into account the synaptic efficiency,

where, g2 ¼ 25 and g3 ¼ 3. Note that we assume that NN

neurons affect only the pyramidal population in the NM.

This is in accordance with the Jansen–Rit model of two

coupled NMs [11], which considers that only pyramidal

cells receive excitatory input from the other column.

(d) Local field potential
In order to quantify the activity of the NN, we have defined a

collective measure, the local field potential (LFP), as the aver-

age of the absolute values of AMPA and GABA synaptic

currents acting upon a typical excitatory neuron [26]

LFP ¼ RekjIAMPAj þ jIGABAjl: (2:13)

where IAMPA represents the external excitatory heterogeneous

Poisson spike train and the recurrent excitatory synaptic cur-

rent due to the network, IGABA accounts for the recurrent

inhibitory synaptic current and Re represents the resistance of

a typical electrode used for extracellular measurements. The

symbol k . . . l represents an average over all excitatory neurons.

(e) Spectral analysis
We have computed the power spectral density (PSD) of the

LFPs and of the PSPs of the pyramidal population of the

NMs using the Welch method: the signal is split up into

500-point segments with 50% overlap and filtered with a

Hamming window. Given that the sampling time is 1 ms,

the segment length chosen leads to a frequency resolution

of 2 Hz. The periodogram is calculated by computing the

square magnitude of the discrete Fourier transform. These

periodograms are then averaged to obtain the PSD estimate,

which reduces the variance of the individual power measure-

ments. LFP and PSP spectral quantities are averaged over 20

trials of length 3500 and 1500 ms, respectively. The code has

been implemented in MATLAB. The frequency mismatch

between the PSP of the two NM models is calculated as the

inverse of the difference between the periods of the mass

models, averaging over trials. The periods correspond to

the temporal distance between two maxima of the autocorrel-

ation function. Each trial corresponds to a different set of

random initial conditions, NN architecture and realization

of the OU process.
3. Results
The effective interaction between neuronal ensembles described

at different scales can be studied by coupling mesoscopic

and microscopic models. As mentioned in §1, mesoscopic

models are best exemplified by NM descriptions, which are

derived phenomenologically from experimental studies, and

characterize the average population activity by means of a

mean field approximation. In particular, NMs describe the

neuronal activity happening at slow time scales, such as synap-

tic potentials arising from the synchronized firing of thousands

of neurons. On the other hand, models of single neurons repro-

duce the time course of the electric currents crossing the

neuronal membrane, and thus account for the individual

action potentials and the postsynaptic response of each cell

composing the network. In order to preserve the precision of

the spiking times, these models involve fast time scales.

Certainly, networks built from spiking neuron models can
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Figure 2. Collective dynamics of the coupled system. (a) Time traces of the net PSP y(t) ¼ y1(t) 2 y2(t) of both NMs working at different frequencies: at 4.5 Hz
within the theta band (blue online, dark grey in print), and at 11 Hz within the alpha band (red online, grey in print). The LFP of the neural network (turquoise
online, light grey in print) oscillates in the gamma range around 45 Hz. The three neural ensembles are uncoupled. (b) Time traces of the PSPs of both NM models
and LEP of the neural network when the system is coupled (k ¼ 1). Averaged maximum cross covariance (c) and frequency mismatch (d ) between the PSP time
traces of the NMs for increasing inter-scale coupling strength k. (Online version in colour.)
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also provide measures of the population activity by averaging

across neurons. Thus, patterns of collective activity can be

observed in the synaptic current, evoked by the summation of

multiple spikes on the target neurons.

To analyse the evolution of the model introduced in §2, we

consider two different dynamical variables corresponding to

each of the two scales. The NM model activity is given by

y(t) ¼ y1(t) 2 y2(t), where y1(t) is the EPSP and y2(t) the IPSP

acting upon the pyramidal population (see equation (2.8)).

The NN activity is quantified in terms of the LFP as defined in

equation (2.13). Both types of model operate in an oscillatory

regime. The NM model is an intrinsic oscillator whose fre-

quency can be varied by changing the parameters B and b (see

blue and green lines (dark grey and grey in print, respectively)

in figure 2a,b). On the other hand, the oscillations of the NN

are an emergent property of the system, reflecting the variability

of the individual PSPs (i.e. the microscopic events). Hence, their

frequency is less well defined (see turquoise line (light grey in

print) in figure 2a,b and power spectra in figure 3c,d).

Our aim here is to find fingerprints of an effective inter-

action of scales. To do so, we have studied how the two NM

models, one oscillating in the theta band and the other in the

alpha band, synchronize their dynamics when the coupling

is mediated by the NN (figure 1). The interaction mechanism

is bidirectional. This architecture was used by Vicente et al.
[27] and Gollo et al. [28] to demonstrate the emergence of

zero-lag synchronization mediated by dynamical relaying

between NN populations. In our case, the output of each NM

is converted into a firing rate (see equation (2.9)) impinging

on a subpopulation of 2000 neurons within the NN. In turn,

the firing rate of these selected neurons contributes to both

the excitatory and inhibitory PSP densities that act upon

the pyramidal populations of the NMs. We also examine the

effect of varying several properties of the subpopulation of
neurons of the NN, including its number, involved in

the coupling, in order to explore the effect of the structural

properties of that network on the scale interaction efficiency.

The effect of the coupling intensity k on the dynamics of the

interacting populations is shown in figure 2. When the NMs are

uncoupled, they oscillate in different dynamical regimes that

evolve at different frequencies, around 4.5 and 11 Hz, respect-

ively. One NM oscillates in a spike-like manner, whereas the

other oscillates more harmonically (figure 2a, compare the

blue and green (dark grey and grey in print, respectively)

lines). The NN, in turn, exhibits collective oscillations within

the gamma range, around 45 Hz. The dynamical evolution

for the coupled case, at k ¼ 1, is shown in figure 2b. In this

case, the dynamical regimes of the NMs are similar, and they

become frequency locked. We have scanned k in order to

track the transition to the frequency locked regime as coupling

increases. Figure 2c shows the increase in the maximum cross

covariance between the net PSPs of the two NM models, aver-

aged over 20 trials, when increasing k. When the NMs operate

at different regimes they hardly synchronize but, for suffi-

ciently high k, they increase their synchronization with

increasing k. The averaged frequency mismatch decreases shar-

ply at k � 0.6 (figure 2d ). According to these results, frequency

locking for the two NMs is achieved through an NN that

oscillates naturally at a much faster scale.

We have further characterized the effect of the interaction

through the power spectrum of the time traces. As can be

expected, the power spectrum of the mass models in isolation

(figure 3a) shows a clear peak at their natural frequencies (4.5

and 11 Hz), while the LFP shows a strong peak around 45 Hz

(figure 3c) that exceeds the non-zero contribution of the

slower frequencies approximately 4 Hz. We have seen that

increasing coupling leads to a frequency locking regime

between the NMs, which is reflected in their spectral
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behaviour. For instance, at k ¼ 1 the power spectra of the two

NMs overlap, with a dominant peak around 4 Hz (figure 3b).

The local gamma peak of the NN is preserved (figure 3d ),

although the major change in amplitude occurs at smaller

rhythms, around the frequency of the NMs. This increase in

the NN power at the alpha band is due to the emergence of

phase locking between this population and the outer NMs,

as shown in figure 3e. This phase locking results in a sizable

cross-correlation between the activities of the microscopic

and mesoscopic populations for intermediate values of the

size N of the NN subpopulation coupling the two NMs, as

depicted in figure 3f (the difference between cross-correlations

with NM1 and NM2 for small N is due to the different intrinsic

dynamics of the two mesoscopic populations). The effect of N
is studied in more detail later. The slower time scale of the NMs

cannot follow the faster dynamics of the neural network and

average out the gamma rhythm, resulting in a frequency shift

towards the slower rhythm, which is also enhanced in the NN.

Since the output of the NN arises from the spiking activity

of thousands of neurons, the interaction across models is

mainly driven by the average dynamics of the population.

Although the modelled LFP evolves in a faster time scale,

NM models filter out rapid fluctuations. Therefore, the NMs

mainly respond to changes of the mean input coming from

the NN modulated by k.

The input contribution into the NMs coming from the NN

dynamics increases the average excitatory and inhibitory

input signal into the pyramidal population (denoted by pe

and pi, respectively, in equations (2.11) and (2.12)). Since

increasing the constant input to an NM can lead to changes
in the dynamical regime (and thus the frequency) of the oscil-

lator [13], one could argue that the role of the NN dynamics

is unnecessary to mediate the synchronization transition

observed. However, simulations in which the terms given

in equations (2.11) and (2.12) are replaced by the temporal

average of the coupling contributions indicate that the NMs

are unable to synchronize their phases in these conditions

(results not shown). This result shows that the NN dynamics

is a key ingredient to achieve not only frequency locking, but

also phase locking between the two NMs.

In order to take advantage of the microscopic description of

the neural network, we have also varied two main features of

its architecture: its clustering (figure 4a,b) and the size of the

area involved in the coupling, determined by the number of

neurons projecting onto the NMs (figure 5). In graph theory,

networks composed of nodes and edges can be characterized

by their clustering coefficient, which quantifies the connected-
ness or local connectivity of the network (i.e. the probability

that all nodes that are connected to a given node, are also con-

nected between them). According to the Watts & Strogatz

algorithm [29], a pure regular network can be turned into a

small-world network, in which few edges separate any two

nodes, by rewiring the connections. A rewiring probability par-

ameter, rp, determines the probability of replacing an existing

edge by another one chosen randomly. Therefore, a rewiring

probability equal to zero implies a regular network, whereas

a rewiring probability equal to unity implies a completely

random network. By studying these parameters, we are chan-

ging the dynamics of the NN and, therefore, its capacity to

mediate the interaction between the two NMs.



0

0.2

0.4

0.6

0.8

(a) (b)

(c) (d )

1.0

m
ax

 c
ro

ss
 c

ov

0

2

4

6

8

fr
eq

ue
nc

y
m

is
m

at
ch

 (
H

z)

rp = 0
rp = 0.2
rp = 1

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1

k

m
ax

 c
ro

ss
 c

ov

0 0.2 0.4 0.6 0.8 1.0
−2

0

2

4

6

8

k
fr

eq
ue

nc
y

m
is

m
at

ch
 (

H
z)

alpha

gamma

Figure 4. Influence of the topological and dynamical properties of the NN on the interaction between the NMs. Maximum cross covariance (a) and frequency
mismatch (b) between the NM average PSPs for increasing rewiring probabilities rp of the NN. Maximum cross covariance (c) and frequency mismatch (d ) between
the NM average PSPs when the NN works in the alpha regime, compared with the gamma case (rp ¼ 1). (Online version in colour.)

0.2 0.4 0.6 0.8 1.00

0.5

1.0
(a)

(c)

(b)

(d )

k

m
ax

 c
ro

ss
 c

ov

0 0.2 0.4 0.6 0.8 1.0
−2

0

2

4

6

8

k

fr
eq

ue
nc

y
m

is
m

at
ch

 (
H

z)

0 1000 2000 3000 4000

0.5

1.0

N

m
ax

 c
ro

ss
 c

ov

0 1000 2000 3000 4000
−2

0

2

4

6

8

N

fr
eq

ue
nc

y
m

is
m

at
ch

 (
H

z)k = 0.7
k = 0.8
k = 0.9

500 neurons
1000
1400
2000
2400
3000
4000

(e)

0 20 40 60 80 100 120

5

10

frequency (Hz)

L
FP

 P
SD

 (
ar

b.
 u

ni
ts

)

500 neurons
1000
2000
4000

× 106

Figure 5. Maximum cross covariance (a) and frequency mismatch (b) between the NM average PSPs as a function of coupling strength k, for various values of the
size N of the subpopulation of the NN that mediates the coupling. (c,d ) Same quantities as a function of N for various values of the inter-scale coupling strength k.
(e) Spectral power density of the LFP of the whole NN, when the NMs are connected with NN subpopulations of various sizes (k ¼ 0.9). All results are averaged over
20 trials. (Online version in colour.)

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130533

7



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130533

8
Figure 4a,b outlines the dependence of the maximum cross

covariance and the frequency mismatch between the two

NMs on the coupling strength k for different rp values.

Note that the case rp¼ 1 corresponds to the results shown in

figure 2c,d. Networks with higher clustering (rp¼ 0.2) are less

efficient in synchronizing the oscillatory output of the NMs. In

this case, larger coupling strengths k are needed, with respect

to a random network (rp ¼ 1), to reach the frequency locking

regime. Thus, the topology of the neural network affects the syn-

chronization between the neural ensembles. Random networks

have small path lengths at the expense of low clustering, and

thus the average transmission time of the action potentials

across the population is decreased. In this situation, synchron-

ization arises for smaller coupling strengths. The result for a

regular network, rp¼ 0 (which is not a realistic situation in

the brain because the NN dynamics is lost), is also included.

Besides topology, the intrinsic dynamics of the NN also has

an impact on the synchronization of NMs. In our NN model,

we can slow down the frequency peak of the LFP by increasing

the decay time constant td of the inhibitory synapses (equation

(2.4)), without altering the firing rate of the population (result

not shown). If the peak of the NN power spectrum is shifted

towards the alpha band, closer to where the NMs oscillate,

then the maximum cross covariance is reduced and the fre-

quency mismatch is increased for a given k value (figure 4c
and 4d, respectively). Thus, even though the NN is operating

closer in frequency to the NMs, and its individual neurons

fire at the same rate as when the network operates in the

gamma band (resulting in a similar MUA activity, result not

shown), the NMs are more difficult to synchronize. In the

neural network, the action potentials are transiently synchron-

ized and paced according to the time course of inhibition,

leading to a recurrent behaviour that causes the global oscil-

latory dynamics. Faster rhythms, like gamma, correspond to

a better precise timing of the firing, i.e. the action potentials

of multiple neurons are tightly bounded in time, which

seems to be key for the synchronization of the NMs.

Finally, and as mentioned above, we have also studied

how the synchronization of the NMs is affected by the size

N of the subpopulation of neurons that mediate the coupling

between them. In the results presented so far, this subpopu-

lation was formed by N ¼ 2000 neurons, randomly chosen

from the whole population of 4000 neurons of the NN. We

have scanned N between 1 and 4000 neurons, the latter case

corresponding to all neurons in the NN contributing to the

firing rate impinging on the NMs and receiving their input.

Figure 5a,b shows the maximum cross covariance and the

frequency mismatch for increasing coupling k at varying sub-

population sizes. The interaction between the NMs decreases

as N decreases, and synchronization is only significant for

N . 1000. N directly affects the strength of the coupling

between the NN and the NMs, since this parameter determines

the average MUA, i.e. the number of spikes elicited within the

subpopulation. Hence, given a coupling strength k that enables

an efficient interaction of the models, larger values of N lead to

a lower frequency mismatch (figure 5c,d).

It is important to note that, although the size of the neural

network is kept constant, increasing N boosts the coupling

term, spreading the input from the NM across a larger popu-

lation of neurons within the NN. Figure 5e shows the LFP

power spectrum for increasing values of N for k ¼ 0.9. Similar to

the transition from figure 3c (network in isolation) to figure 3d
(k ¼ 1 for N ¼ 2000), the major changes produced by the
coupling occur at small frequencies, where the synchronization

scale is centred, while the gamma rhythm interacts directly with

the slower dynamics of the NMs. Decreasing N dramatically

affects the dynamics of the coupling, which only takes into

account the activity of this subpopulation. For sizes below

N � 1000 the interaction is carried out by the low firing and

highly noisy activity of small numbers of neurons, which are

unable to synchronize large ensembles.
4. Discussion
Modelling the dynamics of the full brain from a purely micro-

scopic scale is computationally unfeasible. Thus, a hybrid

description of the brain that encompasses multiple scales is

an appealing concept. In that scenario, it would only be neces-

sary to represent microscopically those neuronal populations

involved in a particular task, and which are monitored with

single-cell resolution. The rest of the brain, while modulating

the activity of the population of interest, would not necessarily

need to be represented with microscopic detail. Currently,

this is accomplished by representing the activity of the rest of

the brain by a background noisy activity, but this approach is

not useful when the neuronal population of interest feeds

back into those other brain regions, thereby modifying the

background activity that acts upon the population itself. We

consider here one way of facing this situation, based on coup-

ling bidirectionally microscopic and mesoscopic descriptions

of neuronal populations. In particular, we use synchronization

in order to probe the interaction between the two scales.

Specifically, we employ a scheme in which two mesoscopic

populations are coupled through a third microscopic net-

work, since the behaviour that can be expected from two

coupled NM models is well known [11,12], and can be used

as a reference to interpret the coordinated behaviour emerging

from our hybrid scenario.

Our results do not imply that two NM oscillators can only

synchronize through the mediation of an NN. In fact, if all

three neuronal populations were described by NNs (or by

NMs, for that matter) synchronization will also arise (see,

for instance, the studies of Vicente et al. [27] and Gollo et al.
[28] for the case of three coupled NNs leading to zero-lag

synchronization). Neither do we claim that two brain oscil-

lators can synchronize only through the mediation of a

third (see, for instance, the study of David & Friston [12]

for an example of synchronization between two coupled

NMs). What our study shows is that two mesoscopic brain

oscillators can synchronize even when they are coupled only

through a mediating population that is described by a micro-

scopic model. In that sense, we use synchronization as a tool

to probe the interaction between different spatial scales of

neuronal populations. Previous efforts have been devoted to

analysing this interaction by performing a direct comparison

of the behaviours of the microscopic and mesoscopic models.

Faugeras et al. [23], for instance, derived the equations of

evolution of NMs from the dynamics of a network of neurons

described by a voltage-based model, by performing an involved

mean field analysis of the network, an approach that would be

very challenging to apply to spiking neuron models. In order to

perform such a multiscale mapping, Rodrigues et al. [24] had

to apply strong assumptions that included high correl-

ation between the neurons in the microscopic populations

and low-amplitude input currents. Here, we have attempted
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to circumvent the complexity of those approaches by using a

more phenomenological strategy, whose goal is to test

whether microscopic and mesoscopic descriptions of neur-

onal populations communicate with one another by using

synchronization as a proxy of effective communication.

Even when the NN operates in a fast dynamical collective

regime in the gamma range, a sufficiently large subpopu-

lation of neurons within that network is able to mediate the

communication and subsequent synchronization between

two NMs that are described mesoscopically and operate at

much lower frequencies. Frequency and phase locking arise

even when the two NMs operate at very different frequen-

cies (in the theta and alpha bands) and with very different

dynamical features (spike-like dynamics in one case and

quasi-harmonic dynamics in the other). Structural clustering

within the NN diminishes the ability of the microscopic neur-

onal population to induce synchronization. The size of the

subpopulation of neurons that directly coupled the two

NMs must also be large enough to allow the intrinsically

irregular neurons to reach a sufficiently strong collective

regime through which the two NMs can communicate.

Two main features indicate the non-trivial contribution of

the microscopic NN in mediating the synchronization between

the mesoscopic models. First, the two mesoscopic populations

lock not only in frequency, but also in phase, when they interact

with a dynamically evolving NN. If the role of the network is

played by an increased constant input to the NMs equal to

the average activity of the NN, phase locking disappears.
Second, if the NN is made to operate in a slower collective

regime (e.g. in the alpha band) the synchronization between

the NMs is decreased (while still being significant), even

though the three oscillators are now closer in frequency.

The synchronization between the NMs is mediated by

the locking between the NMs and the NN, which leads to

an increase in the alpha band activity of the NN, as reflected

in figure 3. The fact that synchronization is maintained even

when the NN is operating in the alpha band (figure 4c,d )

indicates that the intrinsic NN dynamics does not interfere

notably in the communication between the NM populations.

Furthermore, the fact that synchronization improves slightly

when the NN is operating in gamma (as shown also

in figure 4c,d ) shows that fast and slow scales interact to a cer-

tain extent in order to drive the synchronization. We interpret

this to be due to an increase in the precise timing of the firing

that is associated with a faster neuronal rhythm. The results

reported here point towards an alternative way to probe the

interaction of scales in the brain, by using synchroniza-

tion between neuronal populations as a way of testing the

structural and functional conditions under which scale

interaction occurs.
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