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The mammalian brain operates in multiple spatial scales simultaneously, ran-
ging from the microscopic scale of single neurons through the mesoscopic scale
of cortical columns, to the macroscopic scale of brain areas. These levels of
description are associated with distinct temporal scales, ranging from millisec-
onds in the case of neurons to tens of seconds in the case of brain areas. Here,
we examine theoretically how these spatial and temporal scales interact in the
functioning brain, by considering the coupled behaviour of two mesoscopic
neural masses (NMs) that communicate with each other through a microscopic
neuronal network (NN). We use the synchronization between the two NM
models as a tool to probe the interaction between the mesoscopic scales of
those neural populations and the microscopic scale of the mediating NN.
The two NM oscillators are taken to operate in a low-frequency regime with
different peak frequencies (and distinct dynamical behaviour). The micro-
scopic neuronal population, in turn, is described by a network of several
thousand excitatory and inhibitory spiking neurons operating in a synchron-
ous irregular regime, in which the individual neurons fire very sparsely but
collectively give rise to a well-defined rhythm in the gamma range.
Our results show that this NN, which operates at a fast temporal scale, is
indeed sufficient to mediate coupling between the two mesoscopic oscillators,
which evolve dynamically at a slower scale. We also establish how this syn-
chronization depends on the topological properties of the microscopic NN,
on its size and on its oscillation frequency.

1. Introduction

The mammalian brain is composed of a myriad of coupled neurons that interact
dynamically. It possesses a rich topological structure and exhibits complex
dynamics, operating as a noisy, nonlinear and highly dimensional system.
Neuronal activity evolves at temporal scales ranging from a few milliseconds
to tens of seconds, and emerges from neuronal assemblies that extend from
micrometres to several centimetres. Owing to a complex functional hierarchy
between cell groups, the brain is able to store information for long periods of
time, process multiple sensory inputs efficiently and produce coherent output
in the form of actions and thoughts.

Even though the brain has been studied for centuries, a full theoretical descrip-
tion of its normal and pathological functioning is still missing. Owing partly to the
lack of a full description of the anatomical connectivity, and partly to our incom-
plete knowledge of the interplay between different neural processes, the brain is
still the great unknown organ. Its study is usually partitioned into different
research fields devoted to distinct brain structures (such as the thalamus, amyg-
dala, hippocampus, etc.), cortical functional areas (motor, visual, auditory
cortex, etc.) or particular microscopic circuits, from the level of cortical columns
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Figure 1. Diagram representing the coupling between different scale-based models. Two groups of neuronal populations, described by neural mass (NM) models,
are coupled through a neuronal network (NN). The NMs represent the average dynamics of three coupled neural populations: pyramidal (P), excitatory interneurons
(EI) and inhibitory interneurons (II). The NN consists of a set of 4000 excitatory and inhibitory interconnected neurons. Only a subset of neurons of the NN is coupled
with the NMs. The coupling strength between the NMs and the NN is given by the three parameters, -y, > and ;. y; quantifies the coupling from the pyramidal
population of the NMs to the NN subpopulation. -y, and -y; represent the intensity of the excitatory and inhibitory couplings, respectively, from the NN subpopu-

lation to the NMs’ pyramidal population. (Online version in colour.)

down to single-neuron responses. Moreover, studies of the
global activity of the brain usually focus for convenience on
specific cognitive or motor tasks, in order to compare them
with a control state such as spontaneous activity at rest.

The various aforementioned approaches deal with differ-
ent scales of description, from the macroscopic to the
microscopic level. Accordingly, different computational
models have been developed to account for the activity at
each scale. Single neurons, for instance, can be characterized
by detailed biophysical models that consider ion-channel
dynamics, as initially proposed by Hodgkin & Huxley [1,2],
or by more abstract models of neural excitation such as the
integrate-and-fire model [3,4] or the FitzHugh—Nagumo
model [5,6]. The set of equations representing each neuron’s
membrane potential can be coupled in a way that mimics
the synaptic junction. Thus, given a connectivity matrix,
one can ideally build any neuronal network (NN) in silico
from its individual constituents, and thereby move towards
the mesoscopic level of neuronal assemblies. This allows
the brain to be traditionally investigated in a reductionist
way, using different simplified levels of description. This
approach has been very fruitful in unveiling several mechan-
isms that lay at the basis of the observed neural tissue
behaviour [7-10].

Another set of models, named neural mass (NM) models
[11-14], avoid the single-neuron perspective and consider
instead the averaged behaviour of the neuronal population.
This mesoscopic description is more phenomenological than
the single-neuron models, in the sense that it represents
directly the collective behaviour of the network, without sin-
gling out individual cells. Moreover, single neurons operate
at time scales faster than NM models. The former exhibit
action potentials that last about 1 ms, while the coordinated
activity of neuronal tissue, which emerges from the synchron-
ization of multiple spikes, operates on time scales up to tens
of seconds. Within a neuronal population all temporal scales
work simultaneously, and the relative relevance of the differ-
ent scales might change depending on the biological process.
For instance, spike-timing precision is key to synaptic plas-
ticity, and therefore to the formation of functional cell
assemblies [15,16]. On the other hand, the frequency of collect-
ive oscillations is relevant for the synchronization of distant
areas, and thus for their effective interaction within specific
information-processing tasks [17,18].

Recently, large-scale models of the brain have received
special attention. So far, global brain activity has been

modelled by dividing the brain into discrete volume
elements, or voxels, and coupling them according to statis-
tical correlations and structural information [19-21]. Both
the Human Brain Project and the Brain Activity Map project
propose integrated views to bridge the gap between the be-
haviour of single neurons and the functions of the full brain
[22], but this quest is still in its infancy.

While new theoretical studies have attempted to connect
the microscopic (NN) and mesoscopic (NM) descriptions of
brain tissue, by directly applying mean field approaches to
derive the latter from the former [23,24], these strategies are
fraught with limitations and hard-to-justify assumptions.
Here, we propose an alternative approach to explore scale
interaction, by considering a system formed by two NMs
that are coupled exclusively via an intermediate population
described by a spiking NN model. Our results show that
the two mesoscopic oscillators are able to lock their dynamics
through the mediation of the microscopic population. In that
way, we use synchronization as a tool to probe the interaction
between the two scales of description. We also examine
which characteristics of the NN connectivity allow the effi-
cient cross-talk between dynamical scales, i.e. to determine
whether which are the microscopic features that modulate
the mesocopic activity. The paper is organized as follows.
In §2, we describe the model used in this study. The results
are presented in §3 and discussed in §4.

2. Dynamical model and methods

As mentioned above, our model combines two different levels
of description (figure 1). The NM description evolves at a
slow scale and represents the average dynamical evolution of
a set of three different neural populations (pyramidal, exci-
tatory interneurons and inhibitory interneurons) [11]. The fast
scale, on the other hand, is represented by a conductance-
based neural network formed by excitatory and inhibitory
neurons. In this case, the time course of every neuron’s trans-
membrane potential is given by the dynamics of voltage-
dependent ion channels. We have merged these two levels of
description in a simple dynamical structure, shown in figure 1,
in which two NM models are coupled with a subpopulation
of neurons belonging to the NN.

The two NMs are set to oscillate in two different well-
defined frequencies, corresponding to two slightly different
brain rhythms. The NN also displays a collective oscillatory
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dynamics with a different frequency. Here, we investigate how
both the inter-scale coupling strength and the features of the
NN contribute to the cross-talk between the three systems.

(a) Dynamics of the neuronal network

The neural network is composed of 4000 neurons (80% exci-
tatory and 20% inhibitory). Each neuron forms 400 chemical
synaptic connections on average with other neurons of the
network. The dynamics of the transmembrane potential of
the soma of each neuron is described by the following set
of differential equations:

dv
Cn Y = gV — B — g WV — Eno)

d
—8L(V = EL) — Lyyn + Iext, 1)

where gk, gna and gp, are the maximum conductances for the
potassium, sodium and the leak currents, respectively, and
ILiyn is the synaptic current coming from the neighbouring
neurons. The dynamics of the sodium and potassium chan-
nels is represented by the time-varying probabilities of a

channel being in the open state:

9 (V)1 —x) — BV,

a x=m,h,n, (2.2)

where x stands for the activation (m) and inactivation (k) of
the sodium channels and the activation of the potassium
channels (1). The rate functions a, and B, for each gating
variable, together with all the NN parameters used through-
out this paper are given in [10].

The synaptic current Iy, is described using a conduct-
ance-based formalism

Isyn = gsyn(t)(v(t) - Esyn)/ (23)

where g, is the synaptic conductance, and Egyy, is the rever-
sal potential of the synapse. For Ey,, greater than the resting
potential V. the synapse is excitatory (mediated by AMPA
receptors); otherwise it is inhibitory (mediated by GABA
receptors). We consider two temporal time constants, 74
and 7, (decay and rise synaptic time) for the dynamics of
the synaptic conductance

Bam Bl A RN e
T4— Tr {exp( 74 ) exp( T ' 24

We have chosen the maximal conductances g, such that the
postsynaptic potential (PSP) amplitudes are within physio-
logical ranges: the excitatory postsynaptic potential (EPSP)
in the range from 0.42 to 0.83 mV and the inhibitory postsyn-
aptic potential (IPSP) in the range from 1.54 to 2.20 mV. In
order to modify the activity time scale of the NN, we have

&syn t) =

changed 74 for the GABAergic synapses, varying according-
ly the inhibitory conductances gsyn in such a way that the
maximum amplitude for ggyn(t) is maintained.

All neurons receive an additional train of excitatory pre-
synaptic potentials, coming from brain areas other than
those explicitly modelled by the NMs, which contributes to
the external current term I, in equation (2.1). Those spikes
follow a heterogeneous Poisson process with a mean event
rate, which varies following an Ornstein—Uhlenbeck (OU)
process. The instantaneous rate A(t) of this external excitatory
train of spikes is generated according to

P o+ a(t)\@n(t), 25)

where o(t) is the standard deviation of the noisy process and
is set to 0.6 spikes s 1. The correlation time T is set to 16 ms,
leading to a 1/f power spectrum for the A time series that is
flat up to a cut-off frequency f=1/Q2m7) = 9.9 Hz. The term
7(t) is a Gaussian white noise.

This NN model is able to reproduce the well-known syn-
chronous irregular regime [25], in which recurrent activity
leads to collective oscillations at the population level while
single neurons fire irregularly. The emergent rhythmicity is
achieved by a balance between the excitatory and inhibitory
synaptic currents and can be explained by periodic changes
of the excitability in the network, i.e. periodic modulation of
the distance to threshold. Despite the fact that excitatory neur-
ons are dominant in the network, the stronger synaptic
inhibitory conductances and the higher firing rate of the inhibit-
ory neurons allow the system to reach a balance between
excitation and inhibition. In order to obtain collective oscil-
lations in the alpha (gamma) band, we set the decay synaptic
time to be 74 = 15 ms (5 ms).

(b) Dynamics of the neural mass model

The description of the mesoscopic neuronal ensemble is based
on a model proposed by Jansen & Rit [11]. This model charac-
terizes the dynamics of a cortical column by using a mean field
approximation. In this sense, Jansen’s model describes the
average activity of three cortical populations; excitatory
and inhibitory interneurons and pyramidal cells. All three
populations form a feedback circuit. The main pyramidal
population excites both interneuronal populations in a feed-
forward manner and the excitatory (inhibitory) interneurons
feed back in an excitatory (inhibitory) manner into the pyram-
idal population. The dynamical evolution of these three
populations is introduced considering two different transform-
ations. Each population transforms the total average density of
action potentials reaching their afferent synapses from different
origins, > ,,pm(t), into an average postsynaptic excitatory or
inhibitory membrane potential y;(t). This transformation can
be introduced in the model using the differential operator

d*yi(t) dy;(t)
ar T2

> Pm(t):| ,

and correspondingly L(y;)(t);b) for the inhibitory integra-
tion of the average density of action potentials, with b
and B substituting a4 and A above. A and B are related
with the maximum heights of the EPSP and IPSP, res-
pectively, whereas a and b represent the inverse of the
membrane time constants and the dendritic delays. Here,
A=325mV,a=0.1kHz, B=22mV and b = 0.050 kHz for
NM1 (figure 1), leading to oscillations at approxi-
mately 11 Hz; and A=3.25mV, a=0.1kHz, B=215mV
and b=0.048 kHz for NM2, which consequently exhibits
oscillations at approximately 4.5 Hz.

The second dynamical transformation in the model is the
conversion of the net average membrane potential into an
average density of spikes. This conversion is done at the
somas of the neurons that form the population and is
described mathematically by a sigmoidal function

L(yi(t); a) = + a*yi(H)

(2.6)
= Aa

260

S(m(t)) = 1 + er(VEl*m(f)) .

(2.7)
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Here ¢y = 0.0025 kHz determines the maximum firing rate of
the neural population, vy = 0.6 mV sets the net PSP for which
a 50% firing rate is achieved, r = 0.56 mV ! is the steepness
of the sigmoidal transformation, and m(t) corresponds to
the net PSP input into the population being considered. The
average density of action potentials produced by the presyn-
aptic population acting upon the postsynaptic population,
pi(t), turns out to be proportional to S(m(t)), where the pro-
portionality constant weights the contact between the
populations, and gives the range of efficiency of the synaptic
interaction. Combining equations (2.6) and (2.7), we obtain
the complete model for the NMs

Yo () = ys(b),
y1 () = ya(h),
¥, () = y5(b),
5 (£) = AaS[y1(t) — y2 (D] — 2ays(t) — a*yo(h),
4 () = Aa(pe(t) + CoS[Cryo(B)]) — 2aya(t) — a®ya(t)
and ¥ () = Bb(pi(t) + CaS[Cayo(t)]) — 2bys(t) — b*ya(h),
2.8)

where y(t) is the EPSP produced by the pyramidal population
on the interneuron populations, and y;(t) is the EPSP acting
upon the pyramidal population and arriving from (i) the exci-
tatory interneurons, (ii) other areas of the brain and, in our
model, (iii) the neural network (see equation (2.11)). Finally,
ya(t) is the IPSP acting upon the pyramidal population and
arriving from the inhibitory interneurons and, in our model,
the neural network (see equation (2.12)). The intra-columnar
connectivity constants values are defined in terms of C;, with
i=1,... 4 We use the values given in Jansen et al. [11].

(c) Inter-scale coupling terms

The effect of the mass models upon the neural network also
contributes to the I, term of the NN (see equation (2.1)),
together with the external excitatory Poissonian train
of spikes. Hence, each neuron of the NN receives a train of
excitatory spikes whose mean firing rate, FR, is given by

FR() = EFR(H) + kv, S (H) — y2(8), 29)

where S(y1(t) — y2(t)) translates the PSP of the pyramidal
population of the NM which affects that particular neuron
(or both NMs if that is the case) into a spiking rate. y;
and k control the strength of this coupling. Here y; = 200,
while k will be a varying parameter. EFR(t) corresponds to
aforementioned Poissonian train of spikes:

EFR(f) = (EFR) + Aoy (t), (2.10)

with (EFR) being the mean external firing rate and Aoy(f) an
OU process (see equation (2.5)) representing the fluctuations
around the mean. We have set (EFR) = 8.5 kHz. The NN acts
upon the NM models through pe(t) and p;(t) (see equation
(2.8))

Pe(t) = {p) + ky,MUA(t) (2.11)
and
pi(t) = kysMUA(1), (2.12)

where MUA(t) is the multiunit activity coming from the
neural network, i.e. the sum of spikes over the subset of neur-
ons coupled to the NMs, calculated within a sliding window
of length 1 ms. {p) is a constant input coming from other areas
of the brain distinct from those considered explicitly in our
model ({(p) =0.160kHz for both NMs). y,, y; and k are

scaling factors that take into account the synaptic efficiency, [ 4 |

where, vy, =25 and y; = 3. Note that we assume that NN
neurons affect only the pyramidal population in the NM.
This is in accordance with the Jansen—Rit model of two
coupled NMs [11], which considers that only pyramidal
cells receive excitatory input from the other column.

(d) Local field potential

In order to quantify the activity of the NN, we have defined a
collective measure, the local field potential (LFP), as the aver-
age of the absolute values of AMPA and GABA synaptic
currents acting upon a typical excitatory neuron [26]

LFP = Re{|Iampal + Hcasal)- (2.13)

where Iavpa represents the external excitatory heterogeneous
Poisson spike train and the recurrent excitatory synaptic cur-
rent due to the network, Igaga accounts for the recurrent
inhibitory synaptic current and R, represents the resistance of
a typical electrode used for extracellular measurements. The
symbol . ..) represents an average over all excitatory neurons.

(e) Spectral analysis

We have computed the power spectral density (PSD) of the
LFPs and of the PSPs of the pyramidal population of the
NMs using the Welch method: the signal is split up into
500-point segments with 50% overlap and filtered with a
Hamming window. Given that the sampling time is 1ms,
the segment length chosen leads to a frequency resolution
of 2 Hz. The periodogram is calculated by computing the
square magnitude of the discrete Fourier transform. These
periodograms are then averaged to obtain the PSD estimate,
which reduces the variance of the individual power measure-
ments. LFP and PSP spectral quantities are averaged over 20
trials of length 3500 and 1500 ms, respectively. The code has
been implemented in MATLAB. The frequency mismatch
between the PSP of the two NM models is calculated as the
inverse of the difference between the periods of the mass
models, averaging over trials. The periods correspond to
the temporal distance between two maxima of the autocorrel-
ation function. Each trial corresponds to a different set of
random initial conditions, NN architecture and realization
of the OU process.

3. Results

The effective interaction between neuronal ensembles described
at different scales can be studied by coupling mesoscopic
and microscopic models. As mentioned in §1, mesoscopic
models are best exemplified by NM descriptions, which are
derived phenomenologically from experimental studies, and
characterize the average population activity by means of a
mean field approximation. In particular, NMs describe the
neuronal activity happening at slow time scales, such as synap-
tic potentials arising from the synchronized firing of thousands
of neurons. On the other hand, models of single neurons repro-
duce the time course of the electric currents crossing the
neuronal membrane, and thus account for the individual
action potentials and the postsynaptic response of each cell
composing the network. In order to preserve the precision of
the spiking times, these models involve fast time scales.
Certainly, networks built from spiking neuron models can
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Figure 2. Collective dynamics of the coupled system. (a) Time traces of the net PSP y(t) = y;(t) — y,(t) of both NMs working at different frequencies: at 4.5 Hz
within the theta band (blue online, dark grey in print), and at 11 Hz within the alpha band (red online, grey in print). The LFP of the neural network (turquoise
online, light grey in print) oscillates in the gamma range around 45 Hz. The three neural ensembles are uncoupled. (b) Time traces of the PSPs of both NM models
and LEP of the neural network when the system is coupled (k = 1). Averaged maximum cross covariance (c) and frequency mismatch (d) between the PSP time
traces of the NMs for increasing inter-scale coupling strength k. (Online version in colour.)

also provide measures of the population activity by averaging
across neurons. Thus, patterns of collective activity can be
observed in the synaptic current, evoked by the summation of
multiple spikes on the target neurons.

To analyse the evolution of the model introduced in §2, we
consider two different dynamical variables corresponding to
each of the two scales. The NM model activity is given by
y(t) = y1(t) — y2(t), where y;(f) is the EPSP and y(t) the IPSP
acting upon the pyramidal population (see equation (2.8)).
The NN activity is quantified in terms of the LFP as defined in
equation (2.13). Both types of model operate in an oscillatory
regime. The NM model is an intrinsic oscillator whose fre-
quency can be varied by changing the parameters B and b (see
blue and green lines (dark grey and grey in print, respectively)
in figure 2a,b). On the other hand, the oscillations of the NN
are an emergent property of the system, reflecting the variability
of the individual PSPs (i.e. the microscopic events). Hence, their
frequency is less well defined (see turquoise line (light grey in
print) in figure 2a,b and power spectra in figure 3¢,d).

Our aim here is to find fingerprints of an effective inter-
action of scales. To do so, we have studied how the two NM
models, one oscillating in the theta band and the other in the
alpha band, synchronize their dynamics when the coupling
is mediated by the NN (figure 1). The interaction mechanism
is bidirectional. This architecture was used by Vicente et al.
[27] and Gollo et al. [28] to demonstrate the emergence of
zero-lag synchronization mediated by dynamical relaying
between NN populations. In our case, the output of each NM
is converted into a firing rate (see equation (2.9)) impinging
on a subpopulation of 2000 neurons within the NN. In turn,
the firing rate of these selected neurons contributes to both
the excitatory and inhibitory PSP densities that act upon
the pyramidal populations of the NMs. We also examine the
effect of varying several properties of the subpopulation of

neurons of the NN, including its number, involved in
the coupling, in order to explore the effect of the structural
properties of that network on the scale interaction efficiency.

The effect of the coupling intensity k on the dynamics of the
interacting populations is shown in figure 2. When the NMs are
uncoupled, they oscillate in different dynamical regimes that
evolve at different frequencies, around 4.5 and 11 Hz, respect-
ively. One NM oscillates in a spike-like manner, whereas the
other oscillates more harmonically (figure 24, compare the
blue and green (dark grey and grey in print, respectively)
lines). The NN, in turn, exhibits collective oscillations within
the gamma range, around 45 Hz. The dynamical evolution
for the coupled case, at k=1, is shown in figure 2b. In this
case, the dynamical regimes of the NMs are similar, and they
become frequency locked. We have scanned k in order to
track the transition to the frequency locked regime as coupling
increases. Figure 2c shows the increase in the maximum cross
covariance between the net PSPs of the two NM models, aver-
aged over 20 trials, when increasing k. When the NMs operate
at different regimes they hardly synchronize but, for suffi-
ciently high k, they increase their synchronization with
increasing k. The averaged frequency mismatch decreases shar-
ply at k =~ 0.6 (figure 2d). According to these results, frequency
locking for the two NMs is achieved through an NN that
oscillates naturally at a much faster scale.

We have further characterized the effect of the interaction
through the power spectrum of the time traces. As can be
expected, the power spectrum of the mass models in isolation
(figure 3a) shows a clear peak at their natural frequencies (4.5
and 11 Hz), while the LFP shows a strong peak around 45 Hz
(figure 3c) that exceeds the non-zero contribution of the
slower frequencies approximately 4 Hz. We have seen that
increasing coupling leads to a frequency locking regime
between the NMs, which is reflected in their spectral
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Figure 3. Effect of coupling on the power spectra of the three neuronal populations. (a) Power spectra of the net PSP y(t) of the NMs in isolation. Primary peaks are
tagged with vertical dashed lines at approximately 4.5 Hz and approximately 11 Hz. (b) Power spectra of the net PSP y(t) of the NMs when coupled (k = 1)
through a subpopulation of 2000 neurons within the neural network. The common primary peak is tagged with a vertical dashed line at approximately 4 Hz.
() Power spectrum of the LFP of the NN in isolation. (d) Power spectrum of the LFP when the subpopulation of the NN is coupled (k = 1) to the NM
models. Spectral densities are averaged over 20 trials. (¢) Time traces of the MUA signal of the NN (blue online, dark grey in print, left axis) and the voltage
of NM1 (green online, light grey in print, right axis). The MUA is calculated here using a sliding window of length 50 ms. (f) Correlation between the MUA
and voltage signals shown in panel (e) as a function of the number of neurons from the central NN involved in the communication between the two NMs.

(Online version in colour.)

behaviour. For instance, at k = 1 the power spectra of the two
NMs overlap, with a dominant peak around 4 Hz (figure 3b).
The local gamma peak of the NN is preserved (figure 3d),
although the major change in amplitude occurs at smaller
rhythms, around the frequency of the NMs. This increase in
the NN power at the alpha band is due to the emergence of
phase locking between this population and the outer NMs,
as shown in figure 3e. This phase locking results in a sizable
cross-correlation between the activities of the microscopic
and mesoscopic populations for intermediate values of the
size N of the NN subpopulation coupling the two NMs, as
depicted in figure 3f (the difference between cross-correlations
with NM1 and NM2 for small N is due to the different intrinsic
dynamics of the two mesoscopic populations). The effect of N
is studied in more detail later. The slower time scale of the NMs
cannot follow the faster dynamics of the neural network and
average out the gamma rhythm, resulting in a frequency shift
towards the slower rhythm, which is also enhanced in the NN.

Since the output of the NN arises from the spiking activity
of thousands of neurons, the interaction across models is
mainly driven by the average dynamics of the population.
Although the modelled LFP evolves in a faster time scale,
NM models filter out rapid fluctuations. Therefore, the NMs
mainly respond to changes of the mean input coming from
the NN modulated by k.

The input contribution into the NMs coming from the NN
dynamics increases the average excitatory and inhibitory
input signal into the pyramidal population (denoted by p.
and p;, respectively, in equations (2.11) and (2.12)). Since
increasing the constant input to an NM can lead to changes

in the dynamical regime (and thus the frequency) of the oscil-
lator [13], one could argue that the role of the NN dynamics
is unnecessary to mediate the synchronization transition
observed. However, simulations in which the terms given
in equations (2.11) and (2.12) are replaced by the temporal
average of the coupling contributions indicate that the NMs
are unable to synchronize their phases in these conditions
(results not shown). This result shows that the NN dynamics
is a key ingredient to achieve not only frequency locking, but
also phase locking between the two NMs.

In order to take advantage of the microscopic description of
the neural network, we have also varied two main features of
its architecture: its clustering (figure 44,b) and the size of the
area involved in the coupling, determined by the number of
neurons projecting onto the NMs (figure 5). In graph theory,
networks composed of nodes and edges can be characterized
by their clustering coefficient, which quantifies the connected-
ness or local connectivity of the network (i.e. the probability
that all nodes that are connected to a given node, are also con-
nected between them). According to the Watts & Strogatz
algorithm [29], a pure regular network can be turned into a
small-world network, in which few edges separate any two
nodes, by rewiring the connections. A rewiring probability par-
ameter, rp, determines the probability of replacing an existing
edge by another one chosen randomly. Therefore, a rewiring
probability equal to zero implies a regular network, whereas
a rewiring probability equal to unity implies a completely
random network. By studying these parameters, we are chan-
ging the dynamics of the NN and, therefore, its capacity to
mediate the interaction between the two NMs.
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Figure 4. Influence of the topological and dynamical properties of the NN on the interaction between the NMs. Maximum cross covariance (a) and frequency
mismatch (b) between the NM average PSPs for increasing rewiring probabilities rp of the NN. Maximum cross covariance (c) and frequency mismatch (d) between
the NM average PSPs when the NN works in the alpha regime, compared with the gamma case (rp = 1). (Online version in colour.)
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size N of the subpopulation of the NN that mediates the coupling. (c,d) Same quantities as a function of N for various values of the inter-scale coupling strength k.
(e) Spectral power density of the LFP of the whole NN, when the NMs are connected with NN subpopulations of various sizes (k = 0.9). All results are averaged over
20 trials. (Online version in colour.)
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Figure 4a,b outlines the dependence of the maximum cross
covariance and the frequency mismatch between the two
NMs on the coupling strength k for different rp values.
Note that the case rp =1 corresponds to the results shown in
figure 2c¢,d. Networks with higher clustering (rp = 0.2) are less
efficient in synchronizing the oscillatory output of the NMs. In
this case, larger coupling strengths k are needed, with respect
to a random network (rp = 1), to reach the frequency locking
regime. Thus, the topology of the neural network affects the syn-
chronization between the neural ensembles. Random networks
have small path lengths at the expense of low clustering, and
thus the average transmission time of the action potentials
across the population is decreased. In this situation, synchron-
ization arises for smaller coupling strengths. The result for a
regular network, rp =0 (which is not a realistic situation in
the brain because the NN dynamics is lost), is also included.

Besides topology, the intrinsic dynamics of the NN also has
an impact on the synchronization of NMs. In our NN model,
we can slow down the frequency peak of the LFP by increasing
the decay time constant 74 of the inhibitory synapses (equation
(2.4)), without altering the firing rate of the population (result
not shown). If the peak of the NN power spectrum is shifted
towards the alpha band, closer to where the NMs oscillate,
then the maximum cross covariance is reduced and the fre-
quency mismatch is increased for a given k value (figure 4c
and 44, respectively). Thus, even though the NN is operating
closer in frequency to the NMs, and its individual neurons
fire at the same rate as when the network operates in the
gamma band (resulting in a similar MUA activity, result not
shown), the NMs are more difficult to synchronize. In the
neural network, the action potentials are transiently synchron-
ized and paced according to the time course of inhibition,
leading to a recurrent behaviour that causes the global oscil-
latory dynamics. Faster rhythms, like gamma, correspond to
a better precise timing of the firing, i.e. the action potentials
of multiple neurons are tightly bounded in time, which
seems to be key for the synchronization of the NMs.

Finally, and as mentioned above, we have also studied
how the synchronization of the NMs is affected by the size
N of the subpopulation of neurons that mediate the coupling
between them. In the results presented so far, this subpopu-
lation was formed by N = 2000 neurons, randomly chosen
from the whole population of 4000 neurons of the NN. We
have scanned N between 1 and 4000 neurons, the latter case
corresponding to all neurons in the NN contributing to the
firing rate impinging on the NMs and receiving their input.
Figure 5a,b shows the maximum cross covariance and the
frequency mismatch for increasing coupling k at varying sub-
population sizes. The interaction between the NMs decreases
as N decreases, and synchronization is only significant for
N>1000. N directly affects the strength of the coupling
between the NN and the NMs, since this parameter determines
the average MUA, i.e. the number of spikes elicited within the
subpopulation. Hence, given a coupling strength k that enables
an efficient interaction of the models, larger values of N lead to
a lower frequency mismatch (figure 5¢,d).

It is important to note that, although the size of the neural
network is kept constant, increasing N boosts the coupling
term, spreading the input from the NM across a larger popu-
lation of neurons within the NN. Figure 5e shows the LFP
power spectrum for increasing values of N for k = 0.9. Similar to
the transition from figure 3c (network in isolation) to figure 3d
(k=1 for N=2000), the major changes produced by the

coupling occur at small frequencies, where the synchronization [ 8 |

scale is centred, while the gamma rhythm interacts directly with
the slower dynamics of the NMs. Decreasing N dramatically
affects the dynamics of the coupling, which only takes into
account the activity of this subpopulation. For sizes below
N ~ 1000 the interaction is carried out by the low firing and
highly noisy activity of small numbers of neurons, which are
unable to synchronize large ensembles.

4. Discussion

Modelling the dynamics of the full brain from a purely micro-
scopic scale is computationally unfeasible. Thus, a hybrid
description of the brain that encompasses multiple scales is
an appealing concept. In that scenario, it would only be neces-
sary to represent microscopically those neuronal populations
involved in a particular task, and which are monitored with
single-cell resolution. The rest of the brain, while modulating
the activity of the population of interest, would not necessarily
need to be represented with microscopic detail. Currently,
this is accomplished by representing the activity of the rest of
the brain by a background noisy activity, but this approach is
not useful when the neuronal population of interest feeds
back into those other brain regions, thereby modifying the
background activity that acts upon the population itself. We
consider here one way of facing this situation, based on coup-
ling bidirectionally microscopic and mesoscopic descriptions
of neuronal populations. In particular, we use synchronization
in order to probe the interaction between the two scales.
Specifically, we employ a scheme in which two mesoscopic
populations are coupled through a third microscopic net-
work, since the behaviour that can be expected from two
coupled NM models is well known [11,12], and can be used
as a reference to interpret the coordinated behaviour emerging
from our hybrid scenario.

Our results do not imply that two NM oscillators can only
synchronize through the mediation of an NN. In fact, if all
three neuronal populations were described by NNs (or by
NMs, for that matter) synchronization will also arise (see,
for instance, the studies of Vicente et al. [27] and Gollo et al.
[28] for the case of three coupled NNs leading to zero-lag
synchronization). Neither do we claim that two brain oscil-
lators can synchronize only through the mediation of a
third (see, for instance, the study of David & Friston [12]
for an example of synchronization between two coupled
NMs). What our study shows is that two mesoscopic brain
oscillators can synchronize even when they are coupled only
through a mediating population that is described by a micro-
scopic model. In that sense, we use synchronization as a tool
to probe the interaction between different spatial scales of
neuronal populations. Previous efforts have been devoted to
analysing this interaction by performing a direct comparison
of the behaviours of the microscopic and mesoscopic models.
Faugeras ef al. [23], for instance, derived the equations of
evolution of NMs from the dynamics of a network of neurons
described by a voltage-based model, by performing an involved
mean field analysis of the network, an approach that would be
very challenging to apply to spiking neuron models. In order to
perform such a multiscale mapping, Rodrigues et al. [24] had
to apply strong assumptions that included high correl-
ation between the neurons in the microscopic populations
and low-amplitude input currents. Here, we have attempted
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to circumvent the complexity of those approaches by using a
more phenomenological strategy, whose goal is to test
whether microscopic and mesoscopic descriptions of neur-
onal populations communicate with one another by using
synchronization as a proxy of effective communication.

Even when the NN operates in a fast dynamical collective
regime in the gamma range, a sufficiently large subpopu-
lation of neurons within that network is able to mediate the
communication and subsequent synchronization between
two NMs that are described mesoscopically and operate at
much lower frequencies. Frequency and phase locking arise
even when the two NMs operate at very different frequen-
cies (in the theta and alpha bands) and with very different
dynamical features (spike-like dynamics in one case and
quasi-harmonic dynamics in the other). Structural clustering
within the NN diminishes the ability of the microscopic neur-
onal population to induce synchronization. The size of the
subpopulation of neurons that directly coupled the two
NMs must also be large enough to allow the intrinsically
irregular neurons to reach a sufficiently strong collective
regime through which the two NMs can communicate.

Two main features indicate the non-trivial contribution of
the microscopic NN in mediating the synchronization between
the mesoscopic models. First, the two mesoscopic populations
lock not only in frequency, but also in phase, when they interact
with a dynamically evolving NN. If the role of the network is
played by an increased constant input to the NMs equal to
the average activity of the NN, phase locking disappears.
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