Table 2.
Differences in utilization of BIOLOG GN2 substrates by the Bulgarian strains of genus Xanthomonas isolated from pepper, tomato, and weeds.
| Substrates | X. euvesicatoria | X. vesicatoria | X. gardneri | |||
|---|---|---|---|---|---|---|
| + (positive), % | / (weak positive), % | + (positive), % | / (weak positive), % | + (positive), % | / (weak positive), % | |
| Dextrin | 77 | 23 | 87 | 11 | 7 | 40 |
| Glycogen | 3∗ | 19 | 78 | 16 | 0 | 0 |
| Tween40 | 100 | 0 | 47 | 47 | 27∗ | 33 |
| Tween80 | 48 | 52 | 37 | 60 | 20 | 80 |
| N-acetyl-D-glucosamin | 78 | 15 | 70 | 6 | 27 | 13 |
| L-arabinose | 0 | 0 | 14∗ | 2 | 0 | 20 |
| D-arabitol | 0 | 0 | 4 | 13 | 0 | 0 |
| Cellobiose | 100 | 0 | 71 | 20 | 100 | 0 |
| L-Fucose | 92 | 8 | 82 | 14 | 60∗ | 27 |
| D-Galactose | 80 | 15 | 80 | 17 | 40 | 20 |
| Gentibiose | 98 | 0 | 83 | 14 | 0 | 20 |
| α-D-lactose | 0 | 0 | 0 | 0 | 40 | 0 |
| Lactulose | 75 | 10 | 79 | 10 | 47 | 13 |
| Maltose | 78 | 14 | 82 | 10 | 0 | 0 |
| D-Mannitol | 0 | 0 | 44 | 18 | 0 | 0 |
| D-Mannose | 93 | 7 | 84 | 13 | 100 | 0 |
| Melibiose | 83 | 15 | 60 | 28 | 60 | 7 |
| β-methyl D-glucoside | 0 | 5 | 1 | 13 | 0 | 0 |
| D-Psicose | 15 | 53 | 47 | 50 | 87 | 13 |
| D-Raffinose | 17 | 73 | 6 | 26 | 20 | 40 |
| Trehalose | 100 | 0 | 90 | 10 | 80 | 20 |
| Turanose | 0 | 47 | 8 | 38 | 0 | 0 |
| Xylitol | 0 | 0 | 0 | 0 | 7 | 7 |
| Methyl-pyruvate | 92 | 0 | 93 | 6 | 60∗ | 13 |
| Mono-methyl succinate | 89 | 8 | 77 | 20 | 86 | 7 |
| Acetic acid | 9 | 55 | 10 | 26 | 7∗ | 33 |
| cis-Aconitic acid | 91 | 7 | 20 | 36 | 0 | 0 |
| Citric acid | 39 | 24 | 33 | 23 | 20 | 13 |
| Formic acid | 0 | 0 | 3 | 5 | 0 | 0 |
| D-Galacturonic acid | 0 | 0 | 0 | 16 | 0 | 0 |
| D-Glucuronic acid | 0 | 0 | 3 | 11 | 0 | 0 |
| α-hydroxybutiric acid | 0 | 30 | 11 | 16 | 0 | 0 |
| β-hydroxybutiric acid | 0 | 3 | 3 | 10 | 0 | 0 |
| Itaconic acid | 0 | 0 | 3 | 11 | 0 | 0 |
| α-kato butyric acid | 5 | 30 | 7 | 19 | 0 | 0 |
| α-kato glutaric acid | 95 | 0 | 95 | 3 | 33 | 0 |
| Lactic acid | 2 | 82 | 17 | 50 | 0 | 20 |
| Malonic acid | 28∗ | 55 | 40 | 28 | 0 | 0 |
| Propionic acid | 15 | 31 | 28 | 21 | 0 | 0 |
| Succinic acid | 90 | 3 | 85 | 12 | 33∗ | 0 |
| Bromo-succinic acid | 78 | 19 | 88 | 9 | 33∗ | 0 |
| Succinamic acid | 9 | 60 | 71 | 26 | 33∗ | 0 |
| Glucuronamid | 0 | 0 | 2 | 12 | 0 | 0 |
| Alaninamide | 97 | 0 | 79 | 18 | 7∗ | 27 |
| D-alanine | 79 | 14 | 63 | 20 | 0∗ | 33 |
| L-alanine | 94 | 3 | 78 | 19 | 0∗ | 33 |
| L-alanyl-glycine | 97 | 0 | 66 | 23 | 0 | 80 |
| Asparagine | 0 | 0 | 5 | 17 | 0 | 0 |
| L-aspartic acid | 0 | 53 | 27 | 23 | 7∗ | 7 |
| L-Glutamic acid | 97 | 0 | 83 | 14 | 27 | 0 |
| Glycyl-L-Aspartic acid | 0 | 0 | 5 | 15 | 0 | 0 |
| Glycyl-L-Glutamic acid | 92 | 5 | 41 | 30 | 0 | 20 |
| Hydroxy L-Proline | 41 | 42 | 34 | 31 | 0∗ | 13 |
| L-proline | 3 | 36 | 14 | 21 | 0 | 0 |
| L-Serine | 80∗ | 5 | 24 | 49 | 13∗ | 20 |
| L-Threonine | 0 | 69 | 11 | 26 | 0 | 0 |
| Carnitine | 0 | 7 | 0 | 35 | 0 | 0 |
| γ-aminobutyric acid | 0 | 3 | 0 | 45 | 0 | 0 |
| Urocanic acid | 0 | 5 | 18∗ | 29 | 0 | 0 |
| Inosine | 0 | 47 | 3 | 18 | 0 | 0 |
| Uridine | 0 | 39 | 3 | 16 | 0 | 0 |
| 2-amino-ethanol | 0 | 0 | 1 | 24 | 0 | 0 |
| Butanediol | 0 | 12 | 0 | 28 | 0 | 0 |
| Glycerol | 74 | 9 | 73 | 22 | 0 | 0 |
| α-glycerol-phosphate | 2 | 55 | 50∗ | 42 | 0 | 0 |
| Glucose-1-phosphate | 0 | 28 | 47∗ | 40 | 0 | 0 |
| Glucose-6-phosphate | 0 | 25 | 33∗ | 36 | 0 | 0 |
∗Major differences from the strains studied by Jones et al. (2000) [4].