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Abstract Awide spectrum of both normal and diseased cell
types shed extracellular vesicles that facilitate intercellular
communication without direct cell-to-cell contact. Micropar-
ticles (MPs) are a subtype of extracellular vesicles that partic-
ipate in multiple biological processes. They carry abundant
bioactive molecules including different forms of nucleic acids
and proteins that can markedly modulate cellular behavior.
MPs are involved in several hallmarks of cancer such as drug
resistance, thrombosis, immune evasion, angiogenesis, tumor
invasion and metastasis. Such MPs originate from either can-
cer or other host cells. As MPs are secreted and can be
detected in various body fluids, they can be used as potential
diagnostic and prognostic biomarkers as well as vehicles for
delivery of cytotoxic drugs. This review summarizes accumu-
lating evidence on the biological properties of MPs in cancer,
with reference to their potential usage in clinical settings.
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Introduction

Body fluids and interstitial spaces contain extracellular vesi-
cles (EVs)—also called microvesicles—which are derived
from normal and diseased cells upon activation or apoptosis

[1–4]. Such EVs are released from the cell surface as bilayered
membrane structures and can be categorized and subdivided
according to their size, mechanism of cellular release, content,
surface markers, cellular origin and physiological role. The
major types of EVs are exosomes, ectosomes, oncosomes, and
apoptotic bodies [5].

Exosomes originate from endosomal cell compartments in
the cytoplasm, known as multivesicular bodies, that fuse with
the cell membrane to form 30–120 nm diameter phospholipid
bilayer secreted vesicles [6–8]. In contrast, ectosomes which
are often called microparticles (MPs), are 0.1–1.0 μm in
diameter, and they are formed directly from activated or early
apoptotic cell membranes by a blebbing or shedding process.
Thus, their surface markers resemble that of the parental cell
enabling identification of their cellular origin [9]. Oncosomes
are large vesicles, 1–10 μm in diameter, which are originated
from migrating tumor cells undergoing amoeboid movement
[10]. They are known to transfer oncogenic materials between
cells [11, 12]. Similarly to MPs, apoptotic bodies are also
released as blebs from cells undergoing late apoptosis and
are approximately 1–5 μm in diameter [13].

All EVs are characterized by the presence of phos-
phatidylserine (PS) on their outer leaflet, although to a lower
extent in exosomes and some subsets of MPs [14, 13, 15, 16].
Size parameters determined by scattering flow cytometry and
PS detection by Annexin Vor lactadherin are only a few of the
methods available today for EV detection and are reviewed
elsewhere [17–20].

In vivo, apoptotic bodies are rapidly recognized and
engulfed by neighboring phagocytic cells, limiting their iden-
tification and characterization to in vitro studies performed in
cell cultures [21, 22]. Exosomes and MPs, on the other hand,
are detectable in in vivo systems, which enable the character-
ization of their role in biological and pathological settings,
although their presence in the circulation may vary between
different animal models [23]. Numerous studies have
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demonstrated their contribution to pathophysiological pro-
cesses, highlighting the importance of understanding their
properties and mechanisms of action [24–33].

In cancer, MPs and exosomes were shown to facilitate
tumor progression by various mechanisms, (see reviews [34,
35]). A growing body of evidence suggests thatMPs may play
a pivotal role in the promotion of tumor growth and in
supporting metastasis spread. They do so by transferring
microRNAs (miRNAs) , mRNA, genomic DNA,
retrotransposons, proteins and lipid components between
cells, which are not usually located in close proximity. In this
mini-review we focus on the autocrine, paracrine and endo-
crine properties of tumor- and stroma- derived MPs, and their
regulation of malignant progression.

Platelet-Derived Microparticles

EV formation was first documented by Wolf in 1967, where
he noticed the presence of procoagulant particulate matter,
which he referred to as “platelet dust”, surrounding activated
blood platelets [36]. Over the past few decades, “platelet
dust”, which was subsequently replaced by the term Platelet
MPs (PMPs), served as a notable subject in cancer related
research, in which the effects of PMPs on tumor angiogenesis
and metastasis were studied [37].

Characteristics of Tumor Derived Microparticles

Tumor-derived MPs (TMPs) exhibit a molecular signature
determined by the cancer cells from which they are derived.
For example, gliomas often express the oncogenic form of the
epidermal growth factor receptor, also known as EGFRvIII,
that induces MAPK and Akt pathways to promote anchorage-
independent cell growth. Al-Nedawi et al. observed that when
cancer cells lacking EGFRvIII expression were exposed to
MPs obtained from aggressive EGFRvIII-expressing glioma,
recipient cells became positive for EGFRvIII [11]. Another
study byAl-Nedawi et al. demonstrated thatMPs produced by
human cancer cells expressing activated EGFR can elicit
EGFR-dependent responses paracrinically, as described
above, in cultured endothelial cells [38].

Other receptors such as the pro-coagulant transmembrane
receptor, tissue factor (TF), were shown to play a role in TMP-
mediated cancer associated thrombosis, which is one of the
most common complications leading to cancer patient mortal-
ity [39–41]. In a study by Davila et al. injection of TMPs
derived from breast and pancreatic cancer cell lines into mice
resulted in strong, TF-dependent, procoagulation activity [42].
In another study, the expression of TF on TMPs from human
colorectal carcinoma cells were implicated as an important
effector of K-ras-dependent tumor progression [43].

In addition to TF, P-selectin, a glycoprotein ligand-1 (PSGL-
1) usually expressed by platelets, was also shown to modulate
thrombus formation via association with TMPs [44]. An in-
teresting research direction for the role of TF in cancer pro-
gression has been recently suggested in the context of cancer
stem cells (CSCs). CSCs are a subset of tumor cells with stem
cell characteristics, mainly due to their ability to self-renew
and replicate limitlessly. CSCs are considered as the primary
tumor cells with tumor initiating capacity. They have been
shown to resist many treatments, and even metastasize [45,
46]. As TF is associated with oncogenic events in cancer and
in angiogenesis, it may also accompany characteristics of
tumor cell aggressiveness and markers of CSCs (e.g.,
CD133 in glioma tumors). It has been demonstrated that the
blockade of TF in host cells perturbs tumor initiation and
therefore can be used as a therapeutic intervention for cancer
[47, 48]. Overall, it has been proposed that TF affects the CSC
properties and tumor growth due to its wide range of tumor-
igenic activities.

TMPs can also promote tumor resistance to therapy. A
study by Bebawy et al. showed that MPs isolated from drug-
resistant cancer cells transfer the plasma membrane multidrug
efflux transporter P-glycoprotein (P-gp) to drug sensitive
cells, thus facilitating ‘non-genetic’ tumor cell resistance
[49]. Similar results were recently reported by Pasquier et al.
where intercellular transfer of functional P-gp occurred be-
tween drug resistant donor and drug sensitive recipient cells in
the absence of drug selection pressure [50]. Jaiswal et al.
suggested that TMP-dependent P-gp transfer is a selective
process based on specific recognition between the TMPs and
target cells [51]. In an earlier study by the same group, the
authors showed that TMPs consist of regulatory microRNA
(miRNA) as well as ABCB1 and ABCC1 gene transcripts
encoding P-gp and multi-drug resistance-associated protein 1
(MRP1), respectively. These TMPs promoted the transfer of
nucleic acids between drug-sensitive cells to multi-drug resis-
tant cells [52].

The transfer of nucleic acids through MPs was first docu-
mented by Ratajczak et al. who showed that MPs from em-
bryonic stem cells can deliver mRNA to target cells which can
be later translated into proteins [53]. Subsequently, exosomes
from human and mouse mast cell lines were undergo micro-
array assessments and found to contain mRNA of approxi-
mately 1,300 genes which could not be found in the cytoplasm
of the donor cells, suggesting that mRNA can be delivered to
other cells via exosomes [54]. In cancer, Balaj et al. suggested
that some nucleic acids transferred via TMPs promote tumor
growth. In their study, TMPs were shown to carry
retrotransposon elements that are known to promote genome
instability and subsequent tumorigenesis [55]. As such, me-
dulloblastoma cells, which bear frequent amplification of the
c-Myc oncogene, shed TMPs with higher DNA/RNA levels
of c-Myc compared to cells without c-Myc amplification, thus
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inducing an aggressive tumor type [55]. However, the transfer
of functional properties between cells using MPs through
DNA/RNA needs further validation.

The impact of MPs and TMPs on growing tumors has been
studied in additional directions. For example, the ability of
tumor cells to overcome and escape the immune system has
been recently studied in the context of TMPs. Poutsiaka et al.
showed that membrane vesicles shed from tumor cells cause a
reduction in macrophage immune region-associated antigen
expression, which is essential for early phases of the immune
response towards the growing tumor [56]. In another study,
membrane vesicles extracted from human breast carcinoma,
but not human fibrosarcoma, were shown to dramatically
inhibit 3H-thymidine incorporation by peripheral blood
lymphocytes, therefore suggesting a role of TMPs in the
escape of tumor cells from immunological surveillance
[57]. The activity of immune cells against tumor cells
was also studied. Fas receptor and Fas ligand (FasL) are
expressed on T lymphocytes and NK cells in order to
promote interactions with their target cells. It has been
shown that TMPs shed from human colorectal carcinoma
cell lines also express biologically active Fas or FasL,
which in turn protect the cells from FasL-mediated apo-
ptosis [58]. Overall, these findings suggest that TMPs aid
tumor cells to escape the immune system.

Another interaction between TMPs and bone marrow de-
rived cells (BMDCs) has been studied in the context of chron-
ic lymphocytic leukemia (CLL). B-cell derived MPs were
shown to deliver the phospho-receptor tyrosine kinase, Axl,
to CLL bone marrow stromal cells, thus activating PI3K/AKT
which further activates mTOR/p70S6K/HIF-1α axis to pro-
duce vascular endothelial growth factor (VEGF) that supports
leukemic disease progression [59]. Taken together, TMPs act
by different ways to promote both solid tumors and hemato-
logical malignancies.

Microparticles and Angiogenesis

One important mechanism by which MPs contribute to tumor
progression is by supporting angiogenesis—the formation of
new blood vessels in tumors that supply nutrients and oxygen
critical for sustaining tumor growth [60]. Tumor angiogenesis
is mediated locally, by rapidly proliferating mature endothelial
cells, as well as systemically, by the mobilization of bone
marrow derived endothelial precursor cells [61]. The latter
process supports systemic de novo angiogenesis, and is also
called vasculogenesis. Various studies demonstrated that MPs
from tumor cells, platelets and endothelial cells express adhe-
sion molecules, growth factors and matrix metalloproteinases
(MMPs) that are essential for local and systemic angiogenesis.
The specific mechanisms by which MPs affect angiogenesis
largely depend on their cell of origin, how they were

generated, and the microenvironment. For example,
Taraboletti et al. showed that MPs shed by human ovarian
carcinoma cell lines contain VEGF and two MMPs—MMP-2
andMMP-9—that can stimulate the motility and invasiveness
of endothelial cells in vitro [62]. The authors suggested that
higher stimulation of endothelial cell motility was achieved
only following vesicle burst induced by acidic pH which
resembles that of the tumor microenvironment.

Other studies have also attributed the involvement of TMPs
in tumor angiogenesis to different mediators. Mutated EGFR
transferring TMPs, as described above, were shown to induce
the expression of VEGF and VEGF receptor in endothelial
cells [38]. In another study it was shown that TMPs shed from
human ovarian carcinoma cell lines that express the extracel-
lular MMP inducer, CD147, promote the angiogenic proper-
ties of human umbilical vein endothelial cells (HUVECs) in a
CD147-dependent manner [63]. In another study, Taverna
et al. suggested that TMPs shed from a human hepatoma cell
line carry three Fibroblast Growth Factor-2 (FGF-2) isoforms
that promote migration of endothelial cells [64]. Not only
angiogenic factors per se contribute to tumor angiogenesis.
TF expressing TMPs were also found to contribute to tumor
angiogenesis in addition to their known role in thrombosis. Yu
et al. suggested that tumor and host compartments mutually
transfer TF-containing MPs that contribute to pro-coagulant
and pro-angiogenic modulation of endothelial cells [65]. Fur-
thermore, the cross-talk between TMPs and endothelial MPs
(EMPs) was shown to promote a pro-tumoral vascular niche
by altering the activation of endothelial cells. In turn, such
MPs induce tumor cell invasion, proliferation and stem cell
phenotype [66]. Thus TMPs shed from different tumor cell
types can promote angiogenesis and the activity of endothelial
cells by altering the expression of angiogenic factors or other
angiogenic mediators.

In addition to various proteins expressed on TMPs, lipid
components have also been shown to play a role in TMP-
mediated angiogenesis. Fibrosarcoma TMPs containing
sphingomyelin were shown to be involved in neovasculariza-
tion by inducing endothelial cell migration [67].

In terms of differences between local and systemic angio-
genesis, TMPs were also shown to act endocrinically on
proangiogenic BMDCs to promote their mobilization in an
osteopontin (OPN) dependent manner. In a recent study by
Fremder et al. the authors suggest a mechanism by which
TMPs shed from chemotherapy-treated cells express high
levels of OPN that triggers themobilization and tumor homing
of different types of BMDCs known to support tumor angio-
genesis. TMPs from OPN depleted tumors, however, did not
show the same pattern of BMDC recruitment to tumors sug-
gesting that OPN plays an important role in this process.
Importantly, the authors also showed that the mobilization
and tumor homing of BMDCs mediated by TMPs does not
induce their activation at the tumor site, only their recruitment
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to this site, suggesting that TMPs act as a messenger rather
than a cell activator [68].

TMPs are not the only MPs which support tumor angio-
genesis. PMPs display angiogenic properties partially due to
the expression of proangiogenic factors that can promote the
growth of capillary-like structures [69]. PMPs were shown to
stimulate proliferation and tube formation of HUVECs and
protect them from apoptosis [70]. They have also been shown
to induce chemotactic events and invasion in vitro in Matrigel
containing endothelial cells, human lung cancer cells, or
breast cancer cells [71, 72]. Other studies have demonstrated
that monocyte-derived TF-bearing MPs also induce tube for-
mation by endothelial cells [73]. In addition, MPs derived
from endothelial cells (EMPs) have been described as
proangiogenic mainly because they contain MMPs (largely
MMP-2 and MMP-9). Since MMPs are involved in endothe-
lial cell invasion and new capillary formation, EMPs can
promote new vessel sprouting. This is an example of an
autocrine pathway by which endothelial cells can also con-
tribute to their own angiogenic process through MPs [74].
Lastly, MPs derived from endothelial precursor cells have
been shown to transfer mRNA associated with signaling path-
ways that activate angiogenesis [75].

Interestingly, MPs were also described to have anti-
angiogenic activity. Yang et al. showed that lymphocyte-
derived MPs strongly suppressed aortic ring vessel sprouting
in vitro. This effect was found to be associated with down-
regulation of VEGFR2, one of the main receptors for VEGF-
A that mediates angiogenesis and increases reactive oxygen
species [76]. Taken together, MPs originating from tumor cells
are mostly known for their pro-angiogenic activities, while
those originating from other cell types may possess different
angiogenic properties.

Microparticles and Metastasis

Metastasis is a cascade of molecular and cellular events in-
volving tumor cell dissemination from the primary tumor,
systemic circulation, arrest at a secondary site, and subsequent
colonization and growth [77]. Proteolytic enzymes are
thought to play a major role in the promotion of tumor
invasion and metastasis explaining why MP-associated pro-
teolytic activity was studied in depth in the past years. In a
study by Muralidharan-Chari et al. the authors suggest a
mechanism by which the ADP-ribosylation factor 6 (ARF6)
GTP/GDP cycle regulates the release of MPs containing pro-
tease cargo from tumor cells, thus facilitating extracellular
matrix degradation and promotion of the invasive phenotype
in these cells [78].

Proteolytic enzymes are an important component promot-
ing tumor cell dissemination and metastatic activities. Studies
have shown that MPs shed by breast and ovarian carcinoma

and fibrosarcoma cell lines contain proteases such as MMP-2
and MMP-9 that are known to play important roles in tumor
invasion and metastasis [79–82]. In addition, lung cancer cells
secrete large quantities of TMPs that have a potential role in
the recruitment of stromal fibroblasts and endothelial cells to
tumors. These TMPs were shown to stimulate the secretion of
MMP-9 from fibroblasts enhancing the metastatic potential of
lung cancer cells in an in vivo metastasis assay [83]. Further-
more, MMP2 has been shown to be transferred to tumor cells
by PMPs [84]. Thus, proteolytic enzymes use MPs or TMPs
as vehicles for their transfer to tumor cells in order to promote
the metastatic process.

However, not only active proteolytic molecules stored in
TMPs and MPs promote metastasis. Other components stored
in MPs may alter the tumor microenvironment to become
more prone to metastasis. For example, TMPs were shown
to express the serine protease urokinase-type plasminogen
activator (uPA) that enables the conversion of MMPs zymo-
gens to their active form [81, 85]. In addition, low pH is a
characteristic of the tumor microenvironment. It has been
shown that increased activity of MMP2 and MMP9 was
induced upon exposure of ovarian carcinoma TMPs to an
acidic environment (pH 5.6). The authors suggested that the
cysteine protease cathepsin B might play a role in the pH-
dependent activation of MMPs, as these conditions are con-
sidered within the pH optimum for their activity. The authors
demonstrated that inhibiting Cathepsin B expression or its
activity abolished TMP-induced metalloproteinase activity at
low pH. These results further suggest that the acidic microen-
vironment in tumors promotes tumor cell invasion and metas-
tasis via TMPs secreting cathepsin-B [86]. Overall, mediators
that are stored in TMPs may activate MMPs, thus increasing
metastatic potential.

Tumor-stroma interactions are considered a fundamental
necessity for tumor development and progression. Interplay
between tumor and non-malignant host cells (e.g., stromal
cells, immune cells, activated endothelium) have also been
described in the context of MPs. In a study by Castellana et al.
TMPs derived from the metastatic PC3 prostate carcinoma
cell line were shown to trigger ERK1/2 phosphorylation,
increase active MMP-9 expression, and promote migratory
and therapy resistant traits in fibroblasts. In response, TMP-
stimulated fibroblasts were shown to secrete their own MPs
which further promoted the migratory and invasive properties
of the PC3 tumor cells [87]. A more recent study also de-
scribes possible MP transfer between immune and cancer
cells, resulting in an increase in tumor cell migratory and
metastatic phenotype. The transfer of integrin α(M)β2

(CD11b/CD18) via immune cell-derived MPs was suggested
by the authors to serve as a key element in inducing cell
migration [88]. Although this study was conducted in
in vitro settings, it is possible that such interactions may occur
in vivo where tumor cells could utilize immune cell
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phenotypes transferred via shed MPs in order to enhance their
metastatic potential.

It should be noted that in addition to MPs, the contribution
of exosomes to metastasis has also been investigated. It was
reported that exosomes derived from the highly metastatic
B16-F10 melanoma cells can fuse or be uptaken by the B16-
F1 cells which possess low-metastatic potential, and thus
induce their metastatic properties [89, 90]. Exosomes may
also contribute to metastasis by altering stromal cells’ proper-
ties at the primary tumor microenvironment or supporting
cells at the pre-metastatic site. For example, exosomes from
melanoma cells may ‘condition’ the lymphnodes for metasta-
tic cell seeding by a synchronized molecular signaling which
affects melanoma cell recruitment to metastatic sites [91].
Also, miRNA from tumor-derived exosomes have been shown
to affect stromal cells at the pre-metastatic sites, by altering the
expression of pro-metastatic molecules, thus promoting tumor
cell seeding and spread of metastasis [92]. In addition,
exosomes can shift the characteristics of BMDCs towards a
tumor pro-invasive phenotype. Peinado et al. recently demon-
strated that exosomes from highly metastatic melanomas edu-
cate BMDCs through the receptor tyrosine kinase MET, to
become pro-invasive, and to acquire vasculogenic pheno-
types—properties critical for metastatic spread [93]. Stromal
cells, on the other hand, can also affect the metastatic proper-
ties of tumor cells via microvesicles, as exosomes secreted
from fibroblasts have been shown to induce an autocrine
Wnt-planar cell polarity (PCP) signaling in tumor cells which
in turn, promotes breast carcinoma cell invasive properties
[94]. In patients, it has been demonstrated that exosomes
proteomic profiling is different between the primary tumor
and the metastatic sites of colorectal cancer patients. Exosomes
of metastatic sites are enriched with metastatic factors and
signaling pathways which can contribute to the cross-talk
between tumor cells and stromal cells at the metastatic micro-
environment [95]. Overall, TMPs and exosomes not only
affect tumor cell proliferation, growth, and angiogenesis, but
also the metastasis cascade by virtue of enhancing metallopro-
teinase activities via various independent mechanisms, and by
altering the pre-metastatic sites to the tumor advantage.

Microparticles as Potential Biomarkers in Cancer

The notion that the levels of MPs in the body fluids of cancer
patients are significantly higher than those of healthy individ-
uals could provide vast diagnostic and prognostic opportuni-
ties. The possibility that MPs contain information about tumor
cells or their activity, combined with the fact that they can be
easily detected in the circulation, allows for the use of MPs as
a remarkable biomarker tool. This research direction has been
extensively studied in recent years, and some studies are
summarized here. For example, the number and proteolytic

content of MPs shed by ovarian cancer cells were found to
correlate with the invasive phenotype of the tumor cells,
suggesting that the metastatic potential of tumor cells can be
evaluated by proteolytic enzyme activity stored in MPs [80].
Indeed, the levels of MPs and their MMP-2 activity derived
from benign and malignant serous cyst fluid of ovarian cancer
patients positively correlated with tumor aggressiveness and
stage [81]. In addition, as stated above, tumor cells may shed
TMPs containing oncogenic receptors such as EGFRvIII,
which can transfer to other cell types in the tumor bed [38].
Indeed, EGFRvIII was detected in MPs of glioblastoma pa-
tients, suggesting that TMPs detected in peripheral blood may
be used as a diagnostic biomarker for therapeutic purposes
[96]. Thus, parameters on the quantity and quality of MPs
could provide valuable information on malignant progression.
In other studies, MPs were evaluated as a biomarker for tumor
progression in breast cancer patients. Circulating levels of
both leukocyte-derived MPs (LMPs) (CD45+) and endotheli-
al MPs (EMPs) were analyzed and compared to the profiles of
the most abundantly used breast cancer biomarkers, CEA and
CA15-3. LMP levels in breast cancer patients were signifi-
cantly different from those of controls, and correlated with
tumor size, with similar sensitivity to that observed when
using the marker CA15-3. However, such correlation was
not found with EMPs, suggesting that CD45+LMPs, but not
EMPs, could serve as a diagnostic tool for breast cancer
staging [97]. Furthermore, gastric cancer patients were also
shown to present elevated TMP plasma levels, which in-
creased in correlation with disease progression [98]. Similarly
to TMPs, PMPs were recently described as potential gastric
cancer staging biomarker candidates, as their levels in the
plasma were found to correlate with disease progression [99].

PMPs were also suggested as predictive biomarkers for
treatment outcome. In a study by Helley et al. whole blood
PMPs were quantified in hormone-refractory prostate cancer
patients (HRPC) prior to treatment with docetaxel-based che-
motherapy. High levels of PMPs were shown to be in signif-
icant correlation with shorter overall survival of patients fol-
lowing therapy [100]. However, in non-small cell lung cancer
patients, high levels of MPs in peripheral blood both before
and after treatment, correlated with increased progression-free
survival and overall survival [101]. In a recent study by
Reynés et al. peripheral blood MP levels were shown to be
significantly higher in patients with glioblastoma. Following
treatment, MP levels were shown to decrease, however, no
data was reported with respect to the correlation with overall
survival, probably due to the aggressive phenotype of such
tumors [102]. Similar results were also reported by Shao et al.
who described that exosomes and MPs from tumor origin
were elevated in glioblastoma patients, but their levels mark-
edly decreased upon treatment. Again, whether lowered levels
of MPs following treatment is an indication for successful
therapy is yet to be established [103]. In addition to the
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aforementioned studies, TMPs have been reviewed as a bio-
marker for thrombosis, an important clinical condition in
cancer and other pathologies. The role of TMPs as thrombotic
biomarkers was recently reviewed by Geddings and
Mackman, who suggested that TF-positive MPs are an indi-
cation of increased risk of thrombosis in cancer patients [104].
Interestingly, it has been demonstrated that the activity of MPs
expressing TF in pancreatic cancer patients was correlated
with poorly differentiated and invasive tumors indicating poor
survival [105]. Overall, these examples stress the diagnostic
and prognostic potential of MPs in the clinical settings. In
addition, they also demonstrate the different MP patterns
following therapy, suggesting that each cancer type manifests
a unique pattern ofMPs that should be addressed separately in
the prediction of therapy outcome.

Future Research

A growing body of literature suggests that tumors recruit
many types of immune cells which in turn assist in tumor
progression and growth. In this regard, PMPs, for example,
have been shown to participate in the trafficking of immune
cells as well as in the promotion of hematopoiesis [106]. They
do so by expressing several chemokine and cytokine receptors

that upon binding to normal and malignant hematopoietic
cells, promote their activation, mobilization, proliferation
and adhesion properties [107, 106, 108]. The high concentra-
tion of PMPs in inflammatory areas, could recruit immune
cells to the pro-inflammatory sites. It is therefore plausible that
the same mechanism occurs in the recruitment of immune
cells to the tumor microenvironment, thus facilitating tumor
progression. In this regard, another intriguing aspect is related
to the specific properties of immune cell derived MPs. Mesri
and Altieri exhibited that MVs shed from stimulated polymor-
phonuclear leukocytes induce endothelial cells to secrete the
cytokines IL-6 and IL-8 and to enhance the expression of
leukocyte-endothelial cell adhesion molecules [109]. The au-
thors suggested that this could be a general mechanism in
inflammatory responses. Given the inflammatory nature of
tumor development, it would be interesting to explore whether
such mechanisms are also involved in the recruitment of
leukocytes to the tumor milieu, and to study possible MP-
mediated reciprocal communication between cancer cells and
their microenvironment stromal cells.

A fascinating possibility would be to exploit MPs as vehi-
cles for anti-cancer drug delivery. A study by Shedden et al.
demonstrated that gene expression associated with vesicle
shedding can be enhanced in tumor cells, consequently
resulting in drug efflux achieved by shedding of microvesicles

Fig. 1 The roles of MPs in tumorigenesis: the effect of MPs on various
hallmarks of cancer is presented in this illustration. MPs contain DNA
fragments with oncogenic capacity that can be transferred between cells.
They express factors related to the coagulation system, and as such
promote tumorigenesis and various aspects in the pathology of cancer.
MPs promote tumor resistance by transferring molecules associated with
multi-drug resistance. They express factors that inhibit immune cell
activity against cancer cells. MPs contain factors related to the extracel-
lular matrix and the proliferation of endothelial cells, and as such they

promote angiogenesis and metastatic spread. Studying MPs in cancer
may provide a new research direction on the cross-talk between the tumor
and its stroma. In addition, MPs can be used as a diagnostic tool for
cancer intervention due to their presence in the circulation. Abbreviations:
EGFR epidermal growth factor receptor,FasL Fas ligand,FGF Fibroblast
Growth Factor, MMP matrix metalloproteinase, OPN Osteopontin, P-gp
P-glycoprotein, PSGL-1 P-selectin glycoprotein ligand 1, TF tissue fac-
tor, VEGF vascular endothelial growth factor, uPA urokinase-type plas-
minogen activator
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(a mixture of exosomes and MPs) containing the cytotoxic
drug [110]. In a recent study by Tang et al. the authors
induced tumor cells to shed cytotoxic drug-containing
microvesicles that were then used for therapy [111]. Although
in this particular study injection of cytotoxic drug-containing
MPs resulted in inhibition of ovarian cancer growth, it is still
crucial to consider the possibility of undesired transfer of other
MP content, such as oncogenic receptors that might accelerate
malignancy. It should be noted that synthetic MPs have been
studied as therapeutic vehicles for more than a decade. The
use of liposomes containing drugs, such as liposomal
doxorubicine, has been shown to improve treatment efficacy
of various solid tumors by different mechanisms [112, 113].
Therapeutic approaches in this direction were also explored
for synthetic lyposomes containing tumor cell binding factors
on their surface designed for use as a vehicle of toxic drugs
[114]. In this regard, Toledano-Furman et al. used surface
molecules of mesenchymal stem cells known to home to
tumors as nano-ghost vehicles containing anti-cancer drugs
as a new treatment modality for cancer [115]. The use of MPs
as an alternative biological source to synthetic lyposomes or
nano-ghosts would probably be of a better nature and even
more effective in targeting the tumor microenvironment. This
treatment direction should be further elucidated in the future.

On a more technical note, standardized written protocols
for MP purification are currently missing and should be care-
fully delineated in order to utilizeMPs for clinical purposes. In
this respect, future efforts should be made to maximize the
resolution of distinction between MPs and other types of
vesicles. This could be achieved by nanoparticle tracking
analysis and atomic force microscopy, methods that are likely
to provide more accurate sizing of MPs compared with con-
ventional flow cytometry [19]. However, it is also important to
note that these particular techniques are less feasible than flow
cytometry, as their accessibility is lower and they are consid-
ered less ‘user-friendly’. Therefore, the right balance between
accurate sizing of MPs and technical feasibility is needed in
order to enable the integration of MP based procedures in the
clinic.

Concluding Remarks

Vesicle shedding is a normal biological process that occurs
both in physiological and pathological conditions. MPs are
formed directly from the cell surface by the outward budding
and fission of the cell membrane. They were shown to contain
cell surface receptors as well as soluble mediators such as
growth factors and cytokines, thus comprising an ensemble of
intercellular communication possibilities. As illustrated in
Fig. 1, tumor associated MPs, PMPs and other stroma-
derived MPs (e.g. fibroblasts, endothelial and immune cells)
can actively alter the genomic stability in normal cells and

further promote malignant transformation. Furthermore, ma-
trix degrading enzymes released by shed MPs can facilitate
the promotion of tumor angiogenesis and metastasis.
Expanding the current knowledge of the biology, properties
and mechanisms of action of tumor associated MPs would
benefit the development of potential diagnostic, prognostic
and therapeutic targets.
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