
Evaluation of Observation-Fused Regional Air Quality Model
Results for Population Air Pollution Exposure Estimation

Gang Chen1, Jingyi Li1, Qi Ying1,*, Seth Sherman2, Neil Perkins3, Sundaram Rajeshwari3,
and Pauline Mendola3

1Zachry Department of Civil Engineering, Texas A&M University, College Station, Texas 77843

2The EMMES Corporation, Rockville, MD 20850

3Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of
Child Health and Human Development, National Institutes of Health, Rockville, MD 20852

Abstract

In this study, Community Multiscale Air Quality (CMAQ) model was applied to predict ambient

gaseous and particulate concentrations during 2001 to 2010 in 15 hospital referral regions (HRRs)

using a 36-km horizontal resolution domain. An inverse distance weighting based method was

applied to produce exposure estimates based on observation-fused regional pollutant concentration

fields using the differences between observations and predictions at grid cells where air quality

monitors were located. Although the raw CMAQ model is capable of producing satisfying results

for O3 and PM2.5 based on EPA guidelines, using the observation data fusing technique to correct

CMAQ predictions leads to significant improvement of model performance for all gaseous and

particulate pollutants. Regional average concentrations were calculated using five different

methods: 1) inverse distance weighting of observation data alone, 2) raw CMAQ results, 3)

observation-fused CMAQ results, 4) population-averaged raw CMAQ results and 5) population-

averaged fused CMAQ results. It shows that while O3 (as well as NOx) monitoring networks in the

HRR regions are dense enough to provide consistent regional average exposure estimation based

on monitoring data alone, PM2.5 observation sites (as well as monitors for CO, SO2, PM10 and

PM2.5 components) are usually sparse and the difference between the average concentrations

estimated by the inverse distance interpolated observations, raw CMAQ and fused CMAQ results

can be significantly different. Population-weighted average should be used to account spatial

variation in pollutant concentration and population density. Using raw CMAQ results or

observations alone might lead to significant biases in health outcome analyses.
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1. Introduction

Investigations of the effects of air pollution on population health are dependent on the

quality of available air pollutant exposure estimates (Bell et al., 2004; Laden et al., 2000).

Traditionally, exposure levels are estimated based on measurements made at near-by air

monitoring stations that are limited in space and time (Bell et al., 2007). However, many of

the populations in air pollution epidemiology studies are located in areas without sufficient

air quality monitoring activities. In addition to the lack of spatial coverage of standard air

quality monitoring networks, air quality measurements are limited by the capability of the

analytical instruments and may not be able to provide sufficient temporal resolution or

detailed chemical composition information to support detailed health outcome analyses.

Three-dimensional chemical transport models (CTMs) can provide detailed gaseous and

particulate matter (PM) concentrations and their source and chemical composition

information at one-hour resolution over large areas. The complete spatial and temporal

coverage of CTMs makes them an ideal tool to fill in the spatial and temporal gaps in the

exposure estimation solely based on air quality measurements at fixed monitors (Bell, 2006;

Bravo et al., 2012). One of the challenges in applying CTM-predicted exposure in health

outcome studies is to reduce the error in exposure classifications. Uncertainties in the

meteorology and emissions inputs, the underlying chemical mechanisms and numerical

techniques, as well as spatial resolution (i.e. grid size) of the CTM model itself can all lead

to errors in the predicted concentrations. Even though previous studies showed that the long

term performance of a three-dimensional regional air quality model for ozone and PM can

generally meet the criteria recommended by the United States Environmental Protection

Agency (US EPA), systematic biases do exist in the predicted concentrations which could

lead to biases in the exposure estimations (Zhang et al., 2013b).

Data fusing techniques have been proposed to improve exposure estimations by adjusting

the raw CTM model predictions with the ambient observation data (Fuentes and Raftery,

2005; Sahu et al., 2010). However, the effectiveness of these data fusing techniques on

predicted air pollutants has only been examined for a small number of species for relatively

short simulation periods (such as SO2 in Fuentes and Raftery et al. 2005). Many

epidemiologic studies would benefit from long-term exposure inputs of multiple air

pollutants such as carbon monoxide (CO), nitrogen oxides (NOx), ozone (O3), particulate

matter with aerodynamic diameters less than 2.5 and 10 μm (PM2.5 and PM10), as well as a

number of air toxics and PM components to address the public health implications of poor

air quality in a more comprehensive manner. The number of available stations for these

different species and their spatial and temporal coverage in a given area can be significantly

different. No study to date has examined the effectiveness of data fusing techniques on

multiple species in the same air quality domain over a long study period.
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Recently, an air quality modeling project was carried out to provide air pollutant exposure

estimation over a ten-year period (from 2001 to 2010) for the Air Quality and Reproductive

Health Study (AQRH) with support from the Eunice Kennedy Shriver National Institute of

Child Health and Human Development (NICHD). The AQRH study is designed to analyze

data collected during the Consortium on Safe Labor (CSL) study (Zhang et al., 2010) and

the Longitudinal Investigation of Fertility and the Environment (LIFE) study (Buck Louis et

al., 2011) to provide improved understanding of the relationship between air quality and

various measures of reproductive health. The CSL collected detailed electronic medical

record information on 228,562 deliveries including both mother and baby records from 12

clinical centers comprising19 hospitals with 15 non-overlapping HRRs across the United

States between 2002-2008. The LIFE study was a longitudinal study (2005-2009) that

closely followed 501 couples trying to conceive for up to 12 cycles or through pregnancy for

those who became pregnant.

The objectives of this paper are to: 1) evaluate the model performance of the three-

dimensional regional air quality model, 2) evaluate the effectiveness of observation data

fusing in improving regional air quality model predictions and 3) compare the difference in

the exposure estimations using raw and observation-fused air quality modeling results. In

this study, modelled concentrations in the surface layer are used to represent population

exposure to air pollution. Exposure assessment in health effects studies typically include

time-activity measures and either active monitoring or some assessment of indoor air as well

as ambient measures. These methods can definitely increase the accuracy and precision of

an individual’s exposure but typically the studies rely on volunteers who are willing to

provide detailed information on their activity/mobility and only include subjects who accept

the additional burden of personal monitoring. Our analyses reflect the ambient exposures of

an entire population. While there is some error in exposure estimation at the ambient level, it

is balanced with the inclusion of the full population. It may also be helpful to note that

regulations are made at the ambient exposure level. Regardless of the individual level

exposure, if an effect is observable at the population level, it is actionable.

2. Methods

2.1 The Community Multiscale Air Quality (CMAQ) Model

Among the many publicly available CTMs, the Community Multiscale Air Quality (CMAQ)

model (Byun and Schere, 2006) is one of the most widely used regional air quality modeling

systems in the United States in recent years (Simon et al., 2012). The CMAQ model has

been deployed to evaluate air pollution control measures, test new atmospheric mechanisms

and processes that control air pollution, and determine source contributions to air pollutants.

The CMAQ model has also been used in a few recent studies (Arunachalam et al., 2011;

Chang et al., 2012; Grabow et al., 2012; Tong et al., 2009) to estimate air pollution

exposure. In this study, a recent version of the CMAQ model (version 4.7.1) with the

SAPRC-99 photochemical mechanism (Carter, 2000) and the fifth generation aerosol model

(AERO5) (Foley et al., 2010) was used. The SAPRC-99 mechanism was modified to treat a

number of explicit air toxics pollutants and 16 gas phase polycyclic aromatic hydrocarbon
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(PAH) species. Details of this extended SAPRC-99 mechanism for air toxics and PAHs will

be described in a separate manuscript as the current paper focuses on criteria pollutants.

2.2 Inverse Distance Weighting and Observation Data Fusing

Inverse distance weighting (Shepard, 1968) has been used to estimate air pollutant exposure

based on monitoring data alone. For a given the spatial location, a search of the air monitor

list is performed to find stations with available data within a given search radius. The search

radius is applied based on the assumption that stations outside the radius have minimal

impact on the estimated exposure. Once the stations within a given search radius are

identified, the air pollutant concentration based on inverse distance weighting Cidw is

estimated by Equations (1) and (2):

(1)

(2)

where x is the location where concentration needs to be estimated; N is the total number of

monitors within the search radius; Ci is the measured concentration at the ith monitor within

the search radius; xi is the location of the ith monitor; and wi(x) is the weighting factor for

the ith monitor at location x. The function d calculates the distance between points x and xi.

Inverse distance weighting works best for estimating exposure where air quality monitors

are nearby. More advanced spatial interpolation techniques based on geostatistical methods

such as kriging (Bogaert and Fasbender, 2007) have also been attempted interpolating air

monitor data. However, the interpolated fields using kriging are often too smooth and are

not likely to represent actual spatial variation of air pollutants. In fact, it is impossible to get

very reliable estimates of pollutant concentrations at locations without nearby monitor sites,

regardless whether inverse distance weighting or kriging is used for the interpolation (Bailey

and Gatrell, 1995).

The CMAQ model can generally represent the spatial variation of the pollutants but the

magnitude of the predicted concentrations is subject to biases in the emissions, meteorology

and uncertainties due to other model components. In this study, a data fusing technique

based on inverse distance weighting is developed to adjust gridded raw CMAQ predictions

of major criteria pollutants and components of PM2.5 using the observations at nearby air

monitors and the raw CMAQ results, as described below.

The difference between point observations (Co,i, hourly for gas phase criteria pollutants and

daily for PM and its components) and the raw CMAQ predictions (Cp,i) are calculated for all

grid cells where observations are available: ΔCi=Co,i-Cp,i. The inverse distance weighting

method described above is then applied to interpolate these location-specific differences to

all CMAQ grid cells:
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(3)

where x is the center location of a grid cell in the model domain and ΔC(x) is the estimated

difference between the expected pollutant concentration and the model prediction at the grid

cell. The expected (i.e. observation-fused) concentration (Cp’) at each grid cell is calculated

by

(4)

The resultant pollutant concentration field retains the general spatial distribution feature

predicted by the original CMAQ model and, at the same time, leads to better agreement with

observations at monitor sites. A search radius of 100 km is used in this study. If there are no

observation sites within the search radius, no correction of the predicted CMAQ

concentration is attempted in this study. It should be noted that when applying equations (3)

and (4) to adjust model predictions, it is important to use observations that represent regional

concentrations as concentrations modeled by CMAQ typically represent average

concentrations within each model grid cell. Data from monitors located in areas with

significant local source influences, such as curbside, near road or street canyon

environments should not be used. While Kriging has been used in modeling spatial

distribution of air quality measurements, it has not been used in interpolating the model error

(i.e. ΔC). Choices of variogram and variogram parameters that are essential in Kriging of ΔC

have not been studied before. A meaningful application of the Kriging method for data

fusing requires a thorough study to figure out the proper way of applying Kriging for the ΔC

field, and should be carried out in a future study.

3. Model Application

3.1 Model settings

A 10-year CMAQ air quality simulation (2001-2010) was carried for this study. A 36-km

horizontal resolution domain that covers the entire continental United States and part of

Canada and Mexico was used to estimate air pollutant exposure for the CSL study. The

model domain is vertically divided into 16 layers that reach approximately 20 km above

ground. The first layer (i.e. groud-level) thickness is approximately 30 m. Figure 1 shows

the 36-km domain and the outlines of the hospital reference regions (HRRs) where the CSL

hospitals are located. Model performance results shown in the following analyses are based

on predictions based on the 36-km resolution simulations (referred to as 36-km results

hereafter) and available observations within the HRR regions only. The simulation years

(2001-2010) actually cover the entire duration of the CSL and the LIFE studies.

3.2 Meteorology, Emission and Observation Data

The CMAQ simulations reported in this study were driven by meteorological inputs

generated using the Weather Research and Forecasting (WRF) model v3.2.1. The WRF

modeling approach has been documented in detailed in Zhang et al. (2013b) and is only
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briefly summarized below. The NCEP (National Centers for Environmental Prediction) FNL

(Final) Operational Global Analysis dataset in 1°×1° resolution (downloaded from http://

rda.ucar.edu/dsszone/ds083.2/) was processed to provide initial and boundary conditions for

the WRF simulations. Other input data, including the land use/land cover and topographical

data were based on the 30 sec resolution default WRF input data distributed along with the

WRF model. The WRF simulations were divided into multiple runs to be executed at the

same time to reduce total run time. Each WRF run simulates 7 days with fresh initial

conditions based on the NARR (NCEP North American Regional Reanalysis) reanalysis

processed by WRF Preprocessing System (WPS). The first day of each run, which overlaps

the last day of the previous run, was considered as a spin-up day and discarded to avoid the

influence of initial conditions on model results. For the CMAQ simulation, initial conditions

for the first day were generated using a set of default values distributed with the CMAQ

program, which represent clean continental concentrations. The last hour results of previous

day provide initial conditions for the next day. Boundary conditions for the 36-km domain

were generated using the CMAQ default profile as well. Since the regions of interest are

sufficiently away from the boundaries, the influence of boundary conditions on model

results is expected to be small. The CMAQ runs were divided into 6-month segments with

7-9 days overlap to reduce the effect of initial conditions on model results.

The general procedures to generate anthropogenic and biogenic emission inputs have also

been documented in detail in Zhang et al. (2013b). In summary, the US Environmental

Protection Agency (US EPA) 2001 Clean Air Interstate Rule (CAIR) emission inventory

was used to generate anthropogenic emissions from area, non-road, mobile and point

sources for 2001 to 2004. The 2005 National Emissions Inventory (NEI) version 4 (2005

NEI v4) was used to generate anthropogenic emissions for 2005-2010. Emissions of year

2002 to 2004 and 2006-2010 were adjusted based on the average annual emissions treads of

criteria pollutants (download from http://www.epa.gov/ttn/chief/trends/). The 2001 CAIR

inventory used MOBILE6 while 2005 NEI v4 used Motor Vehicle Emission Simulator

(MOVES) for on-road vehicle emissions. This is different from the 2005 NEI v2 used in

Zhang et al. (2013) in which the on-road emissions were based on MOBILE6. The MOVES-

based on-road emissions generally give higher emission rates of CO and NOx than

MOBILE6 (Kota et al., 2012b). The Sparse Matrix Operator Kernel Emissions (SMOKE)

emission processing model (version 2.6) from US EPA was used to process the raw

emission inventories to generate CMAQ model-ready emissions. Biogenic emissions were

generated using the Biogenic Emissions Inventory System, v3.14 (BEIS3.14) incorporated

in SMOKE. Open biomass burning emissions for years 2002-2010 were based on the

satellite-based Fire INventory from NCAR (FINN) (Wiedinmyer et al., 2011). Open burning

emissions for year 2001 were generated based on the annual fire emission inventory from

the CAIR inventory. A temporal variation profile for open burning from a Western Regional

Air Partnership (WRAP) report (WRAP, 2005) was used to distribute emissions to each

hour of the day. Anthropogenic emissions from Canada and Mexico sources within the 36-

km domain were also generated, based on inventories provided by US EPA for 2000 and

were not adjusted for different years.

Observed hourly concentrations of ozone, CO, NO, NO2, SO2 and daily PM2.5 and PM10

mass and components from 2001-2010 were retrieved from the Air Quality System (AQS)
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maintained by the US EPA, http://www.epa.gov/ttn/airs/airsaqs/detaildata/

downloadaqsdata.htm). Data included in the AQS represent regional or community

concentrations at background, rural, suburban, urban and industrial areas. Table 1 shows the

number of stations with valid data and number of hourly or daily data points for criteria

pollutants within each HRR region.

4. Results and Discussion

4.1 Evaluation of meteorology modeling results

Meteorological conditions are important to accurately model the formation and transport of

air pollutants. It is necessary to validate the meteorology model results to insure the model is

producing reliable observations and to provide confidence in air quality simulation results.

Long term WRF model performance statistics have been shown in Zhang et al. (2013). For

this study, the statistics to evaluate the area-wide performance of WRF in January and

August 2006 based on observations from approximately 500 meteorology stations, including

mean observation (OBS), mean prediction (PRED), mean bias (MB), gross error (GE), and

root mean square error (RMSE), are shown in Table 2. The two months are selected to

represent model performance in typical winter and summer conditions. The predicted

temperature (TEMP) at 2 m above surface, and wind speed (WSPD) and wind direction

(WDIR) at 10 m above surface are compared with the observation data from the National

Climatic Data Center (NCDC) (available at http://rda.ucar.edu/datasets/ds463.3/). Model

performance of TEMP in January and August are quite similar, suggesting that there is no

significant seasonal bias in the model predictions. WSPD is under-predicted for both

January and August. WDIR agrees well with observations for both months. The

performance statistics slightly exceed the recommended ranges by Emery et al. (2001) but

are in agreement with another WRF modeling study using a 36-km resolution domain

(Zhang et al., 2012) and thus are considered acceptable for air quality simulations.

4.2 Evaluation of raw CMAQ model results

Figure 2 shows the ozone model performance statistics for all monitors within the HRR

regions based on raw CMAQ results from 2001 to 2010. Data points are color-coded by

month of the year. Hourly predictions of ozone at each individual monitor within the HRR

regions were used to compare with the corresponding hourly observed concentrations to

calculate the normalized gross error (NGE) and normalized bias (NB). Predicted and

observed daily peak ozone concentrations were used to calculate the unpaired peak accuracy

(AUP). Definitions of the performance statistics are documented in the Supplementary

Materials. The hourly NGE, NB and AUP were averaged for each month to calculate the

mean NGE, MNB and mean AUP. Ozone concentrations lower than the cut-off

concentration of 60 ppb were excluded from the analysis. The dashed lines on the figure

show the EPA recommended model performance criteria (MNB<±15%, NGE<35% and

AUP<±20%). The model predictions of ozone are well within the EPA guidelines. Several

October data points exceeds the performance range because only a few days in each of these

months have ozone concentrations higher than the cut-off concentration of 60 ppb. Results

between 2005 and 2010 show slightly smaller MNB, NGE and AUP values, which is likely
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due to the fact that 2005 NEI emission inventory is more accurate than the 2001 CAIR

emission inventory.

Figure 3 shows that hourly CO, SO2, NOx (=NO+NO2) and NO2. CO and SO2 have larger

errors than O3 based on MNB and NGE values. CO is over-predicted by as much as 75-80%

as represented by the large negative MNB values while SO2 is often under-predicted by as

much as a factor of two. CO over-prediction is more significant in the winter months than

summer months and there is not a clear year-to-year variations in the model performance.

The over-estimation of CO is likely due to emission inventory problems, as it has been

reported that both MOVES and MOBILE model generally over-predict CO emissions from

onroad vehicles (Kota et al., 2012a). This overstimation is more significant in the winter

months due to less dilution of emissions caused by stronger surface radiative inversion for

typical winter days. NO2 and NOx also have larger error than ozone and are generally over-

predicted. Over-predictions are more significant in winter months. The amount of error in

NO2 in terms of MNB is similar to that of NOx but NGE is smaller. Kota et al (2012a) also

found that NO emissions from onroad vehicles were overestimated by onroad vehicle

emission models, which could contribute to NOx overestimations. Emissions of NOx from

diesel engines in port activities were also overestimated in the 2005 NEI v4 (Zhang and

Ying, 2012), which could also lead to over-estimation of NO and NOx, especially in

Houston and Los Angele areas where emissions from port activities are important.

Mean Fractional Bias (MFB) and Mean Fractional Error (MFE) are the statistical parameters

used to evaluate model predictions of PM2.5. The definitions of MFB and MFE are included

in the Supplementary Materials. MFB ranges from −2 (extreme under-prediction) to 2

(extreme over-prediction), and MFE ranges from 0 to 2. Boyland and Russell (2006)

proposed concentration dependent PM performance criteria and goals. Detailed discussion

of this is also included in Supplementary Materials. Performance goals are the level of

accuracy that is close to the best a model can be expected to achieve and performance

criteria are the level of accuracy that is acceptable for standard modeling applications

(Boylan and Russell, 2006). For concentrations higher than a few μg m−3, the MFB and

MFE performance criteria approach to ±60% and ±75%, respectively.

Figure 4 shows the model performance of PM2.5 averaged for each month from 2001 to

2010. Daily average PM2.5 concentrations at the stations within each HRR region were

averaged and compared with averaged observed concentrations. The daily model

performance statistics were averaged to get monthly averaged results. The solid and dashed

lines are model performance criteria and goals for PM (Boylan and Russell, 2006). Most of

the PM2.5 results are well within the recommended model performance criteria and many are

within the performance goals. This indicates that the model is capable of reproducing the

observed PM2.5 concentrations most of the time. Larger under-predictions occur in summer

months, likely due to under-predictions of secondary organic aerosol concentrations (Note,

the MFB was calculated based on the difference between prediction and observation (i.e.

prediction – observation), and thus negative values of MFB means under-prediction. This is

different from the MNB calculations for the gas phase pollutants where negative value

means over-prediction).
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Figure 5 shows model performance statistics of PM2.5 components. Figure 5(b) shows that

elemental carbon (EC) are both under and over predicted by the CMAQ model but almost all

data points are within the model performance criteria range. Organic compounds (Figure

5c), sulfate (Figure 5d) and nitrate (Figure 5f) are also under-predicted. Sulfate

concentrations are under-predicted in the summer month especially for high concentration

months. A number of studies have noticed the sulfate under-prediction issue. For example, a

seven-year CMAQ model study shows that sulfate is universally under-predicted in the

eastern US in the summer months (Zhang et al., 2013a). Luo et al. (2011) attributed this

under-prediction of sulfate to overestimation of wet scavenging by the CMAQ cloud

module. Ammonium often co-condenses with nitrate and sulfate so it is not surprising to see

under-predictions of ammonium ion (Figure 5f).

4.3 Evaluation of observation-fused CMAQ model results

Although the raw CMAQ results generally agree with observations and mostly meet model

performance criteria for O3 and PM2.5, the discrepancy between model predictions and

observations are still significant and could potentially lead to misclassification of exposure

levels. The data fusing technique described in Section 2.2 was applied to further improve the

agreement between model predictions and observations.

The accuracy of the data fusing technique was evaluated using cross-validation. During the

cross-validation analysis, raw CMAQ predictions at a specific monitor site were adjusted

using the data fusing technique described by equations (3) and (4) but observations at that

specific monitor were excluded when applying equation (3). Figure 6 shows time series of

PM10, PM2.5, O3, NOx and CO at selected monitor sites for July 2006. The cross-validation

time series agree well with observations much better than raw CMAQ results. Peak

concentrations of CO and NOx are not always captured in the cross-validation. This is

because many peak concentration events at a specific monitor are often related with local

emissions or meteorological conditions and thus not reflected concentrations measured by

the nearby monitors. Similarly, low concentrations are not always captured either. Data

fusing using all observation data can improve the agreement between fused data and

observations but concentration peaks at locations without monitors are often underestimated

even in the fused data set.

To further illustrate the effectiveness of data fusing at monitor locations, point-to-point

comparisons were made for O3 and PM2.5 by comparing fused and raw CMAQ simulation

results with observations as shown in Figure 7. Unlike the cross-validation analysis, all

available data were used in generating the fused results. It is obvious that fused results agree

with observations better than raw CMAQ results. The fused results do not completely agree

with observations because the adjustment is calculated based on inverse distance weighting

of all nearby stations. The agreement between fused results and observations does not show

clear dependence on the number of stations around a monitor site, which suggests that the

regional distribution of the pollutants and the distance of the nearby stations also have

significant influences on the fused results.

Statistical measures also suggest that the fused CMAQ model results agree much better with

observations for both gas phase and particle phase species, as demonstrated in Figure S1-S4,
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which show the model performance analysis for the fused data set same as those in Figure 2

to Figure 5. For O3, the fused-data show a slight negative bias with NGE values

approximately 0.1. NGE values from 2005-2010 are generally smaller than results from

2001-2004. As the number of available observations and monitors for ozone did not change

significantly during 2001-2010, this suggests that raw CMAQ model performance still have

an impact on the fused model results. Better raw CMAQ model results generally lead to

better fused model results.

4.4 Comparison of exposure estimations

Figure 8(a) and 8(b) shows the monthly distribution of 8-hr ozone and peak 1-hr hour ozone

exposure estimation for HRR region R15 (the HRR region that has the largest spatial

coverage, see Figure 1(b)-3) based on five different methods to calculate HRR average

exposures, respectively. All methods clearly show the seasonal variation of the 8-hr and 1-hr

ozone exposure, with highest ozone exposure occur in June-August, 2006. For this region,

even though the population-weighted exposure levels are most similar to the averaged

results based on observations alone, especially for summer months, the differences between

different estimation methods are quite small. All the methods show similar amount of day-

to-day variations in each month. Population-averaged fused CMAQ exposures are most

similar to the observation-based averages, especially in the summer months. This is because

the ozone monitors are generally located in populated urban/suburban areas. Figure 8(c)

shows the comparison of variation of 24-hr average PM2.5 exposure estimation for this HRR

region in each month during year 2006. Exposure estimations based on averaging of the

observations are similar to the population-weighted, observation-fused CMAQ results.

Exposure to PM is highest in winter months, likely due to higher emissions due to heating

and reduced vertical turbulent mixing of pollutants in the winter. Estimations based on other

methods are significantly lower and do not predicted significant day-to-day variations. The

fused-CMAQ shows significantly lower exposure estimations than population-averaged

exposure, due to the fact that spatial coverage of PM2.5 monitor sites are not sufficient to

cover non-populated areas and the concentrations in the less-populated areas are lower than

concentrations in the more densely populated areas. Using raw-CMAQ results or non-

population averaged CMAQ results might lead to significant biases in health outcome

analysis.

While HRR region R15 represent a large area with population located near monitor sites,

HRR region R12 (see Figure 1(b)-4) represents a relatively smaller area with more ozone

monitors. Figure 9(a) and 9(b) show that for ozone exposure, fused and population-weighted

fused exposure estimations are similar to those based on averaged observed concentrations.

This suggests that ozone monitors are dense enough and ozone concentrations are more

uniform in this region. Figure 9(c) shows that the differences between fused-CMAQ,

population weighted fused-CMAQ and observation based estimations are more evident for

PM2.5, suggesting that observations within this HRR region is not dense enough to correctly

represent the spatial distribution of population PM2.5 exposures. Although analysis for other

gaseous species, PM10, and PM2.5 components are not shown the figure, the scarcity of the

CO, SO2, PM10 and PM2.5 components monitors suggests very different exposure
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estimations using different methods. Using raw-CMAQ results or observation alone might

lead to significant biases in health outcome analysis.

4.5 Sensitivity of observation-fused results to the search radius

The observation-fused CMAQ results shown in previous sections are based on a search

radius of 100 km. The search radius affects how many observations are used to adjust the

concentration at a grid cell and also affects the number uncorrected of grid cells due to lack

of nearby monitors. To study the sensitivity of average concentrations of ozone and

particulate matter in each HRR to the selection of the search radius, a new set of fused data

were generated using a search radius of 200 km. Table 3 shows the number of grid cells

included in each HRR region and the fraction of grid cells that were uncorrected based on a

given search radius for ozone, PM2.5 and PM10. As expected, increasing the search radius

reduces the number of grid cells that have not been corrected. As the ozone observations are

denser than PM measurements, there are more grid cells uncorrected for PM than for ozone

even a 200-km search radius is used.

Figure 10 shows the predicted monthly-average 8-hr ozone and 24-hr average PM2.5

concentrations for each HRR region during 2006 based on observation-fused CMAQ using a

search radius of 100 and 200 km. The averages were calculated without population

weighting. Except for a few data points with approximately 5-10% variations, the

differences between 100-km and 200-km search radius results are small. This analysis

suggest that for the HRR regions in this study, choice of a smaller or larger search radius

does not affect the estimation of regional average exposure significantly.

5. Conclusions

In this study, the CMAQ model performance during a 10-year simulation episode was

evaluated against measurements. An inverse distance weighting based method was applied

to produce data-fused regional pollutant concentration fields using the differences between

observations and predictions at grid cells where air quality monitors were located. Although

the raw CMAQ model is capable of producing satisfying results for O3 and PM2.5 based on

EPA guidelines, using the observation data fusing technique to enhance CMAQ predictions

can lead to significant improvement of model performance for both gaseous and all

particulate pollutants, including PM2.5, PM10 and individual PM components. Regional

average concentrations were calculated using five different methods: 1) inverse distance

weighting of observation data alone, 2) raw CMAQ results, 3) observation fused CMAQ

results, 4) population averaged raw CMAQ results and 5) population averaged fused CMAQ

results. While monitoring networks in the HRR regions we studied are dense enough for O3

and NOx to provide consistent regional average exposure estimation based on monitoring

data alone, PM2.5, PM10 and PM components as well as SO2 and CO observation sites are

usually sparse and the difference between the average concentrations estimated by the

inverse distance interpolated observations, raw CMAQ and fused CMAQ results can be

significantly different. Population-weighted average should be used to account spatial

variation in pollutant concentration and population density. Using raw-CMAQ results or

observations at monitors alone might lead to significant biases in health outcome analyses.

Chen et al. Page 11

Sci Total Environ. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Making the additional effort to fuse the CMAQ results improved model performance for all

criteria pollutants, with the most substantive improvements in PM, SO2 and CO measures.

Improving the comprehensiveness and accuracy of exposure estimates move the field

forward in our attempt to identify potential hazards associated with poor air quality and

quantify the magnitude of associations between air pollutant and adverse health outcomes

with greater confidence.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research Highlights

• Ten-year CMAQ simulations for population air pollution exposures of gases and

PM

• Inverse-distance weighting is used to create observation-fused concentration

fields

• Differences in population exposure based on five estimation methods were

studied

• Population-weighted average should be used to account for spatial variability

• Exposure based on raw CMAQ or observations alone might have significant

biases
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Figure 1.
CMAQ 36-km resolution model domain. Boxes 1-5 shows areas where the Hospital Referral

Regions used in this study are located. Panels b1-b5 show the boundaries of the HRR

regions (dashed lines) and locations of the observation stations within the HRR regions.

Lambert projections are used for these plots.
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Figure 2.
Monthly mean normalized bias (MNB), normalized gross error (NGE), and unpaired

predict-to-observed peak ozone ratio (AUP) for O3 for all stations within the HRR regions

based on raw CMAQ results. Blue dashed lines show the criteria recommended by US EPA.

Data points are color-coded by month, with 4=April and 10=October. Winter months are not

shown due to lower ozone concentrations in general.
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Figure 3.
Mean normalized bias (MNB) and normalized gross error (NGE) of monthly-average (a)

CO, (b) SO2, (c) NOx, and (d) NO2 for all the months from 2001 to 2010 all stations with

the HRR regions based on raw CMAQ results. Different point types represent model

performance criteria for different years. The points are color-coded by the month of the year,

with 2=February and 10=October.
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Figure 4.
(a) Mean fractional bias (MFB) and (b) mean fraction error (MFE) of monthly-average

PM2.5 for all the months from 2001 to 2010 all stations with the HRR regions based on raw

CMAQ results. The dashed and solid lines are model performance criteria and goal,

respectively. Different point types represent model performance criteria for different years.

The points are color-coded by the month of the year, with 2=February and 12=December.

Units for concentrations are μg m−3.
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Figure 5.
Mean fractional bias (MFB) and mean fractional error (MFE) of monthly-average (a) PM2.5

mass, (b) elemental carbon (EC), (c) organic compounds (OC), (d) nitrate, (e) sulfate and (f)

sulfate for all the months from 2001 to 2010 at all stations with the HRR regions based on

raw CMAQ results. Different point types represent model performance statistics for

different years. The points are color-coded by the month of the year.
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Figure 6.
Cross-validation time series (July 2006) of PM10, PM2.5, O3, NOx and CO at selected sites.

Solid black and blue lines are fused and raw CMAQ results and red dots are observations.
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Figure 7.
Scatter plot of observed (y-axis) and predicted (x-axis) daily average O3 (a, b) and PM2.5

(c,d) concentrations for each HRR region for July 2006. The predictions are based on fused

(a,c) and raw (b,d) CMAQ results averaged at all monitors within an HRR region. The data

points are color-coded by the number of monitors within an HRR region. Units are ppb for

ozone and μg m−3 for PM2.5.
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Figure 8.
Box-whisker plot of daily average 8-hr ozone, peak 1-hr ozone and 24-hr PM2.5 for HRR

region R15 in the CSL study for year 2006. The ranges, quartiles, and medians are

calculated based on the daily concentrations for each month. “Fused” stands for fused

CMAQ results, “CMAQ” stands for raw CMAQ results, “-P” is used to denote population-

weighted averaging, “Obs.” stands for simple averaging of all available observations within

an HRR region.
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Figure 9.
Box-whisker plot of daily average 8-hr ozone, peak 1-hr ozone and 24-hr PM2.5 for HRR

region R12 in the CSL study for year 2006. The ranges, quartiles, and medians are

calculated based on the daily concentrations for each month. “Fused” stands for fused

CMAQ results, “CMAQ” stands for raw CMAQ results, “-P” is used to denote population-

weighted averaging, “Obs.” stands for simple averaging of all available observations within

an HRR region.
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Figure 10.
Comparison of monthly averaged (a) 8-hr ozone and (b) 24-hr average PM2.5 concentrations

for each HRR region during 2006 using a search radius of 100 and 200 km. Dots are color-

coded by month of the year (1=January and 12=December).
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Table 2

Performance statistics of WRF meteorology predictions for January and August 2006

January August

TEMP WSPD WDIR TEMP WSPD WDIR

N 65845 34970 27983 62062 38019 30012

OBS 279.3 (K) 6.33 (m/s) 239.3 (o)* 297.3 6.29 188.8

PRED 280 4.7 267.8 296.9 3.65 221.3

MB 0.69 −1.62 12.01 −0.43 −2.64 6.25

GE 2.84 2.72 47.88 2.57 3.02 47.9

RMSE 3.93 3.27 66.18 3.53 3.58 65.01

*
MB=∑(Pi-Oi)/N; GE=∑∣Pi-Oi∣/N; RMSE= (∑(Pi-Oi)2/N)0.5. Pi and Oi are ith paired predictions and observations. N is the number of total

observation-prediction data pair.
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Table 3

Percentage of uncorrected grid cells using a search radius of 100 and 200 km.

100 km 200 km

HRR # grids O3 PM10 PM2.5 O3 PM10 PM2.5

R1 12 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

R2 2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

R3 8 0.00% 37.50% 0.00% 0.00% 0.00% 0.00%

R4 3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

R5 1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

R6 27 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

R7 7 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

R8 5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

R9 1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

R10 1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

R11 4 25.00% 0.00% 0.00% 0.00% 0.00% 0.00%

R12 41 24.39% 51.22% 53.66% 0.00% 12.20% 2.44%

R13 14 28.57% 35.71% 28.57% 0.00% 0.00% 0.00%

R14 24 62.50% 66.67% 62.50% 0.00% 16.67% 12.50%

R15 331 48.94% 53.78% 66.77% 10.57% 27.49% 38.07%
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