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Abstract

Purpose of review—Based on interim results from an ongoing study, we have reported that

consumption of a high-fructose diet, but not a high-glucose diet, promotes the development of

three of the pathological characteristics associated with metabolic syndrome: visceral adiposity,

dyslipidemia, and insulin resistance. From these results and a review of the current literature, we

present two potential sequences of events by which fructose consumption may contribute to

metabolic syndrome.

Recent findings—The earliest metabolic perturbation resulting from fructose consumption is

postprandial hypertriglyceridemia, which may increase visceral adipose deposition. Visceral

adiposity contributes to hepatic triglyceride accumulation, novel protein kinase C activation, and

hepatic insulin resistance by increasing the portal delivery of free fatty acids to the liver. With

insulin resistance, VLDL production is upregulated and this, along with systemic free fatty acids,

increase lipid delivery to muscle. It is also possible that fructose initiates hepatic insulin resistance

independently of visceral adiposity and free fatty acid delivery. By providing substrate for hepatic

lipogenesis, fructose may result in a direct lipid overload that leads to triglyceride accumulation,

novel protein kinase C activation, and hepatic insulin resistance.

Summary—Our investigation and future studies of the effects of fructose consumption may help

to clarify the sequence of events leading to development of metabolic syndrome.
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Introduction

Studies investigating the effects of fructose consumption in humans and animals have been

comprehensively reviewed [1-3,4••,5••]. These reviews are in agreement in their conclusions

that, while there is strong evidence that diets high in fructose can produce obesity, insulin

resistance/glucose intolerance, and dyslipidemia in animals, direct experimental evidence

that consumption of fructose promotes the development of metabolic syndrome in humans is

equivocal. We are currently conducting an investigation comparing the metabolic effects of

consuming beverages sweetened with fructose or glucose providing 25% of energy

requirements for 10 weeks in older, overweight and obese men and women. Based on

interim results [6], we have reported that consumption of the high-fructose diet promotes the

development of three of the pathological characteristics associated with metabolic

syndrome: dyslipidemia, insulin resistance, and increased visceral adiposity. These

observations have potentially important public health implications. In addition, these results

suggest that such investigations may help to illuminate the causes and sequence of events

leading to the development of metabolic syndrome. Rutledge and Adeli [7••] have recently

outlined a potential sequence of events by which fructose consumption may contribute to

development of the metabolic syndrome. They suggest that increased VLDL production

induced by fructose increases visceral adiposity, which leads to insulin resistance in adipose

tissue and, subsequently, to hepatic insulin resistance. We present this sequence of events,

along with supporting evidence from the literature and from our current study. We then

present another scenario in which overconsumption of fructose may result in a lipid overload

within the liver that contributes to hepatic insulin resistance independently of visceral

adiposity.

Fructose and hepatic lipogenesis/VLDL production

Both our current study [6] and earlier data [8] demonstrate that 10 weeks of fructose

consumption markedly increases circulating postprandial triglyceride concentrations in older

adults. In short-term studies in younger adults, we demonstrated that fructose consumption

increases postprandial triglyceride concentrations within 24 h [9,10], which suggests that

postprandial hypertriglyceridemia is the earliest metabolic perturbation associated with

fructose consumption. The most likely mechanism for the postprandial hypertriglyceridemia

is increased hepatic de-novo lipogenesis (DNL), which in turn upregulates VLDL

production and secretion. Fructose consumption can promote hepatic lipogenesis because,

first, the liver is the main site of fructose metabolism [11]; second, entry of fructose into

glycolysis via fructose-1-phosphate bypasses the main rate-controlling step of glycolysis

catalyzed by phosphofructokinase, thus providing unregulated amounts of lipogenic

substrates acetyl-CoA and glycerol-3-phosphate [11], and, third, fructose can activate sterol

receptor element binding protein-1c (SREBP-1c) independently of insulin, which then

activates genes involved in DNL [12,13].

VLDL production and secretion are mainly regulated by the availability of lipid substrate

[14]. Apolipoprotein B100 (ApoB) is essential for the intracellular assembly of triglyceride

into VLDL. ApoB undergoes co-translational and posttranslational degradation, and its
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degradation is dramatically reduced when hepatic lipid content is increased [15]. In subjects

consuming fructose, plasma ApoB concentrations were increased by more than 25% [6].

Recently it was reported that the contribution of de novo lipogenesis to fructose-induced

hypertriacylglyceridemia is small [16•]. In this acute study of 14 healthy men and women,

fructose contributed only 0.4% of the circulating VLDL-triglyceride measured 6 h after

consumption of a high-fat (~60%), high-fructose (~40%) meal that contained 250 mg D-

[U13C]fructose. It is possible, however, that the 6-h measurement of the incorporation of

the 13C label into VLDL may not accurately reflect the rate of DNL. Fatty acids produced

via DNL appear to be partitioned into the liver cytosolic triglyceride storage pool rather than

immediately assembled into VLDL and secreted [17••]. Several studies have demonstrated

that the measured contribution of DNL-derived free fatty acids (FFA) to VLDL-triglyceride

increases progressively with longer periods of labeled precursor infusion (+24 h) that allows

for equilibration of newly produced fatty acids into the liver triglyceride storage pool [17••,

18-20].

Fructose and visceral adiposity

Rutledge and Adeli [7••] suggest that the increased VLDL production induced by fructose

promotes obesity, although currently there is little experimental evidence to support this

suggestion. In our current study, subjects consumed their usual ad-libitum diets along with

either fructose-sweetened or glucose-sweetened beverages. Within 8 weeks, both groups

gained an average of 1.5 kg. Intra-abdominal fat measured by computerized tomography,

however, was significantly increased in subjects consuming fructose but unchanged in

subjects consuming glucose (K. Stanhope, P. Havel, unpublished data). These results

suggest that postprandial hypertriglyceridemia may specifically promote lipid deposition in

visceral adipose tissue. As recently reviewed by Votruba and Jensen [21••], fat uptake is

higher in abdominal subcutaneous fat than in subcutaneous fat in the thigh region [22,23],

and higher in omental than in abdominal subcutaneous fat [24,25] following consumption of

high-fat meals. Whether adipose uptake of meal-derived chylomicron-fatty acids differs

from that of VLDL-fatty acids derived from fructose-induced DNL is unknown, however. It

was recently shown that there was uptake of both chylomicron-fatty acids and VLDL-fatty

acids by subcutaneous abdominal adipose following a mixed meal; however, the fractional

extraction of chylomicronderived fatty acids was greater, especially during the first 2 h after

the meal [26••].

Visceral adiposity and portal free fatty acids concentrations

There is considerable evidence that visceral adiposity is associated with insulin resistance

[27-32]. An important potential mediator of this association is the direct delivery of portal

blood flow from visceral fat to the liver. Owing to the portal connection, FFAs released from

visceral fat are more likely to contribute to disturbances in hepatic metabolism than FFAs

released from other adipose depots [33-35]. Another important mechanism is the greater

lipolytic capacity of visceral than peripheral adipocytes. Visceral adipocytes have been

demonstrated to be more sensitive than subcutaneous fat cells to the lipolytic effect of

catecholamines [36,37] and, importantly, less sensitive to the antilipolytic and fatty acid re-
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esterifying effects of insulin [38,39]. Furthermore, as visceral adiposity develops, visceral

adipocytes enlarge. Large adipocytes are more insulin resistant than smaller adipocytes

[40,41•], and therefore less sensitive to the effects of insulin to suppress lipolysis and

promote re-esterification of fatty acids [42-44]. Visceral adiposity is also closely associated

with reduced circulating levels of the adipocyte hormone adiponectin, perhaps because

enlarged visceral adipocytes are also likely to produce less adiponectin. Adiponectin

increases hepatic lipid oxidation and improves insulin sensitivity by activating AMP kinase

(see review, [45]).

Free fatty acid in the liver and hepatic triglyceride deposition

With increasing visceral adiposity, there is increased portal FFA delivery to the liver. It has

been demonstrated that the fraction of FFA delivered to the liver from visceral fat is

positively related to the visceral fat area, and is approximately 5–10% in normal-weight

subjects and 20–30% in obese subjects [46,47]. Hepatic uptake of FFA is proportional to the

rate of delivery [48-50]. In the liver, FFA is either oxidized or esterified to form triglyceride.

The triglyceride is stored in the cytosol prior to being incorporated into VLDL and secreted

[51]. Recent studies suggest that triglyceride turnover through the cytosolic pool and

incorporation into VLDL can be rapid or delayed [17••]. It has been suggested that plasma

FFA entering the liver may be routed through a more rapid turnover pool than fatty acids

from dietary sources or those produced from DNL [18]. When triglyceride production

exceeds FFA oxidation and VLDL production and secretion, triglyceride accumulates in the

liver [51]. Triglyceride accumulation in the liver (i.e. non-alcoholic fatty liver disease—

NAFLD) is positively associated with visceral adiposity [52]. Several studies of patients

with type-2 diabetes and insulin resistance indicate that liver triglyceride content is also a

strong correlate of hepatic insulin resistance [53-57] and the relationship is independent of

visceral adiposity in both type 2 diabetic [56] and nondiabetic subjects [58].

Liver triglyceride content and hepatic insulin resistance

It has been suggested that hepatic triglyceride accumulation is a major mediator of hepatic

insulin resistance [58,59••]. The Shulman group [60] has provided support for the hypothesis

that lipid accumulation within the liver induces hepatic insulin resistance with evidence of a

dose–response relationship between hepatic lipid content and insulin action and by

demonstrating that prevention of hepatic fat accumulation abrogates the development of

hepatic insulin resistance. Morino et al. [59••] suggest that the mechanism by which

intracellular lipid causes insulin resistance in both liver and muscle is through diacylglycerol

(DAG)-induced activation of novel protein kinase C (nPKC). DAG is a known activator of

nPKC [61] and both DAG and nPKC are associated with lipid-induced insulin resistance in

human muscle [62,63]. Several reports suggest that nPKC activation is associated with

decreased insulin receptor or insulin receptor substrate 1 (IRS1) tyrosine phosphorylation

[64-66], and other reports more specifically implicate nPKC in serine phosphorylation of

insulin receptor, which impairs insulin signaling [67,68]. Studies conducted in 3T3-L1

adipocytes suggest that inhibitor kappa B kinase and c-JUN NH2-terminal kinase (JNK1)

may mediate the serine phosphorylation induced by nPKC [69].
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Hepatic insulin resistance and lipogenesis

With impaired insulin signaling in the liver, there is decreased glycogen synthesis, and

increased glycogenolysis and gluconeogenesis. As a compensatory response, insulin

secretion increases. It has been suggested that the increased insulin secretion is a direct

response to increased FFA levels rather than increased glucose production [70••]. Both

fasting glucose and insulin concentrations were increased, however, in subjects consuming

fructose within 2 weeks (K. Stanhope, P. Havel, unpublished data). As hyperinsulinemia

develops, DNL is increased due to insulin activation of SREBP1-c [71]. Although the

insulin-resistant liver is resistant to the effects of insulin to stimulate glycogen synthesis and

inhibit gluconeogenesis and glycogenolysis, it does not appear to develop resistance to

insulin’s effect to promote lipogenesis [72].

Hepatic insulin resistance and VLDL production

VLDL production is also increased in the insulin-resistant liver due to mechanisms

independent of hepatic lipid supply. With insulin resistance, there is reduced ApoB

degradation and increased VLDL production [73]. The mechanism by which insulin directly

inhibits VLDL production is unknown [15], but it has been suggested that insulin promotes

ApoB degradation by inhibiting lipid transfer to VLDL-precursor ApoB [74] and by

regulating a protease enzyme implicated in ApoB degradation [75]. Insulin also inhibits

microsomal triglyceride transfer protein (MTP) expression via an insulin response element

on the MTP gene [76]. MTP is essential for assembly of triglyceride and ApoB into VLDL

and secretion of VLDL [77]. Lewis et al. [78] suggested that, in insulin-resistant states, there

may be sustained upregulation of MTP expression and protein levels as a result of resistance

to insulin’s inhibitory effect on MTP.

Hypertriglyceridemia and cardiovascular disease risk

Upregulation of VLDL production leads to increased plasma triglyceride. Reduced clearance

of triglyceride can also contribute to hypertriglyceridemia [79,80]. Insulin stimulates

adipose lipoprotein lipase (LPL) and LPL activity is decreased in subjects with insulin

resistance [81]. There is growing evidence linking postprandial hypertriglyceridemia with

proatherogenic conditions [82••,83,84,85•,86••]. The relationship between nonfasting

triglyceride and cardiovascular disease is most likely mediated by effects of postprandial

hypertriglyceridemia to promote lipid remodeling to a more atherogenic lipid profile

consisting of increased concentrations of triglyceride-rich remnant lipoproteins and small

dense LDL, and decreased concentrations of HDL [87,88••,89••]. In subjects consuming

fructose, we have reported significantly increased circulating levels of remnant lipoproteins,

small dense LDL, and oxidized LDL [6].

Peripheral insulin resistance

Elevated triglyceride, along with elevated levels of plasma FFA released from insulin-

resistant adipose tissue, lead to increased flux of FFA and triglyceride to other tissues. In

skeletal muscle, increased FFA availability can lead to increased muscle triglyceride content

and intramyocellular lipid (IMCL) deposition. IMCL is closely related to insulin resistance
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in skeletal muscle [90-93]. IMCL, or associated lipid metabolites such as DAG, appear to

inhibit insulin signaling, leading to a reduction in insulin-stimulated glucose transport [59••,

94,95•] and systemic insulin resistance.

Free fatty acid: link between visceral adiposity and hepatic insulin

resistance

Strong support for the hypothesis that FFA release from enlarged visceral adipocytes is an

important link between visceral adiposity and hepatic insulin resistance has been provided

by Bergman et al. [96•], who conclude, first, that FFAs per se are among the most important

products of the visceral adipocyte contributing to insulin resistance and hence metabolic

syndrome; second, that the anatomical position of the visceral adipose depot (i.e. portal

drainage to the liver) plays an important role in the pathogenesis of metabolic syndrome.

When considering evidence that does not support these conclusions, it is important to be

aware of the following. Bergman et al. [96•] reported that feeding dogs a 6-week

hypercaloric high-fat diet resulted in a 76% increase in trunk fat, but fasting FFA

concentrations were not affected. Twenty-four-hour systemic FFA profiles, however,

determined from hourly blood sampling, were increased by 50% [96•]. This suggests that

linking increases of FFA with visceral adiposity and insulin resistance may not be possible

in studies that measure circulating metabolites only in the fasting state. In human subjects

consuming a highfructose diet for 10 weeks, we found no change in 24-h systemic FFA

profiles (36 samples collected over 24 h, K. Stanhope, P. Havel, unpublished data), despite

modest increases in visceral adiposity and insulin resistance. This does not exclude the

possibility that portal concentrations and hepatic extraction of FFAs were increased in these

subjects. Parallel measurements, however, of arterial and portal FFA concentrations in

conscious dogs under experimental conditions that resulted in a wide range of FFA release

demonstrated that, whereas portal vein FFA levels tended to be higher than arterial levels

(~5–6%), the values obtained were highly correlated (r2 = 0.96) [97]. These observations led

us to consider the possibility that hepatic lipid overload, independent of visceral adiposity

and FFA levels, may be an important mediator of insulin resistance in subjects consuming

fructose.

Hepatic lipid overload may initiate liver triglyceride accumulation and

hepatic insulin resistance independently of visceral adiposity and free fatty

acid

The suggestion that fructose induces insulin resistance independently of visceral adiposity

and FFA levels is supported by work from the Shulman group [59••,60]. These investigators

have built on the work by Kraegen and colleagues [98], who demonstrated that 3 days of

high-fat feeding results in hepatic insulin resistance prior to the development of peripheral

insulin resistance. Shulman and colleagues also fed rats a high-fat diet (69%) for 3 days and

reported a three-fold increase in liver triglyceride content without any significant changes in

visceral fat weight [60]. The hepatic fat accumulation was associated with impaired IRS

tyrosine phosphorylation, PKC-ε (a novel PKC) and JNK1 activation, decreased insulin

stimulation of glycogen synthase and decreased insulin suppression of gluconeogenesis [60].
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It has been proposed that obesity per se is not the main contributor to insulin resistance, but

rather it is the accumulation of intracellular lipid metabolites (e.g. DAG) [58,99••]. As

presented in Fig. 1, in addition to FFA, there are other additional sources of triglyceride that

can lead to hepatic lipid accumulation: triglyceride generated by hepatic lipogenesis, and

triglyceride derived from FFA released from VLDL and chylomicron remnants within

hepatic lysosomes [51]. Therefore, by increasing the delivery of chylomicron remnant-

triglyceride to the liver, feeding rats a high-fat diet for only 3 days resulted in impaired

insulin signaling prior to increases in visceral adiposity [60]. We propose that a high-

fructose diet, which provides substrate for de-novo lipogenesis, can also produce a lipid

overload in the liver that results in hepatic insulin resistance independently of visceral

adiposity and FFA levels. This suggestion is not mutually exclusive of the ‘portal’ FFA

hypothesis. A sustained, moderate positive energy balance may indeed promote hepatic

insulin resistance as a result of increased visceral fat accumulation and increased portal

delivery of FFA. During consumption of a high-fructose diet, however, a contributing and

possibly major mechanism may be a more direct intra-hepatic lipid oversupply via fructose-

induced lipogenesis.

Liver lipid accumulation and insulin resistance are not always associated

Although there is much support for the hypothesis that hepatic lipid accumulation initiates

insulin resistance, there is also contradictory evidence. Lonardo et al. [100••] investigated

the association of hepatic steatosis with insulin resistance in patients with, first, familial

heterozygous hypobetalipoproteinemia (FHBL), second, NAFLD, third, hepatitis C virus

infection (HCV), and fourth, healthy subjects without steatosis. Data from subjects with

NAFLD and HCV supported the association between liver steatosis and insulin resistance.

FHBL subjects, however, did not have significantly increased HOMA-IR compared with

healthy subjects, and the 17 FHBL subjects with liver steatosis did not have higher HOMA-

IR than the five FHBL subjects without liver steatosis. Subjects with FHBL have mutations

in the ApoB gene that lead to triglyceride accumulation in the liver due to impaired VLDL

production and secretion. The lack of insulin resistance in these subjects suggests that the

mechanism by which hepatic triglyceride stores are increased is key to the development of

insulin resistance [100••]. It also suggests that there may be steps downstream of liver

triglyceride accumulation, for example VLDL production or secretion, that are associated

with the induction of insulin resistance. The very low fasting triglyceride concentrations

observed in the subjects with FHBL (mean = 34 mg/dl) are consistent with reduced rates of

VLDL production and secretion. Conversely, it has been reported that subjects heterozygous

for a mutation that increases ApoB transcription (−516C/T) exhibited increased postprandial

triglyceride concentrations [101] and insulin resistance [102•].

Data from other studies also indicate a lack of association between liver triglyceride and

insulin resistance. Patients with glycogen storage disease type 1 have severe steatosis

without insulin resistance [103,104]. In mice lacking hepatic MTP [105] and in transgenic

mice overexpressing acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) in the liver [106•],

there were increased liver triglyceride accumulation and reduced circulating triglyceride

levels in the absence of insulin resistance. Rats administered antisense to stearyl CoA

desaturase-1 (SCD1) and fed a lard-supplemented diet had increased liver triglyceride,
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reduced circulating triglyceride, but normal insulin sensitivity. Control rats treated with

scrambled antisense exhibited the expected decrease of insulin sensitivity on the lard diet,

yet had only one-third the hepatic triglyceride content [107•]. The dissociation between

hepatic triglyceride content and insulin resistance noted in these studies again suggests that

mechanisms operating downstream of liver triglyceride accumulation, which are connected

to the formation or secretion of VLDL, may be involved in the development of hepatic

insulin resistance.

Linking hepatic insulin resistance with VLDL production

A detailed model for production of VLDL has been proposed [51,108]. To briefly

summarize, the liver triglyceride synthesized from extracelluar and endogenous sources of

FFA does not serve as a direct precursor of VLDL, but rather is stored in the cytosolic

triglyceride pool. This cytosolic triglyceride is not incorporated into VLDL en bloc, but

rather is first hydrolyzed to FFA, monoacylglycerol, and DAG. These lipolytic products are

then re-esterified in the vicinity of ApoB-VLDL precursor. Not all of this resynthesized

triglyceride is incorporated into VLDL; instead, as much as 50% is recycled back to the

cytosolic pool [51,108]. A possible explanation for the disconnect between liver triglyceride

accumulation and hepatic insulin resistance may be that the DAG production responsible for

the induction of hepatic insulin resistance results from the triglyceride lypolysis, re-

esterification and recycling associated with VLDL assembly, rather than from the DAG

associated with the initial synthesis of triglyceride from extra-hepatic and endogenous

sources of FFA. Accordingly, when the assembly of VLDL is inhibited, as in the examples

described above (FHBL, MTP blockade and administration of SCD1 antisense), the

resulting high liver triglyceride content does not result in DAG/nPKC-induced hepatic

insulin resistance [100••,105,107•].

Possibly contradicting this suggestion is the report that the transgenic mice overexpressing

DGAT2 in the liver, described above as having increased liver triglyceride accumulation and

normal insulin sensitivity, also had increased hepatic DAG content [106•]. The increased

DAG accumulation, however, may have resulted from the upregulation of the initial

synthesis of triglyceride, which increased triglyceride stores, rather than from lipolysis, re-

esterification and recycling associated with VLDL assembly. The circulating triglyceride

concentrations of the DGAT2 transgenic mice were reduced compared with the wild-type

control mice, which suggests VLDL assembly was not upregulated by DGAT2

overexpression [106•]. Another recent study also reported that mice overexpressing DGAT2,

after injection of adenovirus containing DGAT2 transgene, had increased liver triglyceride,

but levels of plasma triglyceride and the hepatic production rate of VLDL were not affected

[109]. It has been recently reported that hepatic levels of DAG were increased in patients

with NAFLD and nonalcoholic steatohepatitis compared with control subjects; however, the

authors noted that the impact of the location of DAG within the hepatocyte requires

investigation [110•].
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Conclusion

A sustained and moderate positive energy balance is likely to promote metabolic syndrome

by increasing visceral-fat accumulation, resulting in increased portal delivery of FFA to the

liver. A high-fructose diet may more directly and rapidly produce a lipid oversupply within

the liver via increased DNL. An oversupply of hepatic lipid results in liver triglyceride

deposition and increased VLDL assembly and secretion. It has been proposed [59••] that the

liver triglyceride accumulation is associated with increased levels of DAG that activate

nPKC and disrupt insulin signaling. Several recent studies, however, reporting a disconnect

between liver triglyceride accumulation and insulin resistance [100••,107•] provide support

for our hypothesis that there may be steps downstream of liver triglyceride accumulation

(for example, VLDL production or secretion) that are associated with the induction of

hepatic insulin resistance.
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Figure 1. A high-fructose diet increases hepatic de-novo lipogenesis and a high-fat diet increases
hepatic chylomicron remnant uptake
Either diet can produce a hepatic lipid overload along with, or independently of, visceral

adiposity and increased portal free fatty acid (FFA) delivery. Visceral adiposity with

adipocyte hypertrophy has been hypothesized to reduce adiponectin production and delivery

to the liver which would be expected to promote hepatic lipid accumulation. The

esterification of hepatic FFA to triglycerides (TG) stored in hepatocytes can increase

diacylglycerol (DAG) levels (?); as can the lipolysis, re-esterification, recycling of cytosolic

TG that is associated with VLDL assembly (??). Either or both of these sources of DAG

may lead to activation of nPKC and impaired hepatic insulin signaling/insulin resistance.

VLDL production is regulated by the hepatic lipid supply and is further upregulated by

insulin resistance. Hyperinsulinemia may increase DNL because of insulin’s ability to
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activate SREBP1-c (*). Insulin promotes ApoB degradation and inhibits MTP(**), and both

of these processes are likely to be downregulated in the insulin-resistant liver. Increased

VLDL production and secretion lead to hypertriglyceridemia. Whether increased VLDL

secretion and elevated triglyceride levels directly promote visceral adiposity warrants further

investigation (???). Postprandial hypertriglyceridemia increases cardiovascular disease

(CVD) risk by promoting lipid/lipoprotein remodeling leading to increased circulating

concentrations of small dense LDL (sdLDL), remnant lipoproteins (RLP), and oxidized LDL

(oxLDL) and decreased concentrations of HDL. Hypertriglyceridemia and increased levels

of circulating FFA can promote accumulation of IMCL, DAG production, and nPKC

activation and impaired insulin signaling in skeletal muscle. The end result is whole body

insulin resistance, which, when accompanied by inadequate pancreatic beta cell

compensation, leads to type 2 diabetes.
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