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Abstract

It is well known that progression of chronic kidney disease can be ameliorated or stabilized by

different interventions, but more and more studies indicate that it can even be reversed. Most data

suggest that current therapy, especially renin angiotensin system inhibition alone, is not sufficient

to initiate and maintain long term regression of glomerular structural injury. In this article, we

review the potential reversal of glomerulosclerosis and evidence from both human and animal

studies. We discuss mechanisms that involve matrix remodeling, capillary reorganization and

podocyte reconstitution. In the future, a multipronged strategy including novel anti-inflammatory

and antifibrotic molecules should be considered in order to potentiate regression of

glomerulosclerosis.
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Introduction

Progression of chronic kidney disease is a major health problem. Interventions have focused

on control of blood pressure and inhibition of the renin angiotensin system (RAS), but have

only resulted in slowing down progression. Over the last years, multipronged intervention

has resulted in amelioration of progression and even stabilization of chronic kidney disease

(CKD). However, recent observations in humans and in experimental models point to the

possibility of regression of sclerosis, which led to a shift in paradigms regarding progressive

scarring from a view of sclerosis as a fixed, inevitable outcome in progressive renal diseases

to an understanding of sclerosis as a dynamic, ongoing process that may be modulated.1–5

Regression of existing glomerulosclerosis requires degradation of extracellular matrix

(ECM) accumulation and regeneration of parenchyma. The lesion of glomerular sclerosis is

not only a phenomenon of primary FSGS (focal and segmental glomerulosclerosis), but is
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also a ubiquitous secondary injury underlying the progressive deterioration of many

different types of renal diseases. We will review evidence and mechanisms of regression of

glomerulosclerosis, using the term “FSGS” to include this secondary progressive sclerosis.

The Potential Reversal of FSGS

Although lower animals can regenerate nephrons after injury, in mammals, after term birth,

no new nephron units can be generated.6 The tubular epithelium has ample regenerative

capacity. Thus, after acute kidney injury (AKI), restoration of parenchyma and function is

possible. However, even the tubule has limitations, and AKI has recently been recognized as

a major risk factor for CKD.7 This has been linked to loss of normal cell cycle progression

during repair, and loss of tubular epithelial cells, with fibrosis resulting rather than

generation of new tubular epithelial cells. However, portions of glomeruli can potentially be

restored by capillary lengthening and /or branching. By using three-dimensional

reconstruction of individual glomerular capillary tufts, Remuzzi et al. found that after 10

weeks of ACE inhibition, at 60 weeks of age, more than 20% of glomeruli were completely

free of sclerosis, whereas at 50 weeks of age practically all glomeruli had some degree of

sclerosis.8 These data suggest that space previously occupied by glomerulosclerosis was

now occupied by new capillary tissue. Our mathematical modeling indicated that individual

glomerular tufts with sclerosis occupying >50% of the capillaries are doomed to

progression. Conversely, glomeruli with <50% sclerosis of the tuft are capable of growing

new capillary loops.9 Not all glomerular cells have equal capacity for regeneration.

Although endothelial cells and mesangial cells readily proliferate after injury, the podocyte

has limited, if any, regenerative capacity.

Evidence of Disease Reversal in Human CKD

There are very few studies with repeated biopsies to directly prove regression of sclerosis in

humans, and none specifically for primary idiopathic FSGS. However, some clinical

observations support the possibility of remodeling of sclerosis. Proof of principle of

regression of existing glomerular injury was shown in a small study of diabetic patients with

moderately advanced diabetic nephropathy whose diabetes was cured by pancreas

transplant.2 The severity of the diabetic nephropathy was unchanged at 5 years; however, at

10 years, both glomerular lesions and tubulointerstitial lesions had regressed.10 The AASK

study showed that many CKD patients have a non-linear GFR trajectory or a prolonged

period of nonprogression, which indicates that CKD need not be relentlessly progressive.11

Non-diabetic nephrotic patients who were treated with the angiotensin converting enzyme

inhibitor (ACEI) ramipril for two years as part of the REIN study (Ramipril Efficacy In

Nephropathy core and follow-up study) achieved stabilization of their rate of GFR decline,

to a yearly loss similar to normal aging. Interestingly, in a small subset of these patients,

GFR even improved, and thus they have not reached ESRD.3 Full remission of proteinuria

and stabilized renal function in response to long-term ACEI were also observed in a small

number of patients in another long-term follow-up study of diabetic patients with

nephropathy.12 These findings support that remission and even regression of the functional

parameters of CKD can occur in humans with diabetic or nondiabetic kidney disease.
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However, whether these functional improvements were contributed to in part by any

regression of structural injury remains unknown.

Mechanism of Disease Reversal in FSGS Models

Reversal of glomerulosclerosis may occur through various steps, including matrix

remodeling, capillary reorganization and podocyte reconstitution. We will review

experimental evidence of mechanisms of such processes.

Effects on Matrix

To achieve regression of sclerosis, matrix degradation must exceed matrix synthesis. A

delicate balance between ECM synthesis and degradation affects progression and potential

regression of glomerulosclerosis. Key factors that promote collagen synthesis include, but

are not limited to, blood pressure, angiotensin II, transforming growth factor-β (TGF-β),

platelet-derived growth factor-B, and numerous other growth factors. Angiotensin has been

a central focus for mechanisms of progression, linked not only to its effects on systemic and

glomerular hypertension, but effects on matrix synthesis and cell proliferation. ACEI has

shown superior effects on kidney disease progression in various human diseases and in

animal models compared to other antihypertensive agents, even in conditions without

systemic hypertension. These findings suggest that angiotensin II may have effects beyond

blood pressure in progressive renal disease, and conversely, that effects of ACEI or

angiotensin type 1 receptor blocker (ARB) might extend beyond antihypertensive

mechanisms.13 Aldosterone has both genomic and non-genomic actions to promote fibrosis,

independent of its actions to increase blood pressure by mediating salt retention.14 It

enhances angiotensin induction of PAI-1, and also has direct actions on fibrosis.15

Models of progressive glomerular disease in rodents have shown the potential for regression.

Indeed, we showed that higher doses of ACEI than required to normalize both systemic and

glomerular hypertension had greater benefits on established glomerulosclerosis in the

remnant kidney, a secondary FSGS model, than usual antihypertensive dose.4 Although

there was no further impact on systemic or glomerular pressures, as shown by

micropuncture studies, two-thirds of these animals achieved regression of

glomerulosclerosis with high dose angiotensin inhibition. Regression was evidenced by less

extensive and less severe sclerosis after four weeks of therapy than that seen at time of

biopsy, when intervention was started, eight weeks after injury was initiated. Animals with

regression had better preserved podocytes, more capillary branching, and less matrix

accumulation. There was also corresponding less tubulointerstitial fibrosis.16 Aldosterone

inhibition also resulted in regression of sclerosis in this model.5

These inhibitors of the renin angiotensin aldosterone system (RAAS) also decreased

expression of plasminogen activator inhibitor-1 (PAI-1). PAI-1, a member of the

superfamily of serine protease inhibitors, inhibits tissue-type and urokinase type

plasminogen activators (t-PA and u-PA), and thus prevents activation of plasminogen to

plasmin. Plasmin not only lyses fibrin, but also can degrade ECM. PAI-1 is produced from

multiple sources, including endothelium, vascular smooth muscle cells, liver, platelets, and

tubular epithelial cells.17 Angiotensin induces PAI-1, via the AT1 receptor, independently of
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blood pressure effects. High levels of PAI-1 have been linked to excess fibrosis in both

humans and in experimental models. We found elevated PAI-1 expression at sites of

sclerosis, and absence of PAI-1 when regression was achieved. In contrast, TGF-β mRNA

was not decreased when regression was achieved, and its local expression level was not

linked to sclerosis. However, these findings do not rule out a role for TGF-β signaling in

progression, through for instance connective tissue growth factor (CTGF), or

phosphorylation of Smad2, or a role for its inhibition in regression of sclerosis. Interestingly,

two key matrix metalloproteases, MMP-2 and MMP-9, were not linked to regression. In

contrast, the high level of PAI-1 in animals with progressive glomerulosclerosis was

associated with low levels of plasmin. High doses of ACEI or ARB that resulted in

regression restored plasmin levels towards normal. These data support that RAAS inhibitors

may in part modulate glomerulosclerosis by effects to degrade ECM.

Regression by high dose RAAS inhibition was not limited to this remnant kidney model, but

also was observed in the primary podocyte injury induced FSGS model of puromycin

aminonucleoside nephropathy, and in age-related glomerular and vascular sclerosis. In the

chronic puromycin aminonucleoside model, regression of sclerosis with intervention with

either ACEI or low protein diet was inferred by comparisons of different groups of rats at

various time points.18 We also showed regression of early biopsy-proven glomerulosclerosis

lesions in this model, with less sclerosis observed in kidneys at sacrifice in the same rats

after treatment with high dose ACEI.19 The sclerosis occurring in aged rats could be

remodeled by inhibiting angiotensin II with high dose ARB for 6 months, starting at a time

point of moderate injury at 18 months of age.20

More recently, elegant studies by Adamczak and Remuzzi have confirmed regression in the

remnant kidney model and in the spontaneous nephropathy occurring in the Munich Wistar

Fromter (MWF) modelc, with high dose ACEI and combination of ACEI and ARB,

respectively. 21, 22 Adamczak’s data revealed that remodeling of vascular sclerosis,

tubulointerstitial fibrosis and existing glomerulosclerosis is feasible. Regression has also

been observed in experimental hypertensive nephropathy by high dose ARB. 23

To maximize the potential for regression, multi-pronged approaches will probably be

necessary. The efficacy of combining ARB with ACEI has been explored in several studies

as discussed above. The group of Remuzzi showed that ACEI and ARB, with or without

added statins, led to further regression than monotherapy in an experimental model.24

However, no advantage of combination of ARB and ACEI has been demonstrated in

previous animal studies, beyond that achieved with greater blood pressure control.25, 26

Several clinical trials using dual RAAS blockade failed to show cardiovascular or renal

protection, but showed more adverse events, suggesting that dual RAAS blockade for the

treatment of CKD cannot currently be recommended.27–29 The angiotensin type 2 receptor

(AT2) counteracts the classic AT1 receptor actions, especially by inducing vasodilation

instead of vasoconstriction and also with cell-specific effects, and thus might play a

beneficial role in remodeling of sclerosis. There is now unequivocal evidence that the AT2

receptor mediates microvascular vasodilation by nitric oxide (NO) generation in a

bradykinin-dependent or independent manner.30, 31 Vazquez et al. found a time-dependent

increase in AT2 receptor expression at 7, 15, and 30 days after 5/6 nephrectomy. Animals
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pre-treated with ARB showed a further increase in AT2 receptor expression.32 Whether AT2

contributes to ARB induced regression of glomerulosclerosis is of interest. We directly

explored this hypothesis by adding blockade of the AT2 receptor to AT1 blocker in the

remnant kidney model.33 The added inhibition of AT2 blockade completely prevented the

beneficial effects of the ARB. This progressive sclerosis in rats treated with AT2 receptor

antagonist was associated with increased PAI-1 in contrast to decrease with ARB. AT1 and

AT2 blockers also affected podocytes and collagen synthesis. Cultured wild-type podocytes,

but not PAI-1 knockout cells, responded to angiotensin II with increased collagen, an effect

that was completely blocked by ARB with lesser effect of the AT2 receptor antagonist. We

conclude that the beneficial effects on glomerular injury achieved with ARB are contributed

to not only by blockade of the AT1 receptor, but also by increasing angiotensin effects

transduced through the AT2 receptor, and that these effects include effects both on matrix

and podocytes.

Effects on Capillaries

Although regression of chronic kidney diseases cannot be achieved by growing new

glomeruli, we postulate, based on elegant studies by Nyengaard, that segments of glomeruli

can regenerate by capillary lengthening and/or branching, whereas the sclerosed segment

may be largely reabsorbed.34

In the remnant kidney model, regression by high dose ACEI was manifest by decreased

sclerosis volume and increased volume of intact capillaries by up to 40%.8 Mesangial and

endothelial cell proliferation was reversed, but the number of podocytes per glomerulus was

not changed by ACEI treatment.35 In our studies by confocal three-dimensional imaging and

graph theory analysis, we also found that glomeruli in rats with progressive sclerosis were

enlarged, but had reduced number of capillary segments and capillary branch points and

decreased complexity of the glomerular network compared with normal glomeruli. In

contrast, in rats with regression of sclerosis induced by high dose ARB, glomerular

enlargement was due not to increased matrix, but due to increased number of glomerular

capillary segments and capillary branch points and restored complexity of the capillary

network.36

Therapeutic efforts beyond RAAS inhibition must include mechanisms to protect and restore

the podocyte. The podocyte is key for glomerular endothelial cell survival, by secreting key

angiogenic factors such as vascular endothelial-derived growth factor (VEGF) and

angiopoietin-1. Elegant experiments have shown that podocyte VEGF expression is

necessary to maintain the endothelium of the glomerulus. In vitro, we showed that injured

podocytes treated with ARB had restoration of their angiogenic capability.37 Thus,

endothelial cell health and angiogenesis is crucially interrelated with podocyte health.

Glomerular Epithelial Cells

Podocytes have limited, if any, ability to proliferate due to high expression of a cyclin-

dependent kinase inhibitor, p27kip1.38 Podocytes are key to the structural integrity of the

glomerulus and to its permselectivity functions, and to maintain the glomerular endothelium

(see above). Podocyte loss is closely correlated with progressive glomerulosclerosis. Direct
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podocyte injury in genetically engineered rodents demonstrates that injury initially limited to

only this cell can result in fully developed sclerosis. In dosing experiments from the group

of Wiggins, a threshold for about 20% loss was shown to determine whether repair could

occur, or if progressive sclerosis ensued.39 Interestingly, even when only some podocytes

are initially injured, injury can spread to other podocytes, as demonstrated using transgenic

chimeric mice where a toxin receptor for human CD25 was expressed in only a subset of

podocytes. Injection of toxin that binds to hCD25 resulted in injury even to wild type

podocytes, and also increasingly severe sclerosis as injury spread.40

Podocytes can be regenerated from local progenitor cells. Parietal epithelial cells (PECs) are

postulated to serve as niche stem cells for podocytes, based on marker studies in humans and

lineage tracing cells in animal models.41 Thus, the presence of CD24+/CD133+ cells lining

Bowman’s capsule supports a stem cell function.42 Both podocytes and PECS are mobile

cells, and their cytoskeletons can respond rapidly to stimuli and allow migration. In injury

models, migration of PECs on to the tuft, either along the vascular pole, or by extension

along synechiae, has been associated with local increase of matrix, and thus postulated to

rather be an injurious profibrotic response. Aberrant Notch-1 expression may contribute to

such adverse PEC migration.43 However, it is possible that migration of such cells could

give rise to podocyte-like cells, and perhaps even restore podocytes after injury, depending

on the local matrix context. Thus, tissue regeneration may, as in other wound healing

settings, depend on the local balance of ECM accumulation and the degradation and

resolution of a provisional matrix. Interestingly, the proliferating visceral epithelial cells

observed in collapsing glomerulopathy stain with CD44, a marker of activated PECs. In the

early phase of recurrence of FSGS in the transplant, when standard microscopy and electron

microscopy document only foot process effacement, but no sclerosis, such activated CD44+

cells were increased in the glomerular tuft, and along Bowman’s capsule. In contrast, native

kidney minimal change disease showed significantly less such activated PECs.44 Insufficient

PEC migration has also been postulated to contribute to age-related sclerosis.45 However, by

using lineage tracing models, PEC migration onto the vascular tuft and differentiation into

podocytes only was detected in juvenile mice, but not in aging mice and adult mice with

injury induced by subtotal nephrectomy.46 The biology and pathophysiologic functions of

PECs are still controversial. PECs might be reparative or injurious, depending on the type of

injury and age of the mouse, or patient.47 In addition to PECs, cells of renin lineage may

also enhance glomerular regeneration by serving as progenitors for glomerular epithelial

cells and podocytes.48

Podocyte injury can be protected and its regeneration also can be induced by some

interventions. High dose ACEI could reverse the spontaneously occurring FSGS lesions in

aged MWF rats, linked to podocyte proliferation. These “podocytes” are postulated to result

from regeneration from the parietal epithelium.49 ARB increased glomerular transitional

cells in several models of glomerulosclerosis and proteinuria, with cells doublestaining for

podocyte and PEC markers, with resulting increased number of podocytes.50 Podocytes may

also be directly protected by glucocorticoids, and this treatment also increased progenitor

cells in experimental FSGS induced by anti-podocyte antibody injection. Glucocortocoid

also protected podocytes from apoptosis, and thus promoted less injury and increased repair,

with ultimately less sclerosis in treated mice.51 Maintenance of microRNA-30, which
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decreased Notch-1 activation and inhibited the cell cycle molecule p53, may contribute to

these reparative effects of glucocorticoids.52

Novel strategies to Reverse FSGS

Additional preliminary studies have shown that combination of PPARγ agonists and ARB

induced more regression of glomerulosclerosis in the 5/6 nephrectomy model than

monotherapy with either agent. These additional effects were related to less inflammation

and more podocyte protection.53 Combination therapy with an ACEI, ARB and statin also

achieved even better results on sclerosis than monotherapy with any one of these classes of

drug.24 Impressively, combination of ARB with the diuretic hydrochlorothiazide afforded

additional protection of function compared to ARB alone when treatment was started at

advanced stages of injury in the 5/6 nephrectomy model. Other RAAS targets also provide

additional avenues for tissue protection and potential regeneration. Renin inhibition reversed

the balance of profibrotic vs. antifibrotic mediators in renin transgenic mice, with restoration

of tubular epithelial cell and podocyte function and structure.54 Novel targets include

periostin, also linked to disease progression.55 Although sclerosis was not regressed,

progression was completely halted, indicating a potential for modulation even of advanced

injury.

Summary

Reversal of glomerulosclerosis can be achieved. High dose ACEI or ARB can slow the

progression of chronic kidney diseases, or even partially reverse glomerulosclerosis.

However, it appears unlikely that RAS inhibition alone will be sufficient to initiate and

maintain long term regression of glomerular structural injury. Future approaches include

consideration and targeting additional mechanisms to optimize matrix remodeling, capillary

reorganization and podocyte reconstitution. Thus, a multipronged strategy including novel

anti-inflammatory and antifibrotic molecules, in addition to standard RAS inhibition, should

be considered in order to potentiate regression of glomerulosclerosis.
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