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Abstract

In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target

tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into

account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-

volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution

and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires

an accurate 3D radioactivity distribution as the input. However, activity distribution estimates

from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we

systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in

terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT)

phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and

biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise

effects were studied using 50 noise realizations with clinical count levels. Activity images were

reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector

response (CDR). Dose rate distributions were estimated by convolution of the activity image with

a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and

compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts

due to CDR compensation all degraded histogram estimates. Low-pass filtering and early

termination of the iterative process were needed to reduce the effects of noise and ringing artifacts

on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features,

such as the liver, had more accurate histogram estimates and required fewer iterations and more

smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more

iterations and less smoothing at early time points post-radiopharmaceutical administration but
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more smoothing and fewer iterations at later time points when the total organ activity was lower.

The results of this study demonstrate the importance of using optimal reconstruction and

regularization parameters. Optimal results were obtained with different parameters at each time

point, but using a single set of parameters for all time points produced near-optimal dose-volume

histograms.

1. Introduction

Radiopharmaceutical therapy (RPT) has an established role as a treatment for certain

cancers including radioiodine therapy for thyroid cancer, radioimmunotherapy (RIT) for

non-Hodgkin’s lymphoma (NHL) (Juweid, 2002), peptide receptor radionuclide therapy

(PRRT) for neuroendocrine tumors (NETs) (Pool et al., 2010), and selective internal

radiation therapy (SIRT) for liver cancer (Prompers et al., 2011). In RPT, the goal is to

deliver a lethal radiation dose to the tumor region while avoiding toxicity to normal organs.

Unlike external beam therapy, the relationship between dose and tumor response or normal

organ toxicity in RPT is not yet well established. As a result, the role of dosimetry in RPT

treatment planning has been limited.

However, some recent studies (Dewaraja et al., 2010, Senthamizhchelvan et al., 2012) have

shown some correlations between dose and response. Among the factors limiting the ability

to predict response are failure to consider the impact of dose-rate and spatial non-uniformity

of the dose distribution as well as limitations in the estimated activity distributions that form

the basis for the dose estimates. More advanced and accurate dosimetry methods may prove

important in establishing robust dose-response relationships that could enable dosimetry-

based treatment planning and therapy optimization.

Quantitative SPECT (QSPECT) imaging methods, which incorporate compensation for non-

uniform attenuation, scatter, and collimator-detector response, have been developed and

evaluated for RPT dosimetry by several groups (Ljungberg et al., 2002, Ljungberg et al.,

2003, Dewaraja et al., 2005, He et al., 2005, He and Frey, 2006). QSPECT has been

demonstrated to provide improved quantification of total organ activity and mean absorbed

dose. In one simulation study modeling 111In Zevalin (He et al., 2005), the error in mean

organ activity estimates with advanced QSPECT methods was found to be less than 5.5%

for most organs.

Three-dimensional (3D) RPT dosimetry that uses 3D activity distributions as inputs can

potentially provide improved predictions of response as it can account for the effects of non-

uniform dose distribution observed in many tumors and some organs. In addition, 3D

dosimetry models the size and shape of organs and the geometric relationship among them

fully and accurately. This potentially enables highly patient-specific radiobiological

modeling (Sgouros et al., 2008).

However, the full information contained in the 3D dose distribution is more than can

practically be used for treatment planning. As a result, summary measures are typically

computed. The most basic are the mean, maximum, and minimum doses inside a volume-of-
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interest (VOI). However, these measures discard information that can be important in

predicting normal organ toxicity or tumor control.

Differential and cumulative dose-volume histograms (DVHs) (Drzymala et al., 1991) are

commonly used in external-beam radiation therapy to summarize and characterize 3D dose

distributions. The differential DVH (DDVH) is a histogram of the fractional volume of a

VOI receiving an absorbed radiation dose lying in a range corresponding to each of the

histogram bins. The cumulative DVH (CDVH), hereafter and commonly referred to as the

DVH, is the integral of the DDVH. In DVH plots the horizontal axis represents the absorbed

dose threshold for each bin, and the vertical axis represents the fraction of the VOI volume

having a dose larger than or equal to the dose threshold. The DVH summarizes the

minimum, maximum, and median dose and the dispersion about the median dose, with a

more nonuniform dose distribution having a larger dispersion.

The DVH can also be used to calculate parameters such as the tumor control probability

(TCP) and normal tissue complication probability (NTCP), which are radiobiology-based

parameters describing the tumor-cell survival fraction and late normal organ toxicity

(Lyman, 1985, Niemierko and Goitein, 1991). As pointed out in (Sgouros, 2005), the DVH

and equivalent uniform dose (EUD) models are two promising ways to meaningfully

summarize the large amount of data contained in the 3D distribution of absorbed dose. In

this work we have concentrated on optimizing and evaluating reconstruction parameters that

improve DVHs.

Accurate 3D dosimetry requires an accurate 3D activity distribution as input. Although 3D

dose calculations and DVH estimates, as emerging tools in RPT dosimetry, are being

developed and used, there has been little systematic investigation of the effects of image-

degrading factors on DVH estimates and optimization of image reconstruction parameters

for improved voxel level dosimetry. SPECT imaging is degraded by noise and limited

resolution, both of which can lead to distortions in estimated histograms. Three-dimensional

dosimetry is usually based on a series of images at several time points. The noise level in the

projection data at different time points can be very different because of biological clearance

and physical decay. The extent of the partial volume effects (PVEs), mainly caused by the

limited spatial resolution of SPECT imaging system, depends on the sizes, spatial

relationships, and relative uptakes of the various organs and tumors.

The DVH, as a potentially valuable tool in 3D RPT dosimetry, has been studied and applied

in several studies. In (Ljungberg et al., 2003), a general method for 3D absorbed dose

calculation based on SPECT was presented, and DVHs derived from phantom and

reconstructed images were shown for organs such as liver, spleen, lungs, and bone marrow.

Compared to DVHs obtained from the actual absorbed dose distributions in a phantom, large

deviations were observed from the DVHs obtained from SPECT images. In an 131I RIT

dosimetry study (Dewaraja et al., 2010), DVHs were shown to demonstrate the

nonuniformity of the absorbed dose distribution, and measures derived from DVHs were

used to study the tumor dose-response relationship. In a patient study with 90Y microspheres

therapy, DVHs were calculated to analyze the tumor and liver doses (Sarfaraz et al., 2004).
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The DVH analysis indicated that, although the patient received a nominal whole liver dose

of 110 Gy, only 83% of the tumor and 16% of the liver received a dose higher than 110 Gy.

The number of iterations and the selection of post-reconstruction filters have been found to

have a major effect on image quality for applications such as myocardial perfusion SPECT

(Frey et al., 2002). However, most of the previous studies of QSPECT and resulting DVH

estimates used a fixed iteration number and no filtering of the reconstructed images. It is

well known that the image resolution and noise of SPECT images change as a function of

iteration number and that post-reconstruction filtering can be used to reduce noise at the

expense of image resolution. Therefore, optimization of these image reconstruction

parameters has the potential to improve DVH estimates.

In this paper we systemically investigated the effects of image reconstruction parameters

used in QSPECT on the DVH estimates of normal organs in 3D RPT dosimetry via a

realistic simulation study. A modified NURBS-based Cardiac-Torso (NCAT) phantom

(Segars and Tsui, 2009) and previously validated Monte Carlo (MC) simulation methods

were used to generate projection data. A voxel S kernel generated using MC simulations

with the 3D-RD dosimetry package (Prideaux et al., 2007) was used to compute the dose

rate distribution from activity estimates obtained from QSPECT images for various numbers

of iterations and post-reconstruction filter parameters. Cumulative DVHs (CDVHs) from

both the phantom and reconstructed images were calculated, plotted, and compared both

qualitatively and quantitatively. Multiple noise realizations were used to study the accuracy

and precision of the histogram estimates.

2. Materials and Methods

2.1 NCAT Phantom and Monte Carlo Simulation

A modified version of the 3D NCAT phantom that incorporated a non-uniform kidney

model was used in this study to provide a realistic and flexible model of human anatomy.

Each kidney was composed of three parts: the renal cortex, medulla, and pelvis. These

allowed realistic modeling of a non-uniform activity distribution in the kidneys. Non-

uniform uptake in the kidneys plays an important role in PRRT dosimetry (Konijnenberg et

al., 2007, De Jong et al., 2004), and we wished to be able to assess the effects of

reconstruction parameters on the DVH for this application.

The anatomical parameters used in the NCAT phantom for major organs were adjusted to

match those of a representative patient that underwent 90Y Zevalin therapy (He et al., 2009).

The activities and kinetics for all the organs except the kidneys were from this patient after a

5 mCi 111In-Zevalin injection, used as a surrogate to estimate the distribution of 90Y

Zevalin. Details of the imaging procedure and organ activity estimation process are given in

(He et al., 2009). The activity concentrations for the kidneys, including the cortex, medulla

and pelvis, were from a different patient imaged after injection of 111In-DTPA-octreotide in

a PRRT dose-planning study (Baechler et al., 2012). The activity concentrations for the

renal medulla and pelvis were assumed to be the same. In RIT with Zevalin, the liver is the

major dose-limiting organ; in PRRT, the radiolabeled peptide is cleared by the kidneys, and

the kidney dose is significant. Of importance, the activity distribution in the kidneys is
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nonuniform and uptake in the renal cortex is especially important; recent dosimetric studies

suggest that the renal cortex rather than the whole kidney is the dose-limiting organ (Bodei

et al., 2008). The use of this hybrid activity distribution from patients undergoing two

different therapies enabled us to investigate the DVHs of both liver and kidney in cases

where each is dose-limiting through a single simulation study. There is some crosstalk

between the organs due to partial volume effects, i.e., the spill-out of activity from one organ

results in spill-in of activity to the other organ, so the results reported are not exactly

representative of what would be observed in either case, but they are useful for studying the

various trends and parameters affecting the DVH for both organs.

Time activity curves at 5 time points post-injection, i.e., 1, 5, 24, 72, and 144 hours, were

simulated using a mono-exponential to model only the biological clearance phase. We

neglected the uptake phase because in organs the uptake is rapid and the clearance phase of

the time-activity curve provides the greatest dose contribution. Also, data from finely

sampled early time points needed to assess the uptake kinetics were not available and are not

usually obtained in RPT therapy treatment planning applications. The organ activities

simulated at the 24-hour time point, the organ volumes, and the effective half-lives are listed

in Table 1.

A modified version of the SimSET code (Harrison et al., 1993) combined with an angular

response function (ARF) based simulation of the interactions in the collimator and detector

was used to simulate the projection data (Song et al., 2005, He et al., 2005). The MC

simulations were performed with parameters appropriate for a GE Millennium VG/Hawkeye

SPECT/CT system having a 1.5875cm (5/8 inch) thick crystal, an energy resolution of 9.5%

at 140.5 KeV and medium-energy general-purpose (MEGP) collimation. Both 111In

photopeaks (171 KeV and 245 KeV) were simulated with the appropriate abundances (0.90

for 171 KeV and 0.94 for 245 KeV). Separate simulations were performed for the organs

and regions listed in Table 1. Low noise projection data were simulated into images with

128 transaxial and 170 axial projection bins at 120 views over 360° using a 0.442 cm

projection bin size. Two 20% wide energy windows centered at 171 KeV and 245 KeV were

simulated, and the resulting projections were summed. In order to reduce the effects of

discretization, the NCAT phantom was discretized with a voxel size 0.221 cm, which was

half of the projection bin size.

The projection data simulated from all the organs were scaled and summed according to the

activity distribution in Table 1. Next, the low noise projection data were scaled to a clinical

count level appropriate for a 30 minute SPECT acquisition on a dual-camera system. The

average counts per axial slice for the 24 hour time point was 1.355×105. Finally, the

projection data were filtered with a 2D Gaussian filter having a FWHM of 0.40 cm to

simulate the intrinsic resolution. Poisson noise was added to produce 50 noise realizations.

The MC simulation method has been validated and used in previous studies (Song et al.,

2005, He et al., 2005). One coronal slice each of the phantom, attenuation map, and the

simulated projection data is shown in figure 1. Figure 2 shows an enlarged coronal slice of

the nonuniform kidney model.
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2.2 Quantitative SPECT (QSPECT) method

The QSPECT method has been previously demonstrated to provide accurate organ activity

estimates. This work focused on optimizing and assessing QSPECT reconstructions in terms

of DVH estimates for 3D dosimetry. The QSPECT method used was based on the iterative

OS-EM algorithm with model based compensations for attenuation, scatter, and the

collimator-detector response function (CDRF) (Hudson and Larkin, 1994, He et al., 2005).

The abundance-weighted average of the true attenuation maps for the 171 KeV and 245

KeV photons emitted by 111In was used in the reconstruction. Scatter modeling was

performed using the effective source scatter estimation (ESSE) method (Frey and Tsui,

1996). The full CDRF, including the septal penetration and scatter components, was

estimated using MC simulations of a point source at various distances from the surface of

the collimator.

A post-reconstruction Gaussian filter was applied to the image obtained from each iteration

in order to control noise. In order to study the effects of reconstruction parameters such as

iteration number and post-reconstruction filter on the dose estimates, we explored various

combinations of iteration number and filter FWHM. The SPECT projections were

reconstructed using up to 150 iterations of 24 subsets (unless otherwise noted). We

investigated 15 FWHM values ranging from 0.5 to 5.0 voxels in increments of 0.5 voxels

and from 5.0 to 10.0 voxels in increments of 1 voxel.

2.3 Dose rate and dose estimation method

After the application of the post-reconstruction filter, the SPECT images were interpolated

from a voxel size of 0.442 cm to 0.221 cm using trilinear interpolation in order allow

comparison with the phantom. The voxel values in the SPECT images were then converted

to activities using a calibration factor that was calculated from the geometric sensitivity of

the imaging system. The geometric sensitivity is defined as the number of detected

geometric photons per emitted photon and was calculated by Monte Carlo simulation of a

point source in air using SimSET and an ARF that modeled only the geometric response of

the collimator but included scattering and partial deposition in the crystal and detector.

As the study was performed in the context of 90Y dosimetry, the activity estimates

from 111In imaging were converted to 90Y activities by compensating for the difference in

half-lives.

The activities estimated from the QSPECT images and the true values obtained from the

phantom were each convolved with a voxel S kernel to calculate dose rate estimate images

at each time point. The voxel S kernel was derived from MC simulations using the 3D-RD

software package (Prideaux et al., 2007). A water-filled sphere with a diameter of 33 voxels

was simulated. A single voxel source at the center of the sphere and β-emission from 90Y

were simulated. Particles were tracked and the energy deposition in the source and

surrounding 0.221 cm voxels was recorded. A total of 10 million β-particle emissions were

simulated.

The use of voxel S kernel and convolution to estimate dose assumes a homogeneous

medium. This method is less accurate at boundaries of regions with large differences in
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composition or density such as boundaries between soft tissue and bone or lung. This

limitation is not a major one in this study because we focused on abdominal organs such as

the liver and the kidneys, both of which are soft tissues and are surrounded predominantly

by other soft tissues. There might be some slight errors at the upper boundaries of the liver

where it is close to the lung. However, this represents only a very small proportion of the

liver volume so it should have a relatively small effect on DVH estimates of the whole liver.

It would have been computationally impractical to apply full 3D MC simulations to all of

the combinations of iterations and filter FWHMs investigated.

We estimated dose images from the set of dose rate images as follows. Since the activity

values in each voxel were quite noisy, direct exponential fits were often unstable. Thus, we

numerically integrated the time versus dose rate curve in each voxel as follows. The

Trapezoidal Rule was used to integrate the dose-rate data in each voxel for the intervals

between the 5 simulated time points. Exponential fits were used to compute the dose

estimates before the first and after the last time points. In particular, an exponential fit of the

data from the 5 time points was obtained and the resulting half-life compared to the half-life

for physical decay. Since a half-life longer than physical decay is indicative that the fit failed

due to noise, the smaller of the fitted or physical half-life was used. This half-life was used

to extrapolate the activity from time zero to the first time point and the last point to infinity.

The resulting exponentials were integrated over these times and added to the results of the

trapezoidal integration between the five time points. A similar integration strategy has been

used in (Hobbs et al., 2011).

2.4 Histogram generation and figure of merit (FOM)

After the estimation of dose rate values at each time point, the corresponding cumulative

dose-rate volume histograms (CDRVHs) for the liver, kidneys and the renal cortices were

computed and plotted. The CDRVH is defined similarly to the CDVH, but the horizontal

axis represents dose-rate ranges (bins). In order to make the histograms more relevant to the

final estimated dose, we used a bin size for the histogram that was approximately equivalent

to 0.25% of the median value of the dose/activity ratio of 90Y Zevalin for liver (Stabin,

2003) and 0.2% of a literature dose/activity ratio for 90Y-DOTATOC for the kidneys

(Paganelli et al., 2001). In particular, the dose/activity ratios used were 4.8 mGy/MBq for

liver and 3.3 mGy/MBq for kidney and renal cortices. The dose/activity ratio used in above

publications refers to the dose absorbed by the particular organ per unit administered activity

of radiopharmaceutical.

The CDRVH was computed for each combination of iteration number and FWHM of the

Gaussian filter. As we generated 50 noise realizations, there were 50 histogram value

estimates for each histogram bin. The CDRVH from the phantom was also computed and

served as ground truth. The mean squared error (MSE) of the histogram estimate was

computed for each histogram bin and then averaged over all the bins. The square root of the

normalized MSE (RNMSE) was used as the FOM in the study:

Cheng et al. Page 7

Phys Med Biol. Author manuscript; available in PMC 2014 September 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(0)

where  is the histogram value in the b-th bin for the n-th noise realization,  is the

histogram value in the b-th bin for the phantom, B is the total number of bins in the

histogram, and N is the number of noise realizations. We sought the optimal parameters, i.e.,

the combination of iteration number and FWHM, that on average produced the best results,

i.e., the minimum RNMSE. The bias and variance of the histogram estimates for each bin

were also computed from the 50 noise realizations.

For a particular noise realization, the square root of the MSE (RMSE) of the CDRVH

obtained from the reconstructed image was defined as:

(0)

The dose rate images that had the minimum RMSE of the CDRVH at each of the 5 time

points were integrated to obtain the optimal dose distribution estimate. The CDVH was then

computed from the optimal dose distribution estimates. This was performed for both the

phantom and the estimates obtained from SPECT. The RMSEs of the CDVHs between the

phantom and reconstruction of simulated SPECT images were computed as described above

for the CDVRHs.

3. Results

3.1 Liver

Figure 3 shows plots of the RNMSE for the CDVRH of the liver as a function of iteration

number for 5 different filter FWHMs at the first time point. Notice that the minimum

RNMSE was achieved for a small number of iterations and with relatively little filtering,

i.e., 2–4 iterations and a FWHM of 1 voxel. For moderate iteration numbers, such as 10 to

50, a FWHM of 3 voxels was helpful in improving the fidelity of the histogram estimates.

For even larger iteration numbers, stronger smoothing, e.g., a FWHM of 4 voxels, was

useful. Similar trends were observed for the CDRVH at other time points.

Since the lowest RNMSE was achieved for a small number of iterations, we investigated

whether better results could be obtained using a smaller number of subsets with more

iterations. In particular, we did an experiment using 8 subsets with 15 views in each subset

to check if the minimum RNMSE would be achieved with a different number of updates

(product of iterations and subsets) than possible with 24 subsets. We found that the

minimum RNMSEs in both cases were very similar. As an example, in figure 4, we show a

plot of RNMSE as a function of the update number for the liver at 1 hour using 8 and 24

subsets for a FWHM of 1.5 voxels. In this case, the minimum RNMSEs differed by less than

0.4% of the minimum RNMSE obtained with 24 subsets. Therefore, we adopted 24 subsets

for remainder of the paper.
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3.2 Kidneys and renal cortices

Figures 5 and 6 show plots of the RNMSE of the CDRVH for the kidneys at 1 hour and 144

hours, respectively, as a function of iteration number for 5 FWHMs. Note that the minimum

RNMSE was obtained for a large number of iterations, approximately 40, and no filtering

for the 1 hour time point. The later time points, and especially the last time point, required a

moderate number of iterations and smoothing, e.g., 15 iterations and a FWHM of 3 voxels at

144 hours. Post-reconstruction filtering with a FWHM of 3 or 4 voxels was also helpful in

stabilizing the RNMSE at 144 hours.

Similar trends in the RNMSE were observed for the renal cortices as for the entire kidneys:

optimal RNMSE was achieved for a large iteration number for early initial time points and a

moderate iteration number and moderate smoothing for the last time point. Notice that

filtering also helped stabilize the RNMSE at later time points.

Table 2 summarizes the results and shows the optimal parameters for each organ at each

time point. Figure 7 shows the CDVHs for the phantom and the OS-EM reconstructed

images obtained with the optimal reconstruction and filtering parameters from one sample

noise realization. In figure 7, the horizontal axis gives the dose value and the vertical axis is

the fraction of the liver or kidney volume that had a dose value larger than or equal to the

corresponding dose value on the horizontal axis.

3.3 The bias and variance of the histogram estimates

Using the histograms from the 50 noise realizations we computed the MSE, the bias and the

variance for the histogram value estimate in each histogram bin. For most of the bins the

bias dominated the MSE. Examples of this are shown in figures 8 and 9, respectively, for the

liver and kidneys for one set of reconstruction parameters. This indicates that there was little

variation in the histograms for optimal parameters across different noise realizations. This

suggests that the optimal parameters for one noise realization were optimal or near-optimal

for other noise realizations.

The peaks in figures 8 and 9 correspond to the regions where the bias, i.e., the difference

between the estimated and phantom CDRVHs, is large. The valleys correspond to regions

where the estimated and phantom CDRVH curves cross. In these valleys, the bias in the

estimate passes through zero and the MSE is simply equal to the variance, which is small

compared to the bias in the peak regions.

4. Discussion

DVHs are useful for planning treatment and computing the TCP and NTCP. Dose

distribution estimates are based on activity distribution estimates obtained from emission

computed tomography (ECT) imaging, which are degraded by noise and limited spatial

resolution. These image degrading factors result in errors in the histograms generated from

the reconstructed images. The results of this paper show that these degradations can be

reduced by selecting the optimal number of iterations and post-reconstruction filtering.

However, from figure 7, we observe that there were visible residual degradations of the
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estimated CDVHs compared to the histograms from the phantom, even with the optimal

parameters.

In order to investigate the importance of noise and limited spatial resolution on the CDVH

errors we performed an additional simulation study. The Monte Carlo simulated projection

data without added Poisson noise were reconstructed using OS-EM and histograms were

generated using the same procedure described previously. Figure 10 shows the CDRVH for

the liver at 1 hour obtained from the phantom and the unfiltered OS-EM reconstructed

images at 10 and 100 iterations with and without Poisson noise. Note that noise was a major

degrading factor and it produced distortions at both the upper and lower ends of histograms

compared to the noise-free case. The CDRVH distortions at 100 iterations were substantially

larger than those observed with 10 iterations due to the amplification of noise that occurs for

large numbers of iterations. On the other hand, distortions of histograms at both ends were

observed even for noise-free projection data. The distortions in the histograms for the noise-

free case shown in figure 10 resulted from ringing artifacts due to CDR compensation for

high dose rates and a combination of PVEs and ringing artifacts for low dose rates. Larger

distortions for the noise-free case were observed for higher iterations in the large dose rate

region (right end of the plot) because of the increased ringing artifacts, while fewer

distortions were observed in the lower dose rate region of the DVH because of the reduced

PVEs resulting from improved resolution recovery. The RMSE values for the histograms in

figure 10 are shown in Table 3. This indicates quantitatively the importance of both effects.

Figure 11 shows reconstructed images from low-noise data and noisy data after a large

number of iterations and no filtering and with the optimal reconstruction parameters. The

ringing is evident in the noise-free images. Using a large number of iterations produced

ringing (i.e., a hot rim) at the edges of the liver; using a small number of iterations or low-

pass filtering reduced the ringing. Notice that noise in the image reconstructed from noisy

data increased with iteration number. Using either a smaller number of iterations or a low-

pass filter also reduced noise. Finally, note that while the low-pass filter and lower iteration

number reduced noise and ringing effects, it resulted in greater blurring at the edge of the

liver and thus increased partial volume effects.

The results for the liver and kidneys show that reconstruction parameters such as iteration

number and post-reconstruction filter have a significant effect on the accuracy of estimates

of CDVHs. This is quite different compared to previous work on organ dosimetry where no

filtering and high iteration numbers were optimal for estimating organ activities (He et al.,

2005). The differences in optimal reconstruction parameters for organ dosimetry and CDVH

estimation result from differences in the nature of the dose calculations applied to the

images after reconstruction. For organ dosimetry only the total organ activity matters:

summing all the voxels in an organ averages out the noise and thus drastically reduces the

effects of noise and ringing. Partial volume effects thus have the biggest impact for organ

dosimetry, and using a large number of iterations can reduce these effects. Since summing

over the region already averages out the noise, adding a low-pass filter only increases the

partial volume effects. However, the CDVH depends on the value of each voxel, and thus

the noise and effect of ringing in each voxel. Since a large number of iterations increases
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these effects and low-pass filtering reduces them, optimizing the reconstruction for the DVH

requires a small number of iterations and some low-pass filtering.

Understanding the factors that degrade the CDVH and their relationship to the number of

iterations can aid in understanding the optimal parameters needed for the liver and kidneys

at different time points. For large organs such as the liver simulated in our study, noise and

ringing artifacts were the major factors degrading the histograms. Therefore, small iteration

numbers and modest post-reconstruction smoothing, which reduced both noise and ringing

artifacts, led to minimum RNMSE values. However, for small organs with detailed features,

such as the kidney and renal cortex, PVEs were the dominant factor degrading the

histograms. As observed in figure 5 for the kidneys at 1 hour, larger iteration numbers were

required in order to obtain the minimum RNMSE. These large iterations provided improved

resolution and reduced PVEs. For the last two time points for the kidneys, PVEs were still

important, but reduced counts in the data increased the importance of noise in degrading the

histograms. Thus, the optimal parameters were a compromise between improving resolution

and controlling noise. Therefore, for the last time point the optimal histograms were for a

smaller iteration number and more smoothing than required for the earlier time points.

Table 2 indicates that there are different optimal parameters for different time points. This

could be an issue in practice. However, we noticed that it was possible to choose one set of

reconstruction parameters for all the time points and achieve near-optimal results. As an

example, we computed the CDVHs for the liver and kidneys from images reconstructed

using a single set of near-optimal parameters for all the 5 time points, i.e., iteration 3 and

FWHM of 1.0 voxel for the liver and iteration 25 and FWHM of 1.0 voxel for the kidneys;

the corresponding RMSE results are shown in Table 4 in comparison to those obtained using

the optimal parameters for each time point. The difference in the RMSE for optimal and

near-optimal parameters was less than 0.4% for the liver and about 4% for the kidneys in

this example. This indicates that near-optimal histograms could be obtained with one single

set of parameters for all the time points. Note, however, that different parameters are

required for different organs in order to achieve optimal results. The choice of parameters

for an organ depends on the balance of noise, ringing, and resolution. Also note that in many

practical cases there will be a single dose-limiting organ and parameters for a single organ

could be used for the entire image.

5. Conclusion

Dose-volume histograms in 3D dosimetry computed from activity estimates obtained from

QSPECT images are corrupted by noise, PVEs and possibly ringing artifacts due to

collimator-detector response compensation. We systematically investigated the effects of

iteration number and post-reconstruction filter parameter on estimates of the CDRVHs and

CDVHs. The results indicated that careful attention to the number of iterations and post-

reconstruction filtering was important in order to obtain high quality CDRVHs and CDVHs.

The optimal parameters depended on the noise-level and object of interest. Large objects

with few features, such as the liver, had more accurate CDRVH and CDVH estimates and

required fewer iterations and more smoothing. Small objects with fine details, such as the

kidneys, required more iterations and less smoothing at early time points but more
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smoothing and fewer iterations at later time points when the total organ activity was lower.

Development of more advanced regularization techniques that provide noise control, PVE

compensation and control of the ringing resulting from CDR compensation are needed to

further increase the accuracy of activity distributions used as inputs to 3D dosimetry.
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Figure 1.
One coronal slice of the (a) phantom and (b) attenuation map, and (c) the noisy anterior

projection image.
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Figure 2.
One slice of the non-uniform kidney model.
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Figure 3.
The RNMSE of CDRVH for the liver at 1 hour as a function of iteration number for various

FWHMs (in units of voxels).
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Figure 4.
The RNMSE of the CDRVH for the liver at 1 hour as a function of update number for a

FWHM of 1.5 voxels and two different numbers of subsets.
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Figure 5.
The RNMSE of the CDRVH for kidneys at 1 hour as a function of iteration number for

various FWHMs. The FWHM values are given in units of the reconstructed voxel size.
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Figure 6.
The RNMSE of CDRVH for kidneys at 144 hours as a function of iteration number for

various FWHMs. The FWHM values are given in units of the reconstructed voxel size.
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Figure 7.
Comparison of CDVHs for the liver (upper panel) and kidneys (lower panel) from the

phantom and OS-EM reconstructed images with the optimal parameters.
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Figure 8.
The MSE, squared bias and variance of CDRVH estimates in each dose-rate bin for the liver

at 1 hour obtained from reconstructed images using iteration 3 and a FWHM of 1.5 voxels.
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Figure 9.
The MSE, squared bias and variance of CDRVH estimates in each dose-rate bin for kidneys

at 144 hours obtained from reconstructed images using iteration 18 and a FWHM of 3.5

voxels.
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Figure 10.
The CDRVH of liver at 1 hour from phantom and OS-EM reconstructed images with and

without noise.
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Figure 11.
Single coronal slices of the 3D images are shown for (a) the phantom, unfiltered SPECT

images reconstructed from (b) noise-free data and (c) noisy data at 100 iterations, and (d)

SPECT images reconstructed with the optimal reconstruction parameters (3 iterations,

FWHM 1.0 voxel) for the same noise realization.
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Table 2

The optimal parameters for each organ at 5 time points*

Liver Kidneys Renal cortices

1 Hour Iteration 3, FWHM 1.5 Iteration 35, no post-filter Iteration 53, no post-filter

5 Hours Iteration 3, FWHM 1.5 Iteration 34, no post-filter Iteration 50, no post-filter

24 Hours Iteration 3, FWHM 1.5 Iteration 26, no post-filter Iteration 36, no post-filter

72 Hours Iteration 2, FWHM 0.5 Iteration 22, FWHM 1.5 Iteration 24, FWHM 1.5

144 Hours Iteration 2 FWHM 1.0 Iteration 18, FWHM 3.5 Iteration 32, FWHM 5

*
FWHMs given in units of reconstructed voxel size
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Table 3

The RMSE of the histograms shown in figure 10.

10 iterations, w/o noise 100 iterations, w/o noise 10 iterations, w/noise 100 iterations, w/noise

RMSE 0.0762 0.0739 0.1008 0.1682
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Table 4

The RMSE with optimal and near-optimal parameters.

Liver Kidneys

RMSE w/optimal parameters 0.1094 0.0897

RMSE w/one set of near-optimal parameters 0.1098 (Iteration 3, FWHM 1.0 voxel) 0.0934 (Iteration 25, FWHM 1.0 voxel)
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