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Abstract

The swimming of Escherichia coli is powered by its multiple flagellar motors. Each motor spins

either clockwise (CW) or counterclockwise (CCW), under the control of an intracellular regulator,

CheY-P. There can be two mechanisms (extrinsic and intrinsic) to coordinate the switching of

bacterial motors. The extrinsic one arises from the fact that different motors in the same cell sense

a common input (CheY-P) which fluctuates near the motors' response threshold. An alternative,

intrinsic mechanism is direct motor-motor coupling which makes synchronized switching

energetically favorable. Here, we develop simple models for both mechanisms and uncover their

different hallmarks. A quantitative comparison to the recent experiments suggest that the direct

coupling mechanism may be accountable for the observed sharp correlation between motors in a

single E. coli. Possible origins of this coupling (e.g., hydrodynamic interaction) are discussed.

A central question in systems biology is to understand how molecular-level stimuli are

converted into cellular behavioral responses. The signaling pathway and motor machinery in

bacterial chemotaxis has been a prototypical system for us to gain insights into this question

[1–14]. The chemotactic behavior of Escherichia coli follows a run-and-tumble pattern

coordinated by multiple flagellar motors. Each motor spins either counterclockwise (CCW)

or clockwise (CW), depending on the level of an intracellular response regulator, CheY-P, a

phosphorylated form of CheY. Encountering attractant, the bacterial chemoreceptor complex

rapidly pushes down the level of CheY-P, facilitating the CCW rotation of motors and the

formation of a flagellar bundle that promotes the run movements. CW rotation of one or

more motors disrupts the flagellar bundle and increases the frequency of tumble that

reorients the cell. Slow adaptation of the system, achieved by a methylation and

demethylation cycle, restores the chemoreceptor activity to a pre-stimulus level. As a result,

the concentration of CheY-P fluctuates slowly with a characteristic time τx ~10–30s as

determined by the slow time-scale of methylation kinetics [4, 11, 12]. Since motors in a

single E. coli cell sense the same CheY-P signal (Fig. 1), a natural speculation arises: do

different motors coordinate their switchings?

Biologists have probed this question decades ago and documented little evidence of

correlation between rotatory motors in elongated mutant cells [15, 16]. Recent high-

resolution measurements in wild-type (regular sized) cells [17], however, report a sharp

correlation in motor switching, with a maximum correlation of ρmax ~ 0.5 and a half-width

of Δt1/2 ~ 0.5s. The half-width Δt1/2 is defined as the full duration of time lag at half

maximum (i.e., ρmax/2). How can such motor coordination be achieved? A plausible

qualitative explanation [17] is that different motors, which are ultrasensitive to CheY-P
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levels [3], experience the same CheY-P fluctuations (Fig. 1). Here, we perform a detailed

quantitative analysis of this novel phenomenon, using both theoretical and computational

techniques. Our results demonstrate that the extrinsic CheY-P noise cannot account for the

observed statistical features. Instead, we propose an intrinsic coupling model which is able

to reproduce the sharp correlation profile. Our analysis suggests that there may be some

direct interaction to coordinate the switching of motors. Possible coupling mechanisms and

experimental proposals are suggested for future studies.

We first introduce and study a general model for the extrinsic mechanism of noise-induced

correlation. Two motors in a single cell are regulated by a common input signal (e.g., CheY-

P), denoted by X(t). The input is subject to the competitive effects of activation and

deactivation, which make it fluctuate around an equilibrium level. Following [11], we

describe the dynamics of X(t) by a Langevin equation:

(1)

where τx sets the input relaxation time and c represents the average input concentration. The

stochastic term η(X, t) has zero mean 〈η(X, t)〉 = 0. To prevent X(t) from being negative, a

multiplicative noise is used with the delta-correlation in time [18]: 〈η(X, t)η(X′, t′)〉 =

σ2X(t)δ(t − t′). In steady state, X(t) follows a Gamma distribution with the variance

. Thus, the relative noise level is , which is tunable by

changing σ. In alignment with experimental data [3–6], the switching rates of each motor are

taken to be  for CCW-to-CW transitions and

 for CW-to-CCW transitions, where B(X(t)) is the probability of

CW rotations (namely, the CW bias) depending on the current input level X(t) and where τy

is the characteristic time of motor switching. According to the recent data for E. coli [3], the

CW bias can be described by a Hill function: , with a response

threshold Kd ≈ 3.1μM and a Hill coefficient h ≈ 10.3. Also, measurements indicate that τy

≈ 0.26s for E. coli [3–6].

Given the above specification, we can generate binary time traces of the two motors, Y1(t)

and Y2(t), driven by the same input process X(t). Let Y1,2(t) = 0 denote the CCW rotation and

Y1,2(t) = 1 the CW state. One can calculate their normalized cross-correlation [17]:

(2)

which peaks at zero time-lag (Δt = 0), as the two motors are assumed to observe the input

signal simultaneously. This assumption can be justified by the fast diffusion of CheY-P or

by applying to the case where the motors are equally close to the receptor source. Intuitively,

we expect that the maximum correlation, ρmax ≡ ρ(0), increases with the input noise level

ρx/c (Fig. 2A and Ref. [9]) and the motor's sensitivity h (data not shown). From Fig. 2A, the

peak correlation becomes greater than 0.5 when τx > 1s and σx/c > 30%. The population-

Hu and Tu Page 2

Phys Rev Lett. Author manuscript; available in PMC 2014 September 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



averaged estimate of CheY-P fluctuations is, however, less than 10% [7, 12], though one

may argue that signaling noise in individual cells might be higher.

The major contradiction with experiments for this noise-induced mechanism is the mismatch

of time scales, as illustrated in Fig. 2B. Irrespective of the noise level σx/c or the motor's

sensitivity h, we find that Δt1/2 scales almost uniquely with the input characteristic time τx.

This is because both motors are affected by the same CheY-P noise which has a much

longer time scale [11]. We plot in Fig. 2C the phase space of ρmax and Δt1/2 by exhaustively

searching the parameter space (h, σx/c, and τx) for this noise-driven model. The experimental

observation (ρmax ~ 0.5 and Δt1/2 ~ 0.5s) is clearly out of the model's achievable region

(shaded area in Fig. 2C, with the “envelope” corresponding to the extreme scenario: h = 100

and σx/c = 50%). As shown in Fig. 2D, the simulated ρ(Δt) cannot account for the

experimental observation. Different forms of the noise term in Eq. (1) as well as different

dependence of k± on X have been used in the model, all unable to explain the observed sharp

correlation profile [19].

This puzzle inspires us to consider other mechanisms. We propose a testable hypothesis that

the motors in question are directly coupled. Similar to the interaction in the Ising model [10,

14, 20], this intrinsic coupling makes the motors prefer being in the same state (which has a

lower free energy). The idea is implemented by assuming the following instantaneous

switching rates (Fig. 3A):

(3)

(4)

where  is the CW bias of an individual motor (if without any

coupling) and J ≥ 0 is the coupling strength in units of kBT. Generally, the joint process Y(t)

= {Y1(t), Y2(t)} is non-Markovian due to the input stochasticity [18, 21]. However, if we

mute the noise by setting X(t) = c, then Y(t) becomes a four-state Markov process which is

analytically tractable. In this case, the effective CW bias of each motor is given by

(5)

where we find the apparent Hill coefficient for each motor is heff ≡ 2h0/(1 + e−J). Therefore,

one can choose h0(J) = heff (1 + e−J)/2 such that the apparent CW bias is almost identical for

any given value of J (Fig. 3B). Since Beff = 〈Y1,2(t)〉 and 〈Y1(t)Y2(t)〉 are both tractable, the

maximum correlation, by Eq. (2), is found to be

(6)

This satisfies ρmax(c, J) ≤ ρmax(Kd, J) = tanh(J/2). We can get ρmax > 0.5 for moderate

values of J (Fig. 3C).
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Now we examine the relevant time scales of motors under this constant input model. Using

detailed balance, one can define the effective switching rates in equilibrium:

(7)

(8)

where , , and Pij denotes the equilibrium probability to

find Y1 = i and Y2 = j. Since P01 = P10 by symmetry, calculating either of them will give us

the analytical expressions of  and . The inverses of these rates then tell us the average

CCW and CW durations, which are found to be

(9)

(10)

For c = Kd, we have Tccw = Tcw = τy(1 + e−J). With the effective switching rates, we can also

calculate the autocorrelation time, , of the output traces Y1,2(t) which

exhibit an exponential autocorrelation function. Again, at c = Kd, this is simply

, which decreases from τy to τy/2 as J increases from 0 to ∞. Note that

the half-width Δt1/2 and the average (CW or CCW) durations are of the same order of

magnitude (Fig. 3D). In other words, we have Δt1/2 ~ τy, consistent with the insight that the

cross-correlation function will converge to the autocorrelation function when ρmax → 1.

Clearly, the relation of Δt1/2 ~ τy < 1s under the intrinsic coupling mechanism (Fig. 3D) is

distinct from that of Δt1/2 ~ τx > 1s under the extrinsic mechanism. So the intrinsic scheme

seems to provide a plausible solution to the time-scale puzzle.

Though the constant input model is analytically convenient, we still need to investigate how

the extrinsic noise and the intrinsic coupling intertwine together to affect the output

statistics. This task relies on extensive Monte Carlo simulations for a mixture of the extrinsic

and intrinsic mechanisms. To compare with the data, we choose parameter values that are

experimentally relevant to E. coli: τx = 10s, c = 2.5νM, Kd = 3.1μM, σx/c ≤ 20%, and τy =

0.26s. The apparent Hill coefficient is also constrained by experiments [3], heff ≃ 10.3. This

can be achieved by setting h0 = heff (1 + e−J)/2 for any given value of J. For c = 2.5μM and

heff ≃ 10.3, the apparent CW bias in our model is 10–20%, consistent with the wild-type

measurements [17]. Thus, J is the only free parameter remained in this setup.
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We plot ρmax and Δt1/2 versus J in Fig. 4A and 4B, respectively, which indicate that the

intrinsic mechanism plays a dominant role when J > 1. A moderate coupling strength (J ~

1.5) is sufficient to produce both ρmax ~ 0.5 and Δt1/2 ~ 0.5s, even in the presence of a weak

noise σx/c < 10%. Indeed, the simulation result for J = 1.5 and σx/c = 5% provides a cross-

correlation profile that closely resembles the experimental observation. Again, a comparison

of ρ(Δt) at different noise levels (Fig. 4C) confirms that the intrinsic coupling makes the

major contribution to the sharp correlation, while the extrinsic CheY-P variation adds only a

small amount at large time scale. The high correlation is also evident when comparing the

simulated motor traces (Fig. 4D).

All the results we presented imply that the temporal changes of CheY-P are not sufficient to

explain the sharpness of correlation between motors in a single E. coli. There may be some

other physical or biochemical process responsible for this observation. In [17], the authors

have investigated the motor correlation in cells expressing a constitutively active CheY

mutant, caCheY, which mimics the regulatory function (controlling CW rotations) of CheY-

P. No significant correlation was detected in this mutant, suggesting that the motor

coordination may require native CheY-P. However, the CW biases of motors in the same

mutant cell are quite different as shown in the data [17]. This difference seems

counterintuitive and may explain the disappearance of motor correlation [22]. The authors

also made correlation analysis in cheZ (the gene encoding CheZ) deletion mutants where

they found no coordinated switching either. Since CheZ is the phosphatase for CheY-P,

removal of CheZ leads to saturating levels of CheY-P and hence very high CW bias. This

could also suppress the motor correlation.

A time delay δt(< 0.2s) in the peak correlation was also reported in [17] and δt seems to

increase with the distance between motors. It was argued that δt value may reflect the time

required for CheY-P molecules to diffuse from the chemoreceptor patch to each motor.

However, this explanation of finite δt depends on a wave-like propagation of CheY-P

fluctuation in the cytosol and the source of CheY-P at only one pole of the cell; both of these

assumptions may be questionable. In our model, we also observed a time delay in the peak

correlation when the extrinsic effect of CheY-P noise dominates (small J and large σx/c) and

when one motor senses the same but time-delayed input. However, we found no significant

time shift in the peak when the intrinsic coupling effect dominates. This is due to the

symmetric coupling between the two motors used in our current model. Breaking this

symmetry in the model, e.g., by setting  with J1 ≠ J2, can

lead to an appreciable δt (depending on the degree of the asymmetry), even without a delay

in CheY-P signal. This asymmetry in coupling may be caused by the internal asymmetry

between the CW and CCW states [23] and by the external physical differences (different

loads and different positions of the motors relative to the cell poles and the tethering

substrate). The origin and the consequences of this asymmetry need to be fully explored in

future studies.

What may cause the motor-motor coupling? Recent experiments show that bacterial motors

respond not only to chemical cues (CheY-P) but also to mechanical signals (varying motor

loads) [24, 25]. We speculate that a possible mechanism for the intrinsic coupling may be
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the hydrodynamic interaction between the rotating beads attached to the motors.

Hydrodynamic synchronization has been experimentally reported in various physical and

biological systems (e.g., the synchronous beating of eukaryotic cilia and flagella) [26].

Recent theoretical studies also shed light on hydrodynamic coupling in life at low Reynolds

number [27–29]. Given the close distance between the motors in [17], we estimate that the

effective load of one motor may change by ~ 30% when the other motor reverses its

rotational direction [29, 30]. This (transient) change is not negligible and may cause a

transient increase in the switching rates [13, 25]. According to the measurements in [25], we

estimate that a 30% load change could contribute ~ 1kBT to the average amount of work

performed by the stator on the rotor to promote switching [31]. This value is encouraging for

the intrinsic mechanism, though a detailed model is needed to establish the connection.

Hydrodynamic coupling is highly sensitive to the distance (l) between motors, since it

decays as 1/l3 [29, 30]. Indeed, correlation was not detected between those motors separated

by distances beyond 2.2μm in an elongated filamentous cell [17].

For the hypothesis of hydrodynamic coupling, we propose the following experimental test:

repeat the experiment in [17] for a few minutes and then increase the viscosity of the

medium (e.g., by adding Ficoll [25]) and continue the same measurement for another few

minutes. If hydrodynamic coupling plays a role, we expect an even shaper correlation profile

in the more viscous medium.
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FIG. 1.
Two flagellar motors are regulated by a common CheY-P signal in an E. coli. Their output

time traces, Y1(t) and Y2(t), are found to be highly correlated [17].
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FIG. 2.
(color online). Simulation results for the extrinsic mechanism at c = Kd: (A) ρmax versus τx

at different noise levels. The Hill coefficient, h, equals 10.3 for blue symbols and 100 for red

symbols. (B) Δt1/2 versus τx for different noise levels. The symbols correspond to those in

(A) based on the same simulations. (C) ρtmax and Δt1/2 derived from (A) and (B). The green

spot represents the experimental observation which is out of the achievable region (shaded

area) of the noise-induced model. (D) ρ(Δt) for the two representative points (I and II) in

(C); each is obtained from 20-min simulated traces. The solid line denotes the correlation

curve obtained from the 1-min experimental traces [17]; for better comparison, it is shifted

to give a 0s-peak in correlation.
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FIG. 3.
(color online). Simulation results for the intrinsic mechanism under a constant input X(t) = c:

(A) Illustration of the intrinsic coupling model. (B) Beff versus c by Eq. (5) for J = 0, 1, 2

and h0(J) = heff (1 + e−J)/2. The red line is the Hill function with heff = 10.3, while the blue

line is the Hill function with a coefficient h0(J = 2). (C) ρmax versus J. Symbols are

simulation results, compared to the theory (blue lines) by Eq. (6). (D) Δt1/2, Tcw, and Tccw

versus J.
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FIG. 4.
(color online). Simulation results for the mixed mechanism at c = 2.5μM: (A) ρmax versus J

for different noise levels. (B) Δt1/2 versus J. (C) ρ(Δt) for different noise levels with J = 1.5;

each dashed line is obtained from 10-min simulated traces. The black solid line denotes the

experimental correlation curve obtained from the 1-min traces in Ref. [17]. (D) Simulated

time traces of the two motors.
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