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The dynamics of SEIR epidemic model with saturated incidence rate and saturated treatment function are explored in this paper.
Thebasic reproduction number that determines disease extinction and disease survival is given.The existing threshold conditions of
all kinds of the equilibrium points are obtained. Sufficient conditions are established for the existence of backward bifurcation.The
local asymptotical stability of equilibrium is verified by analyzing the eigenvalues and using the Routh-Hurwitz criterion. We also
discuss the global asymptotical stability of the endemic equilibrium by autonomous convergence theorem.The study indicates that
we should improve the efficiency and enlarge the capacity of the treatment to control the spread of disease. Numerical simulations
are presented to support and complement the theoretical findings.

1. Introduction

In recent years, various epidemicmodels have been proposed
and explored to prevent and control the spread of the
infectious diseases, such as measles, tuberculosis, and flu (see
e.g., [1, 2]). In many epidemic models, bilinear incidence
rate 𝛽𝑆𝐼 is frequently used [1, 3]. Esteva and Matias [4]
introduced the saturated incidence rate 𝛽𝑆𝐼/(1 + 𝛼𝐼), which
tends to a saturation level when 𝐼 gets large, 𝛽𝐼measures the
infection force when the disease is entering a fully susceptible
population, and 1/(1+𝛼𝐼)measures the inhibition effect from
the behavioral change of susceptible individuals when their
number increases or from the crowding effect of the infective
individuals. This incidence rate is more reasonable than the
bilinear incidence rate because it includes the behavioral
change and crowding effect of the infective individuals and
prevents the unboundedness of the contact rate by choosing
suitable parameters. It was used in many epidemic models
afterwards (see, e.g., [4, 5]).

It is well known that treatment is an important and
effective method to prevent and control the spread of var-
ious infectious diseases. In classical epidemic models, the
treatment rate of the infection is assumed to be proportional

to the number of the infective individuals, but in general,
the recovery rate depends on the medical resources, such as
drugs, vaccines, hospital beds, isolation places, and efficiency
of the treatment. Noting that every community or country
has limited capacity for the treatment of a disease, therefore,
it is very important to adopt a suitable treatment function.
Wang and Ruan [6] introduced a constant treatment in an
SIR model as follows:

ℎ (𝐼) = {
𝑟, 𝐼 > 0

0, 𝐼 = 0,
(1)

which simulated a limited capacity for treatment. Further,
Wang [7] considered the following piecewise linear treatment
function:

ℎ (𝐼) = {
𝑟𝐼, 0 ≤ 𝐼 ≤ 𝐼

0

𝑟𝐼
0
, 𝐼 > 𝐼

0
,

(2)

where 𝐼
0
is the infective level at which the health care system

reaches capacity; that is, treatment increases linearly with 𝐼
before the capacity is reached and then takes its maximum
value 𝑟𝐼

0
. This seems more reasonable than the usual linear
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function. In [8], J. C. Eckalbar andW. L. Eckalbar constructed
an SIR model with a quadratic treatment function as follows:

𝑇 (𝐼) = max {𝑟𝐼 − 𝑔𝐼2, 0} , 𝑟, 𝑔 > 0. (3)

Besides this, we know that the efficiency of treatment will
be seriously affected if the infective individuals are delayed
for treatment. In [9], Zhang and Liu used a continuous and
differentiable saturated treatment function ℎ(𝐼) = 𝑟𝐼/(1+𝑘𝐼),
where 𝑟 > 0, 𝑘 ≥ 0, 𝑟 stands for the cure rate, and the
parameter 𝑘measures the extent of the infected being delayed
for treatment. It can be seen that the treatment function ℎ(𝐼)
approaches 𝑟𝐼 when 𝐼 is small; however, ℎ(𝐼) approaches 𝑟/𝑘
when 𝐼 is large. It is more realistic and has the convenience of
being continuous and differential than the previous ones.

Although the dynamics of SIR or SIS epidemic models
with the saturated incidence rate have been frequently used in
many literatures [9–12], there are not many researches about
the saturated treatment function even in the SEIR epidemic
models.

Motivated by these points, to better understand their
effects on the spreading of infectious diseases, in this paper,
we will discuss the SEIR model with the saturated incidence
rate and the saturated treatment function. We suppose that,
in incubation period, the hosts who have been infected by
viruses do not have the ability to infect other hosts and
the recovered individuals and vaccinated-treated individuals
have gained permanent immunity and can no longer be
infected.

The paper is organized as follows. In Section 2, we explore
the existence of disease-free equilibrium point, endemic
equilibrium point, and the existence of backward bifurcation
and investigate the effect of the limited medical resources
and their supply efficiency. In Section 3, we analyze the
local asymptotic stability of the disease-free equilibrium
and the endemic equilibrium. In Section 4, we analyze the
global asymptotic stability of the disease-free and endemic
equilibria. In Section 5, the paper ends with some numerical
simulations to support and complement the theoretical find-
ings.

2. The Model and the Existence of Equilibria
and Bifurcation Analysis

In [12], a simple example is the classical SIR epidemic model
with limited medical resources which carefully investigated
the dynamics of the following SIR model:

𝑆 (𝑡) = Λ −
𝛽𝑆𝐼

1 + 𝑘𝐼
− 𝑑𝑆,

𝐼 (𝑡) =
𝛽𝑆𝐼

1 + 𝑘𝐼
− (𝑑 + 𝛾 + 𝜀) 𝐼 −

𝛼𝐼

𝜔 + 𝐼
,

𝑅 (𝑡) = 𝛾𝐼 − 𝑑𝑅 +
𝛼𝐼

𝜔 + 𝐼
.

(4)

In [2], another simple example is the classical SEIR
epidemic model with bilinear incidence rate which was
studied as follows:

𝑆 (𝑡) = 𝐴 − 𝛽𝑆𝐼 − 𝜇𝑆,

𝐸 (𝑡) = 𝛽𝑆𝐼 − (𝜇 + 𝜀) 𝐸,

𝐼 (𝑡) = 𝜀𝐸 − (𝜇 + 𝑟 + 𝑑) 𝐼 −
𝑐𝐼

𝑏 + 𝐼
,

𝑅 (𝑡) = 𝑟𝐼 − 𝜇𝑅 +
𝑐𝐼

𝑏 + 𝐼
.

(5)

Based on the above motivations, in this paper, we further
explore the SEIR epidemic model with saturated incidence
rate 𝛽𝑆𝐼/(1 + 𝛼𝐼) and a continually differentiable treatment
function ℎ(𝐼) = 𝑟𝐼/(1 + 𝑘𝐼) (see, e.g., [9]) to characterize the
saturation phenomenon of the limitedmedical resources.The
model can be described by the following system of equations:

𝑆 (𝑡) = 𝐴 −
𝛽𝑆𝐼

1 + 𝛼𝐼
− 𝑑𝑆,

𝐸 (𝑡) =
𝛽𝑆𝐼

1 + 𝛼𝐼
− (𝑑 + 𝜀) 𝐸,

𝐼 (𝑡) = 𝜀𝐸 − (𝑑 + 𝜇 + 𝜐) 𝐼 −
𝑟𝐼

1 + 𝑘𝐼
,

𝑅 (𝑡) = 𝜐𝐼 − 𝑑𝑅 +
𝑟𝐼

1 + 𝑘𝐼
,

(6)

where 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), and 𝑅(𝑡) ≥ 0 and 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡),
and 𝑅(𝑡) denote the numbers of susceptible, exposed but not
yet infectious, infective, and recovered individuals at time 𝑡,
respectively. 𝐴 is the recruitment rate of the population, 𝛼
is the saturation factor that measures the inhibitory effect,
𝛽 is the transmission or contact rate, 𝑑 is the natural death
rate of the population, 𝜀 is the rate of transformation from
incubation period individuals to infective individuals, 𝜇
is the disease-related mortality, 𝜐 is the natural recovery
rate of the infective individuals, 𝑟 is the maximal medical
resources supplied per unit time, and 𝑘 is the saturation factor
that measures the effect of the infected being delayed for
treatment. 𝛽, 𝑑, 𝜀, 𝜇, 𝜐, and 𝑟 are all positive and 𝛼 and 𝑘 are
nonnegative.

Since the first three equations in (6) are independent of
the variable 𝑅, it suffices to consider the following reduced
model:

𝑆 (𝑡) = 𝐴 −
𝛽𝑆𝐼

1 + 𝛼𝐼
− 𝑑𝑆,

𝐸 (𝑡) =
𝛽𝑆𝐼

1 + 𝛼𝐼
− (𝑑 + 𝜀) 𝐸,

𝐼 (𝑡) = 𝜀𝐸 − (𝑑 + 𝜇 + 𝜐) 𝐼 −
𝑟𝐼

1 + 𝑘𝐼
.

(7)

It follows from system (7) that

(𝑆 + 𝐸 + 𝐼)
 = 𝐴 − 𝑑 (𝑆 + 𝐸 + 𝐼) − (𝜇 + 𝜐) 𝐼 −

𝑟𝐼

1 + 𝑘𝐼

≤ 𝐴 − 𝑑 (𝑆 + 𝐸 + 𝐼) .

(8)
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Then lim sup
𝑡→∞

(𝑆 + 𝐸 + 𝐼) ≤ 𝐴/𝑑. Thus the feasible region
for system (7) is

Ω = {(𝑆, 𝐸, 𝐼) | 𝑆 + 𝐸 + 𝐼 ≤
𝐴

𝑑
, 𝑆 > 0, 𝐸 ≥ 0, 𝐼 ≥ 0} . (9)

It is easy to verify that the regionΩ is positively invariant with
respect to system (7).

Denote

𝑅
0
=

𝛽𝐴𝜀

𝑑 (𝑑 + 𝜀) (𝑑 + 𝜇 + 𝜐 + 𝑟)
. (10)

The system (7) always has a disease-free equilibrium 𝐸
0
=

(𝐴/𝑑, 0, 0). Next, we will find the conditions of the existence
of endemic equilibrium.

An endemic equilibrium always satisfies

𝐴 −
𝛽𝑆𝐼

1 + 𝛼𝐼
− 𝑑𝑆 = 0,

𝛽𝑆𝐼

1 + 𝛼𝐼
− (𝑑 + 𝜀) 𝐸 = 0,

𝜀𝐸 − (𝑑 + 𝜇 + 𝜐) 𝐼 −
𝑟𝐼

1 + 𝑘𝐼
= 0.

(11)

By some simple calculation, we have 𝑆∗ = 𝐴(1 +
𝛼𝐼∗)/(𝛽𝐼∗+𝑑(1+𝛼𝐼∗)),𝐸∗ = 𝐴𝛽𝐼∗/((𝑑+𝜀)(𝛽+𝛼𝑑)𝐼∗+𝑑(𝑑+
𝜀)), and 𝐼∗ is the positive solution of the following equation:

𝑎𝐼∗2 + 𝑏𝐼∗ + 𝑐 = 0, (12)

with

𝑎 = 𝑘 (𝑑 + 𝜀) (𝑑 + 𝜇 + 𝜐) (𝛽 + 𝛼𝑑) ,

𝑏 = (𝑑 + 𝜀) [(𝑑 + 𝜇 + 𝜐) (𝛽 + 𝛼𝑑 + 𝑘𝑑) + 𝑟 (𝛽 + 𝛼𝑑)] − 𝛽𝐴𝜀𝑘,

𝑐 = 𝑑 (𝑑 + 𝜀) (𝑑 + 𝜇 + 𝜐 + 𝑟) (1 − 𝑅0) .

(13)

For the endemic equilibrium to exist, the solutions of (12)
must be real and positive.

We note

𝑎 ≥ 0; 𝑐 < 0 ⇐⇒ 𝑅
0
> 1; 𝑐 ≥ 0 ⇐⇒ 𝑅

0
≤ 1. (14)

Equation (12) is a quadratic equation with respect to 𝐼∗ since
𝑎 > 0. Let the discriminant of (12) be Δ, so that Δ = 𝑏2 − 4𝑎𝑐.
Solving for Δ = 0 in terms of 𝑅

0
, we get 𝑅

0
= 𝑅𝑐
0
, where

𝑅𝑐
0
= 1 −

𝑏2

4𝑎𝑑 (𝑑 + 𝜀) (𝑑 + 𝜇 + 𝜐 + 𝑟)
. (15)

We can clearly note the following equivalent relations:

Δ < 0 ⇐⇒ 𝑅
0
< 𝑅𝑐
0
, Δ = 0 ⇐⇒ 𝑅

0
= 𝑅𝑐
0
,

Δ > 0 ⇐⇒ 𝑅
0
> 𝑅𝑐
0
.

(16)

We thus have the following results on existence of the
endemic equilibrium.

Theorem 1. The following results hold.

(𝐻1) Let 𝑘 = 0. Equation (12) is a linear equation with a
unique solution 𝐼 = −𝑐/𝑏. Then the system (7) has a
unique endemic equilibrium when 𝑅

0
> 1 and has no

endemic equilibrium when 𝑅
0
≤ 1.

(𝐻2) Let 𝑘 > 0;

(1) system (7) has a unique endemic equilibrium
whenever 𝑅

0
> 1;

(2) system (7) has a unique endemic equilibrium
whenever 𝑅

0
= 1 and 𝑏 < 0;

(3) system (7) has a unique endemic equilibrium of
multiplicity 2 when 𝑅

0
= 𝑅𝑐
0
and 𝑏 < 0;

(4) system (7) has two endemic equilibria
𝐸
1
(𝑆
1
, 𝐸
1
, 𝐼
1
) and 𝐸

2
(𝑆
2
, 𝐸
2
, 𝐼
2
), when 𝑅𝑐

0
< 𝑅
0
<

1 and 𝑏 < 0, where 𝐼
1
= (−𝑏 + √𝑏2 − 4𝑎𝑐)/2𝑎

and 𝐼
2
= (−𝑏 − √𝑏2 − 4𝑎𝑐)/2𝑎;

(5) system (7) has no endemic equilibria whenever
𝑅
0
< 𝑅𝑐
0
and 𝑏 < 0 or whenever 𝑅

0
≤ 1 and

𝑏 > 0.

FromTheorem 1, we know that if 𝑘 = 0, there is a unique
endemic equilibrium when 𝑅

0
> 1 which approaches zero

as 𝑅
0
→ 1
+
and there cannot be an endemic equilibrium

if 𝑅
0
< 1. In this case it is impossible to have a backward

bifurcation at 𝑅
0
= 1. However, if 𝑘 > 0, 𝑏 < 0, system

(7) has a unique endemic equilibrium when 𝑅
0
> 1 and has

two different endemic equilibria when 𝑅𝑐
0
< 𝑅
0
< 1, and (7)

has no endemic equilibrium when 0 < 𝑅
0
< 𝑅𝑐
0
. Hence, (7)

has a backward bifurcation at 𝑅
0
= 1 from the disease-free

equilibrium to two endemic equilibria. To conclude, we have
the following theorem.

Theorem 2. System (7) has a backward bifurcation at 𝑅
0
= 1

if and only if 𝑘 > 0, 𝑏 < 0.

Proof. For sufficiency, let us consider the graph of 𝑦 = 𝑓(𝑥) =

𝑎𝑥2+𝑏𝑥+𝑐. It passes through the origan since 𝑐 = 0when𝑅
0
=

1. Further, if 𝑏 < 0, we have that 𝑓(𝑥) = 0 has a positive root.
Now we increase 𝑐 to 𝑐 > 0; the fact that 𝑓(𝑥) is a continuous
function of 𝑐 guarantees that there will be some open interval
of 𝑐, say (0, 𝜀), on which 𝑓(𝑥) = 0 has two positive real roots.
In other words, we have shown that it is possible that there
exist two endemic equilibria when 𝑅

0
< 1.

The necessary is obvious, since, if 𝑏 ≥ 0, (12) has no
positive real root when 𝑅

0
< 1, thereby completing the

proof.

Under the condition of Theorem 2, we give an explicit
criterion of 𝑘 in terms of the parameters 𝛽, 𝑎, 𝑑, 𝜇, 𝜐, 𝑟 for the
existence of a backward bifurcation at 𝑅

0
= 1.

Corollary 3. When 𝑘 > 𝑘
0
, then system (7) has a backward

bifurcation at 𝑅
0
= 1, where 𝑘

0
= (𝛽 + 𝑎𝑑)(𝑑 + 𝜇 + 𝜐 + 𝑟)/𝑑𝑟.

Proof. When 𝑅
0
= 1 ⇔ 𝑐 = 0,

𝛽𝐴𝜀 = 𝑑 (𝑑 + 𝜀) (𝑑 + 𝜇 + 𝜐 + 𝑟) . (17)



4 The Scientific World Journal

The condition 𝑏 < 0 is equivalent to

(𝑑 + 𝜀) [(𝑑 + 𝜇 + 𝜐) (𝛽 + 𝑎𝑑 + 𝑘𝑑) + 𝑟 (𝛽 + 𝑎𝑑)] < 𝛽𝐴𝜀𝑘.
(18)

From (17) and (18), we get

(𝑑 + 𝜀) [(𝑑 + 𝜇 + 𝜐) (𝛽 + 𝑎𝑑 + 𝑘𝑑) + 𝑟 (𝛽 + 𝑎𝑑)]

< 𝑘𝑑 (𝑑 + 𝜀) (𝑑 + 𝜇 + 𝜐 + 𝑟) ,
(19)

which reduces to

𝑘 >
(𝛽 + 𝑎𝑑) (𝑑 + 𝜇 + 𝜐 + 𝑟)

𝑑𝑟
≜ 𝑘
0
. (20)

So a backward bifurcation occurs at 𝑅
0
= 1 if and only

if (20) is satisfied. Further, from this we can point out that
when the effect of the infected being delayed for treatment
becomes stronger than some level, the backward bifurcation
will take place. Thus the effect of the infected being delayed
for treatment, say 𝑘, is one of the factors which lead to the
backward bifurcation (see Figure 1).

In order to verify the bifurcation curve (the graph of 𝐼
as a function of 𝑅

0
) in Figure 1, we think of 𝑟 as a variable

with the other parameters as constant. Through implicit
differentiation of (12) with respect to 𝑟, we get

(2𝑎𝐼 + 𝑏)
d𝐼
d𝑟

= −𝑑 (𝑑 + 𝜀) − (𝑑 + 𝜀) (𝛽 + 𝑎𝑑) 𝐼 < 0. (21)

From (21) we know the sign of d𝐼/d𝑟 is opposite to that
of 2𝑎𝐼 + 𝑏. And from the definition of 𝑅

0
we know that

𝑅
0
decreases when 𝑟 increase. It implies that the bifurcation

curve has positive slope at equilibrium values with 2𝑎𝐼+𝑏 > 0
and negative slope at equilibrium values with 2𝑎𝐼 + 𝑏 < 0. If
there is no backward bifurcation at 𝑅

0
= 1, then the unique

endemic equilibrium for 𝑅
0
> 1 satisfies

2𝑎𝐼 + 𝑏 = √𝑏2 − 4𝑎𝑐 > 0, (22)

and the bifurcation curve has positive slope at all pointswhere
𝐼 > 0. If there is a backward bifurcation at𝑅

0
= 1, then there is

an interval (𝑅𝑐
0
, 1) on which there are two endemic equilibria

given by

2𝑎𝐼 + 𝑏 = ±√𝑏2 − 4𝑎𝑐. (23)

The bifurcation curve has negative slope at the smaller one
andpositive slope at the larger one.Thus the bifurcation curve
is shown in Figure 1. Under the conditions of Theorem 1, if a
backward bifurcation takes place, we can see from Figure 1
there is a critical value 𝑅𝑐

0
at the turning point. In this case,

the disease will not die out when𝑅
0
< 1. However, the disease

will die out when 𝑅
0
< 𝑅𝑐
0
.Therefore, the critical value𝑅𝑐

0
can

be taken as a new threshold for the control of the disease.

3. The Local Stability Analysis of Equilibria

In this section, we will examine the local stability of the equi-
libria by analyzing the eigenvalues of the Jacobianmatrices of
(7) at the equilibria and using Routh-Hurwitz criterion.

I

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

1

2

3

4

5

6

7

R
c
0

R0

Figure 1: The figure of infective sizes at equilibria versus 𝑅
0
when

𝛽 = 0.05, 𝜀 = 1.2, 𝑑 = 0.2, 𝜇 = 0.2, 𝜐 = 0.4, 𝑟 = 1.5, 𝛼 = 0.1, and
𝑘 = 2, where 𝑘 is big enough to lead a backward bifurcation with two
endemic equilibria when 𝑅𝑐

0
< 𝑅
0
< 1.

Theorem 4. The disease-free equilibrium 𝐸
0
is locally asymp-

totically stable when 𝑅
0
< 1 and is unstable when 𝑅

0
> 1.

Proof. The Jacobian matrix of (7) at 𝐸
0
is

𝐽 (𝐸
0
) = (

−𝑑 0 −
𝛽𝐴

𝑑

0 − (𝑑 + 𝜀)
𝛽𝐴

𝑑
0 𝜀 − (𝑑 + 𝜇 + 𝜐 + 𝑟)

) . (24)

The characteristic equation of system (7) at 𝐸
0
is of the

following form:

(𝜆 + 𝑑) (𝜆
2 + 𝑃𝜆 + 𝑄) = 0, (25)

where𝑃 = 2𝑑+𝜇+𝜐+𝑟+𝜀,𝑄 = (𝑑+𝜀)(𝑑+𝜇+𝜐+𝑟)−(𝛽𝐴𝜀/𝑑).
Clearly, 𝜆 = −𝑑 is always a root of (25). All other roots of

(25) are determined by the following equation:

𝜆2 + 𝑃𝜆 + 𝑄 = 0, (26)

which has negative roots, if and only if (𝑑 + 𝜀)(𝑑 + 𝜇 + 𝜐 +
𝑟) − (𝛽𝐴𝜀/𝑑) > 0. This condition is equivalent to 𝑅

0
. So

the disease-free equilibrium𝐸
0
is locally asymptotically stable

when 𝑅
0
< 1 and is unstable when 𝑅

0
> 1.

Theorem 5. When 𝑅
0
> 1 and 0 ≤ 𝑘 < 𝑘

1
, the unique

endemic equilibrium 𝐸
∗
(𝑆∗, 𝐸∗, 𝐼∗) is locally asymptotically

stable, where 𝑘
1
= 𝛼(𝑑 + 𝜇 + 𝜐 + 𝑟)/𝑟.

Proof. The Jacobian matrix of (7) at 𝐸
∗
is

𝐽 (𝐸
∗
)

= (

(

−𝑑 −
𝛽𝐼∗

1 + 𝛼𝐼∗
0 −

𝛽𝑆∗

(1 + 𝛼𝐼∗)2

𝛽𝐼∗

1 + 𝛼𝐼∗
− (𝑑 + 𝜀)

𝛽𝑆∗

(1 + 𝛼𝐼∗)2

0 𝜀 − (𝑑 + 𝜇 + 𝜐) −
𝑟

(1 + 𝑘𝐼∗)2

)

)

.

(27)
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The characteristic equation is



𝜆 + 𝑑 +
𝛽𝐼∗

1 + 𝛼𝐼∗
0

𝛽𝑆∗

(1 + 𝛼𝐼∗)2

−
𝛽𝐼∗

1 + 𝛼𝐼∗
𝜆 + (𝑑 + 𝜀) −

𝛽𝑆∗

(1 + 𝛼𝐼∗)2

0 −𝜀 𝜆 + (𝑑 + 𝜇 + 𝜐) +
𝑟

(1 + 𝑘𝐼∗)2



= 0,

(28)

that is,

𝜆3 + 𝑎
1
𝜆2 + 𝑎

2
𝜆 + 𝑎
3
= 0, (29)

where

𝑎
1
= 𝑑 +

𝛽𝐼∗

1 + 𝛼𝐼∗
+ 2𝑑 + 𝜀 + 𝜇 + 𝜐 +

𝑟

(1 + 𝑘𝐼∗)2
> 0,

𝑎
2
= (𝑑 +

𝛽𝐼∗

1 + 𝛼𝐼∗
)[2𝑑 + 𝜀 + 𝜇 + 𝜐 +

𝑟

(1 + 𝑘𝐼∗)2
]

+ (𝑑 + 𝜀) [𝑑 + 𝜇 + 𝜐 +
𝑟

(1 + 𝑘𝐼∗)2
] −

𝛽𝑆∗𝜀

(1 + 𝛼𝐼∗)2
,

𝑎
3
= (𝑑 +

𝛽𝐼∗

1 + 𝛼𝐼∗
)

× [(𝑑 + 𝜀) (𝑑 + 𝜇 + 𝜐 +
𝑟

(1 + 𝑘𝐼∗)2
) −

𝛽𝑆∗𝜀

(1 + 𝛼𝐼∗)2
]

+
𝛽𝐼∗

1 + 𝛼𝐼∗
𝛽𝑆∗𝜀

(1 + 𝛼𝐼∗)2
.

(30)

From the second and third equations of (11), we have

𝛽𝑆∗𝜀

1 + 𝛼𝐼∗
= (𝑑 + 𝜀) (𝑑 + 𝜇 + 𝜐 +

𝑟

1 + 𝑘𝐼∗
) . (31)

Let𝑀 = (𝑑+𝜀)(𝑑+𝜇+𝜐+(𝑟/(1+𝑘𝐼∗)2))−(𝛽𝑆∗𝜀/(1+𝛼𝐼∗)2).
From (31), we get

𝑀 =
𝐼∗ (𝑑 + 𝜀)

(1 + 𝛼𝐼∗) (1 + 𝑘𝐼∗)2

× [𝛼 (𝑑 + 𝜇 + 𝜐) (1 + 𝑘𝐼∗)
2
+ 𝑟 (𝛼 − 𝑘)] ,

(32)

which is positive if and only if 𝛼(𝑑+𝜇+𝜐)(1+𝑘𝐼∗)2+𝑟𝛼 > 𝑟𝑘.
In fact, we have

𝛼 (𝑑 + 𝜇 + 𝜐) (1 + 𝑘𝐼∗)
2
+ 𝑟𝛼 > 𝛼 (𝑑 + 𝜇 + 𝜐) + 𝑟𝛼

= 𝛼 (𝑑 + 𝜇 + 𝜐 + 𝑟) .
(33)

So𝑀 is positive if

𝛼 (𝑑 + 𝜇 + 𝜐 + 𝑟) > 𝑟𝑘, (34)

or

𝑘 <
𝛼 (𝑑 + 𝜇 + 𝜐 + 𝑟)

𝑟
≜ 𝑘
1
. (35)

It follows from 𝑘 < 𝑘
1
that 𝑎

3
> 0.

By a direct calculation, we have that 𝐻
1
= 𝑎
1
> 0, 𝐻

2
=

𝑎
1
𝑎
2
−𝑎
3
> 0, and𝐻

3
= 𝑎
3
(𝑎
1
𝑎
2
−𝑎
3
) > 0 under the condition

𝑘 < 𝑘
1
. Then by Routh-Hurwitz criterion, it follows that the

endemic equilibrium 𝐸
∗
is locally asymptotically stable. This

completes the proof.

4. The Global Stability Analysis of Equilibria

In this section, we analyze the global stability of the disease-
free and endemic steady states. Firstly, we consider the global
stability of the disease-free equilibrium.

Define

𝑅∗
0
=

𝜀𝛽𝐴

𝑑 (𝑑 + 𝜀) (𝑑 + 𝜇 + 𝜐 + (𝑟/ (1 + 𝛼 (𝐴/𝑑))))
. (36)

Theorem 6. If 𝑅∗
0
< 1, then the disease-free equilibrium 𝐸

0
is

globally asymptotically stable.

Proof. If 𝑅∗
0
< 1, then 𝑅

0
< 1. From the first equation of (6),

we have 𝑑𝑆/𝑑𝑡 ≤ 𝐴 − 𝑑𝑆. A solution of the equation 𝑑𝑦/𝑑𝑡 =
𝐴 − 𝑑𝑦 is a maximal solution of 𝑆(𝑡). Note that 𝑦 → 𝐴/𝑑 as
𝑡 → ∞. By the comparison theorem, we get 𝑆(𝑡) ≤ 𝐴/𝑑, and
from the setΩ = {(𝑆, 𝐸, 𝐼) | 𝑆 + 𝐸 + 𝐼 ≤ 𝐴/𝑑, 𝑆 > 0, 𝐸 ≥ 0, 𝐼 ≥

0} we have 𝐼(𝑡) ≤ 𝐴/𝑑.
Consider the following Lyapunov function:

𝐿 = 𝜀𝐸 + (𝑑 + 𝜀) 𝐼. (37)

From 𝑅∗
0
< 1, we have 𝜀𝛽(𝐴/𝑑) − (𝑑 + 𝜀)(𝑑 + 𝜇 + 𝜐 + (𝑟/(1 +

𝛼(𝐴/𝑑)))) < 0. Thus,

𝐿 = [
𝜀𝛽𝑆

1 + 𝛼𝐼
− (𝑑 + 𝜀) (𝑑 + 𝜇 + 𝜐 +

𝑟

1 + 𝛼𝐼
)] 𝐼

≤ [𝜀𝛽𝑆 − (𝑑 + 𝜀) (𝑑 + 𝜇 + 𝜐 +
𝑟

1 + 𝛼𝐼
)] 𝐼

≤ [𝜀𝛽
𝐴

𝑑
− (𝑑 + 𝜀) (𝑑 + 𝜇 + 𝜐 +

𝑟

1 + 𝛼 (𝐴/𝑑)
)] 𝐼 ≤ 0,

(38)

and 𝐿 = 0 if and only if 𝐼 = 0. The largest compact invariant
set in {(𝑆, 𝐸, 𝐼) ∈ Ω, 𝐿 = 0} is the singleton 𝐸

0
. Therefore,

by Lasalle-Lyapunov theorem, every solution that starts inΩ
approaches 𝐸

0
as 𝑡 → ∞. This completes the proof.
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In the following, we will discuss the global stability of the
endemic equilibrium when 𝑅

0
> 1, 𝑘 < 𝑘

1
using the second

additive compound matrix. Here we will shortly describe
the general method in which the global stability analysis
for the endemic equilibrium will be performed through
the approach due to Li and Muldowney [13]. Consider the
autonomous dynamical system

𝑥 = 𝑓 (𝑥) , (39)

where 𝑓 : 𝐷 → 𝑅𝑛, 𝐷 ⊂ 𝑅𝑛 is open set and is simply
connected, and 𝑥 ∈ 𝐷, 𝑥 → 𝑓(𝑥) ∈ 𝑅𝑛, 𝑓(𝑥) ∈ 𝐶1(𝐷).

Let 𝑥∗ be an equilibrium of (39). We recall that 𝑥∗ is
said to be globally stable in 𝐷 if it is locally stable and all
trajectories in 𝐷 converge to 𝑥∗. Assume that the following
hypotheses hold.

(𝐻1) There exists a compact absorbing set𝐾 ⊂ 𝐷.

(𝐻2) Equation (39) has a unique equilibrium 𝑥∗ in𝐷.

The basic idea of this method is that if the equilibrium
𝑥∗ is locally stable, then the stability is assured provided that
(𝐻1) and (𝐻2) hold and no nonconstant periodic solution
of (39) exists.Therefore, sufficient conditions on 𝑓 capable of
precluding the existence of such solutions have to be detected.

Li and Muldowney showed that if (𝐻1) and (𝐻2) hold
and (39) satisfies a Bendixson criterion that is robust under𝐶1
local 𝜖-perturbations of 𝑓 at all nonequilibrium nonwander-
ing points for (39), then 𝑥∗ is globally stable and robust under
𝐶1 local 𝜀-perturbation. Let 𝑃(𝑥) be a ( 𝑛2 ) × (

𝑛

2 ) matrix-
valued function, that is, 𝐶1, on𝐷 and consider

𝐵 = 𝑃
𝑓
𝑃−1 + 𝑃

𝜕𝑓[2]

𝜕𝑥
𝑃−1, (40)

where the matrix 𝑃
𝑓
is

𝜕𝑃∗
𝑖𝑗

𝜕𝑥
𝑓 =

d𝑃
𝑖𝑗

d𝑡

(39)
, (41)

and the matrix 𝐽[2] is the second additive compound matrix
of the Jacobian matrix 𝐽, that is, 𝐽(𝑥) = 𝐷𝑓(𝑥). Generally
speaking, for an 𝑛 × 𝑛 matrix 𝐽 = (𝐽

𝑖𝑗
), 𝐽[2] is a ( 𝑛2 ) × (

𝑛

2 )
matrix and in the special case 𝑛 = 3 one has

𝐽[2] = (
𝐽
11
+ 𝐽
22

𝐽
23

−𝐽
13

𝐽
32

𝐽
11
+ 𝐽
33

𝐽
12

−𝐽
31

𝐽
21

𝐽
22
+ 𝐽
33

) . (42)

Consider the Lozinski ̆l measure𝜇 of Bwith respect to a vector

norm | ⋅ | in 𝑅𝑁, 𝑁 = ( 𝑛2 ) (see [14]):

𝜇 (𝐵) = lim
ℎ→0

+

‖𝐼 + ℎ𝐵‖ − 1

ℎ
. (43)

It is proved in [13] that if (𝐻
1
) and (𝐻

2
) hold, condition

𝑞 = lim sup
𝑡→∞

sup
𝑥
0
∈𝐾

1

𝑡
∫
𝑡

0

𝜇 (𝐵 (𝑥 (𝑠, 𝑥
0
))) d𝑠 < 0 (44)

guarantees that there are no orbits giving rise to a simple
closed rectifiable curve in 𝐷 which is invariant for (39),
that is, periodic orbits, homoclinic orbits, and heteroclinic
cycles. In particular, condition (44) is proved to be a robust
Bendixson criterion for (39). Besides, it is remarked that,
under assumptions (H1) and (H2), condition (44) also
implies the local stability of 𝑥∗.

The analysis of the global stability of the endemic equilib-
rium may be usefully approached by means of the Poincare-
Bendixson trichotomy. If the endemic equilibrium is globally
asymptotically stable, then the disease will permanently be
present in the population in case of infinitesimal initial
prevalence. Here we will provide an analytical proof of global
stability of 𝐸

∗
by giving sufficient conditions. Global stability

analysis for the endemic equilibrium will be performed
through the approach due to Li andMuldowney.The instabil-
ity of 𝐸

0
implies the uniform persistence; that is, there exists

a constant 𝑎 > 0 such that any solution (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡)) with
(𝑆(0), 𝐸(0), 𝐼(0)) in the orbit of the system satisfies

min {lim inf
𝑡→∞

𝑆 (𝑡) , lim inf
𝑡→∞

𝐸 (𝑡) , lim inf
𝑡→∞

𝐼 (𝑡)} > 𝑎. (45)

Lemma 7 (see [13]). Assume that conditions (𝐻
1
) and (𝐻

2
)

hold; then 𝑥∗ is globally asymptotically stable in 𝐷 provided
that a function 𝑃(𝑥) and a Lozinski ̆l measure 𝜇 exist such that
condition (44) is satisfied.

Theorem 8. Under the condition 𝑅
0
> 1, 0 ≤ 𝑘 < 𝑘

1
,

𝑑 > 𝑟, the endemic equilibrium 𝐸
∗
of the system (7) is globally

asymptotically stable.

Proof. The Jacobian matrix of system (7) is

𝐽 = (

−𝑑 −
𝛽𝐼

1 + 𝛼𝐼
0 −

𝛽𝑆

(1 + 𝛼𝐼)2

𝛽𝐼

1 + 𝛼𝐼
− (𝑑 + 𝜀)

𝛽𝑆

(1 + 𝛼𝐼)2

0 𝜀 − (𝑑 + 𝜇 + 𝜐) −
𝑟

(1 + 𝑘𝐼)2

),

(46)

and its second additive compound matrix is
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𝐽[2] = (

(

−(2𝑑 + 𝜀) −
𝛽𝐼

1 + 𝛼𝐼

𝛽𝑆

(1 + 𝛼𝐼)2
𝛽𝑆

(1 + 𝛼𝐼)2

𝜀 −
𝛽𝐼

1 + 𝛼𝐼
− (2𝑑 + 𝜇 + 𝜐) −

𝑟

(1 + 𝑘𝐼)2
0

0
𝛽𝐼

1 + 𝛼𝐼
− (2𝑑 + 𝜀 + 𝜇 + 𝜐) −

𝑟

(1 + 𝑘𝐼)2

)

)

. (47)

Choose the function 𝑃 = 𝑃(𝑆, 𝐸, 𝐼) = diag(1, 𝐸/𝐼, 𝐸/𝐼); then

𝑃
𝑓
= diag(0, 𝐸

𝐼 − 𝐼𝐸

𝐼2
,
𝐸𝐼 − 𝐼𝐸

𝐼2
) . (48)

It follows that

𝑃
𝑓
𝑃−1 = diag(0, 𝐸



𝐸
−
𝐼

𝐼
,
𝐸

𝐸
−
𝐼

𝐼
) ,

𝑃𝐽[2]𝑃−1 = (

(

−(2𝑑 + 𝜀) −
𝛽𝐼

1 + 𝛼𝐼

𝛽𝑆𝐼

(1 + 𝛼𝐼)2𝐸

𝛽𝑆𝐼

(1 + 𝛼𝐼)2𝐸
𝜀𝐸

𝐼
−

𝛽𝐼

1 + 𝛼𝐼
− (2𝑑 + 𝜇 + 𝜐) −

𝑟

(1 + 𝑘𝐼)2
0

0
𝛽𝐼

1 + 𝛼𝐼
− (2𝑑 + 𝜀 + 𝜇 + 𝜐) −

𝑟

(1 + 𝑘𝐼)2

)

)

.

(49)

The matrix 𝐵 = 𝑃
𝑓
𝑃−1 + 𝑃𝐽[2]𝑃−1 can be written in matrix

form
𝐵 = (

𝐵
11

𝐵
12

𝐵
21

𝐵
22

) , (50)

where

𝐵
11
= − (2𝑑 + 𝜀) −

𝛽𝐼

1 + 𝛼𝐼
, 𝐵

12
= (

𝛽𝑆𝐼

(1 + 𝛼𝐼)2𝐸
,

𝛽𝑆𝐼

(1 + 𝛼𝐼)2𝐸
) , 𝐵

21
= (

𝜀𝐸

𝐼
, 0)
𝑇

,

𝐵
22
= (

−
𝛽𝐼

1 + 𝛼𝐼
−

𝑟

(1 + 𝑘𝐼)2
+
𝐸

𝐸
−
𝐼

𝐼
− (2𝑑 + 𝜇 + 𝜐) 0

𝛽𝐼

1 + 𝛼𝐼
−

𝑟

(1 + 𝑘𝐼)2
+
𝐸

𝐸
−
𝐼

𝐼
− (2𝑑 + 𝜀 + 𝜇 + 𝜐)

) .

(51)

Let (𝑢, V, 𝜔) be a vector in 𝑅3; its norm ‖ ⋅ ‖ is defined as

‖(𝑢, V, 𝜔)‖ = max {|𝑢| , |V| + |𝜔|} . (52)

Let 𝜇(𝐵) be the Lozinski ̆l measure with respect to this
norm. We choose

𝜇 (𝐵) ≤ sup {𝑔
1
, 𝑔
2
} , (53)

where 𝑔
1
= 𝜇
1
(𝐵
11
)+|𝐵
12
|, 𝑔
2
= 𝜇
1
(𝐵
22
)+|𝐵
21
|, |𝐵
12
|, |𝐵
21
| are

matrix norms with respect to 𝑙
1
vector norm, and 𝜇

1
denotes

the Lozinski ̆l measure with respect to this 𝑙
1
norm; then

𝜇
1
(𝐵
11
) = −

𝛽𝐼

1 + 𝛼𝐼
− (2𝑑 + 𝜀) ,

𝐵12
 =

𝛽𝑆𝐼

(1 + 𝛼𝐼)2𝐸
,

𝐵21
 =

𝜀𝐸

𝐼
.

(54)

Next calculating 𝜇
1
(𝐵
22
), taking the nondiagonal ele-

ments of each column of 𝐵
22

in absolute value, and then
adding to the corresponding columns of the diagonal ele-
ments, we get
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Figure 2: (a)–(d) show that system (7) has only one disease-free equilibrium 𝐸
0
(50, 0, 0) and it is locally asymptotically stable. In this case,

𝐴 = 10, 𝛽 = 0.05, 𝜀 = 1.2, 𝑑 = 0.2, 𝜇 = 0.2, 𝜐 = 0.4, 𝑟 = 2.5, 𝛼 = 1.25, and 𝑘 = 1.25.

𝐵
22
= (

−
𝑟

(1 + 𝑘𝐼)2
+
𝐸

𝐸
−
𝐼

𝐼
− (2𝑑 + 𝜇 + 𝜐) 0

𝛽𝐼

1 + 𝛼𝐼
−

𝑟

(1 + 𝑘𝐼)2
+
𝐸

𝐸
−
𝐼

𝐼
− (2𝑑 + 𝜀 + 𝜇 + 𝜐)

) . (55)

Take amaximumof two diagonal elements of𝐵
22
; we have

𝜇
1
(𝐵
22
)

= max{− 𝑟

(1 + 𝑘𝐼)2
+
𝐸

𝐸
−
𝐼

𝐼
− (2𝑑 + 𝜇 + 𝜐) ,

−
𝑟

(1 + 𝑘𝐼)2
+
𝐸

𝐸
−
𝐼

𝐼
− (2𝑑 + 𝜀 + 𝜇 + 𝜐)}

= −
𝑟

(1 + 𝑘𝐼)2
+
𝐸

𝐸
−
𝐼

𝐼
− (2𝑑 + 𝜇 + 𝜐) .

(56)

Therefore, we have

𝑔
1
= 𝜇
1
(𝐵
11
) +

𝐵12
 =

𝛽𝑆𝐼

(1 + 𝛼𝐼)2𝐸
−

𝛽𝐼

1 + 𝛼𝐼
− (2𝑑 + 𝜀) ,

𝑔
2
= 𝜇
1
(𝐵
22
) +

𝐵21


=
𝜀𝐸

𝐼
−

𝑟

(1 + 𝑘𝐼)2
+
𝐸

𝐸
−
𝐼

𝐼
− (2𝑑 + 𝜇 + 𝜐) .

(57)
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Figure 3: (a)–(d) show that system (7) has a disease-free equilibrium 𝐸
0
(50, 0, 0), which is unstable, and an endemic equilibrium

𝐸
∗
(13.6954573045, 1.8542772633, 1.9865335214), which is locally asymptotically stable. In this case, 𝐴 = 10, 𝛽 = 0.3, 𝜀 = 1.2, 𝑑 = 0.05,

𝜇 = 0.2, 𝜐 = 0.4, 𝑟 = 0.1, 𝛼 = 0.8, and 𝑘 = 2.

From (6), we get

𝐸

𝐸
=

𝛽𝑆𝐼

(1 + 𝛼𝐼) 𝐸
− (𝑑 + 𝜀) ,

𝐼

𝐼
=
𝜀𝐸

𝐼
−

𝑟

1 + 𝑘𝐼
− (𝑑 + 𝜇 + 𝜐) .

(58)

Then, we have

𝑔
1
=

𝛽𝑆𝐼

(1 + 𝛼𝐼)2𝐸
−

𝛽𝐼

1 + 𝛼𝐼
− (2𝑑 + 𝜀)

≤
𝛽𝑆𝐼

(1 + 𝛼𝐼) 𝐸
− (2𝑑 + 𝜀) =

𝐸

𝐸
− 𝑑,

(59)

𝑔
2
=

𝛽𝑆𝐼

(1 + 𝛼𝐼) 𝐸
− (2𝑑 + 𝜀) +

𝑟

1 + 𝑘𝐼
−

𝑟

(1 + 𝑘𝐼)2

=
𝐸

𝐸
− 𝑑 +

𝑟

1 + 𝑘𝐼
−

𝑟

(1 + 𝑘𝐼)2
≤
𝐸

𝐸
− (𝑑 − 𝑟) .

(60)

Furthermore, we obtain

𝜇 (𝐵) ≤ sup {𝑔
1
, 𝑔
2
}

≤ {
𝐸

𝐸
− 𝑑,

𝐸

𝐸
− (𝑑 − 𝑟)}

≤
𝐸

𝐸
− (𝑑 − 𝑟) .

(61)

By integrating both sides at the same time, we obtain

1

𝑡
∫
𝑡

0

𝜇 (𝐵) d𝑠 ≤ 1

𝑡
ln 𝐸 (𝑡)

𝐸 (0)
− (𝑑 − 𝑟) ,

lim sup
𝑡→∞

sup 1
𝑡
∫
𝑡

0

𝜇 (𝐵) d𝑠 < − (𝑑 − 𝑟) < 0.

(62)

The proof is completed by Lemma 7.
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Figure 4: (a)–(d) show that system (7) has the bistable equilibria: a disease-free equilibrium 𝐸
0
(50, 0, 0) and an endemic equilibrium

𝐸
1
(30.9324582801, 2.7239504131, 3.2726743508). And the other endemic equilibrium 𝐸

2
(48.9594277798, 0.1486531743, 0.08857440172) is

unstable. In this case, 𝐴 = 10, 𝛽 = 0.05, 𝜀 = 1.2, 𝑑 = 0.2, 𝜇 = 0.2, 𝜐 = 0.4, 𝑟 = 1.5, 𝛼 = 0.1, and 𝑘 = 2.

5. Numerical Simulations

To demonstrate the theoretical results obtained in this paper,
we will give some numerical simulations. We consider the
hypothetical set of parameter values as the following.

(1) 𝐴 = 10, 𝛽 = 0.05, 𝜀 = 1.2, 𝑑 = 0.2, 𝜇 = 0.2, 𝜐 = 0.4,
𝑟 = 2.5, 𝛼 = 1.25, and 𝑘 = 1.25. The condition of
Theorem 4 is satisfied, that is, 𝑅

0
= 0.6493506493 <

1. Then the system (7) has a disease-free equilibrium
𝐸
0
(50, 0, 0) and it is globally asymptotically stable for

this case (see Figures 2(a)–2(c) and 2(d)).

(2) 𝐴 = 10, 𝛽 = 0.3, 𝜀 = 1.2, 𝑑 = 0.5, 𝜇 =
0.2, 𝜐 = 0.4, 𝑟 = 0.1, 𝛼 = 0.8, and 𝑘 = 2.
Through calculation, we know 𝑅

0
= 3.5294117647 >

1, 𝑘 < 𝑘
1

= 9.6, and 𝑑 > 𝑟. According
to Theorem 8, we know the endemic equilibrium
𝐸
∗
(13.6954573045, 1.8542772633, 1.9865335214) is

globally asymptotically stable for this case (see Figures
3(a)–3(c) and 3(d)).

(3) 𝐴 = 10, 𝛽 = 0.05, 𝜀 = 1.2, 𝑑 = 0.2, 𝜇 = 0.2,
𝜐 = 0.4, 𝑟 = 1.5, 𝛼 = 0.1, and 𝑘 = 2. Through
calculation, we know 𝑅

0
= 0.9316770185 < 1, and

𝑅𝑐
0
= 0.7634537608 < 𝑅

0
< 1, 𝑏 = −0.5266 < 0.

From Theorem 1, we know system exists two
endimic equilibria 𝐸

1
(30.9324582801, 2.7239504131,

3.2726743508) and𝐸
2
(48.9594277798, 0.1486531743,

0.08857440172). The phase portrait related to this
bistable situation is represented in Figure 4.

6. Conclusion

In this paper, we consider the SEIR epidemic model with
saturated incidence and saturated treatment function to
understand the effect of delayed treatment on the disease
transmission. Generally speaking, in many epidemic models,
the basic reproduction number, which is the key concept
in epidemiology, can be decreased below unity to eradicate
the disease. However, in our model, the basic reproduction
number below unity is not enough to eradicate the disease.
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According to our analysis in this paper, we find that a back-
ward bifurcation occurs when the capacity of the treatment
is low (i.e., 𝑘 > 𝑘

0
). If there is no delayed treatment (i.e.,

𝑘 = 0), system (7) only admits a forward bifurcation and
the global dynamics are completely determined by the basic
reproduction number 𝑅

0
. If there is delayed treatment (i.e.,

𝑘 > 0), then system (7) has much richer dynamics. For
example, Corollary 3 suggests we must try our best to let 𝑘 ≤
𝑘
0
to prevent the backward bifurcation. Through studying

the bifurcation of our model, we suggest that, in order to
eradicate the disease, we should raise the efficiency and
enlarge the capacity of the treatment.That is to say, we should
improve our medical technology and invest more medicines,
beds, and so forth to give the patients timely treatment.

Lastly, a numerical simulation provided thatwhen𝑅
0
< 1,

the disease-free equilibrium is stable (see Figure 2), while
𝑅
0
> 1, the disease-free equilibrium is unstable, and under

the condition 𝑘 < 𝑘
1
, the endemic equilibrium 𝐸

∗
is globally

asymptotically stable (see Figure 3).The stability of equilibria
𝐸
1
, 𝐸
2
has not been studied, when 𝑅𝑐

0
< 𝑅
0

< 1 and
𝑏 < 0. It is worthwhile for us to study this case from the
theorematic idea in the future work. Here we only illustrate
that the equilibrium 𝐸

1
is stable, while 𝐸

2
is unstable by using

the numerical simulation (see Figure 4).
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