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Abstract

The response to injury is one of wound healing and fibrogenesis, which ultimately leads to

fibrosis. The fibrogenic response to injury is a generalized one across virtually all organ systems.

In the liver, the injury response, typically occuring over a prolonged period of time, leads to

cirrhosis (although it should be pointed out that not all patients with liver injury develop cirrhosis).

The fact that many different diseases result in cirrhosis suggests a common pathogenesis. The

study of hepatic fibrogenesis over the past 2 decades has been remarkably active, leading to a

considerable understanding of this process. It has been clearly demonstrated that the hepatic

stellate cell is a central component in the fibrogenic process. It has also been recognized that other

“effector” cells are important in the fibrogenic process, including resident fibroblasts, bone

marrow derived cells, fibrocytes, and even perhaps cells derived from epithelial cells (i.e., through

epithelial to mesenchymal transition or EMT). A key aspect of the biology of fibrogenesis is that

the fibrogenic process is dynamic; thus, even advanced fibrosis (or cirrhosis) is reversible.

Together, an understanding of the cellular basis for liver fibrogenesis, along with multiple aspects

of the basic pathogenesis of fibrosis, have highlighted many exciting potential therapeutic

opportunities. Thus, while the most effective “anti-fibrotic” therapy is treatment of the underlying

disease, in situations in which this not possible, specific anti-fibrotic therapy is likely to not only

become feasible, but will soon become a reality. The goal of this review is to highlight the

mechanisms underlying fibrogenesis that may be translated into future anti-fibrotic therapies and

to review the current state of clinical development.

Introduction

The response to chronic injury is a generalized one, with features common among multiple

organ systems. This feature suggests thematically related pathogenic events across organs.
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In the liver, many different kinds of injury, including viral hepatitis, alcohol, fatty liver,

biliary tract disease, iron or copper overload, cystic fibrosis, and others cause fibrogenesis,

and subsequently cirrhosis.

Over the past 2 decades, much has been learned about the biology and pathophysiology of

fibrosis. Understanding the mechanisms underlying fibrosis has pointed out several potential

therapeutic approaches. Preclinical studies have been particularly informative, and have

highlighted many possible therapies. Although therapies that are directed at the underlying

disease process, including anti-viral therapies for patients with hepatitis B and hepatitis C

virus infection, have proven to be effective at reducing and/or reversing fibrosis, specific

and effective anti-fibrotic therapy remains elusive. The objective of this review will be to

emphasize fundamental concepts underlying hepatic fibrogenesis, and to review

translational therapeutics.

Fibrogenesis – Pathophysiology

The fibrogenic process

A critical aspect of the fibrogenic response is that injury, typically to hepatocytes stimulates

the injury response (Figure 1). Multiple forms of injury, including hepatitis, metabolic

disease (i.e, in particular the metabolic syndrome) biliary injury, toxins (including alcohol),

heavy metals, cause a variety of complicated and often integrated effects in the liver. For

example, viral hepatitis causes activation of T cells, with recruitment of other inflammatory

cells, as well as inflammatory mediators, and this leads to the fibrogenic wounding response

(Figure 1). Alcohol mediated hepatocyte injury causes a classic inflammatory lesion,

including TNF, which leads to hepatitis, and a fibrogenic wounding response. It should be

emphasized multiple different cell types play a role in the injury mileu. For example, injury

to endothelial cells, either directly or indirectly causes them to produce abnormal

extracellular matrix, which in turn stimulates fibrogenesis by stellate cells 1.

A central event in the hepatic wounding response is enhanced extracellular matrix

production, or fibrogenesis (Figure 1). Irrespective of the specific cause of liver injury (in

both experimental models and human cirrhosis), the wound process leads to increased

synthesis of extracellular matrix. The fibrogenic process is characterized by increases in a

multiple matrix components, including the interstitial collagens, basement membrane

collagens, proteoglycans and matrix glycoproteins such as laminin and fibronectin 2;

specific changes in matrix composition are highly similar in all forms of liver injury and

hepatic fibrogenesis. Among the most prominent extracellular matrix proteins are the

collagens (type I>III>IV), but increases in other matrix proteins are also prominent. It is

important to emphasize that the wounding process is a dynamic one that includes aspects of

matrix synthesis and deposition as well as degradation 3. This point is exemplified by a

robust body of literature data indicating that experimental 4–6 and clinical fibrosis 7–9 and

even clinical cirrhosis is reversible 10–17. In one study in patients with chronic hepatitis B

infection and cirrhosis 14, 436 of 651 patients were assigned to receive lamivudine and 215

to receive placebo; 7.8 percent of patients receiving lamivudine and 17.7 percent of those

receiving placebo developed hepatocellular carcinoma, spontaneous bacterial peritonitis,

bleeding gastroesophageal varices, or had death related to liver disease (P=0.001).
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Additionally, the Child-Pugh score increased in 3.4 percent of the patients receiving

lamivudine and 8.8 percent of those receiving placebo (P=0.02). Thus, not only is advanced

fibrosis reversible, but resolution of fibrosis is also associated with improved clinical

outcomes.

Hepatic stellate cells and their activation in fibrogenesis

A key concept in the wounding response is that during the fibrogenic response, there is

activation of effector cells. Evidence now supports the presence of a number of effector cells

including stellate cells 18, peri-portal and peri-central fibroblasts 19, fibrocytes 20,

myofibroblasts, and perhaps fibrogenic cells derived from hepatocytes through epithelial to

mesenchymal transition (or EMT) 21, 22.

Stellate cells (also known previously as lipocytes, Ito, perisinusoidal cells), perisinusoidal,

pericyte-like cells of mesenchymal origin, have garnered great attention as effectors of the

fibrogenic response. In the normal liver, these cells function as a major retinoid reservoir for

the body, storing much of the body’s vitamin A 23, 24. Given their pericyte-like appearance,

they may also function as regulators of blood flow 23. Notwithstanding, one of their most

notable features occurs after liver injury. In this situation, stellate cells transform from

“quiescent” (normal) to an “activated” (injured liver) state is a central component to the liver

wounding process (Figure 1). The activation process is remarkably complex, with multiple

and dynamic features. Phenotypically, it consists of many important cellular changes;

characteristic features include loss of vitamin A, acquisition of stress bundles, and

development of prominent rough endoplasmic reticulum (Figure 2). Perhaps the most

prominent feature of activation is the striking increase in production and secretion of

extracellular matrix proteins, including types I, III and IV collagens, fibronectin, laminin

and proteoglycans, and others 2, 25. An additional important feature of activation is de novo

expression of smooth muscle specific proteins, such as smooth muscle α actin 26. This

feature further identifies stellate cells as liver specific myofibroblasts, a cell type typical of

fibrogenesis in all organs 27, 28.

Although the most prominent features of activation include enhanced extracellular matrix

production, and the expression of smooth muscle α actin, activation is also associated with

other important cellular phenotypes including enhanced proliferation, release of

proinflammatory cytokines 29, release of matrix degrading enzymes and their inhibitors, and

recruitment and activation of other cell types such as hepatocellular cancer and

cholangiocarcinoma cells 30, 31 and inflammatory cells 32. When deisgning therapeutics

focused on liver fibrogenesis, is important to emphasize that each of these features of

activation (and fibrogenesis) represent a potential target for therapy. Important elements of

the activation process are highlighted below.

Stellate cell fibrogenesis—Multiple factors play key pathogenic roles in stellate cell

fibrogenesis. Prominent among these factors are cytokines, small peptides, and the

extracellular matrix itself. Transforming growth factor beta-1 (TGF-β1) appears to be the

most profibrogenic cytokine in the liver 33–35. TGFβ1 is produced by Kupffer cells,

sinusoidal endothelial cells, bile duct epithelial cells, hepatocytes and by stellate cells and
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has prominent paracrine/autocrine effects on stellate cells 36, 37. When TGFβ1 is

overexpressed in the liver, it leads to promiinent fibrosis 33 and when inhibited during

experimental liver injury, fibrosis is reduced 38. TGFβ-1 signaling in stellate cells is

remarkably complex 39, acting via direct (and to a lesser extent, indirect) pathways to

stimulate of extracellular matrix production in stellate cells. Although none appears to be as

potent as TGFβ1, a variety of other cytokines and peptides have profibrogenic effects on

stellate cells (Table 1), including connective tissue growth factor (CTGF) 40, 41,

endothelin-1 6, leptin 42, angiotensin II 43, and others.

It should also be emphasized that cytokines and growth factors that drive stellate cell

proliferation are important in the fibrogenic response because they help expand the total

number of fibrogenic (stellate) cells. In essentially all forms of fibrosing liver injury, the

number of activated effector cells is increased. Although the major mitogen driving cellular

proliferation appears to be PDGF, a variety of other factors appear to be important in

stimulation of stellate cell proliferation and include epidermal growth factor, fibroblast

growth factor, insulin-like growth factor, thrombin, PAR agonists, monocyte chemotactic

factor (MCP-1), insulin like growth factors (IGF-1 and 2), interleukin-6, CTGF,

endothelin-1, angiotensin II, and others. While many of these compounds have isolated

proliferative effects (i.e. PDGF), others (i.e. endothelin-1, angiotensin II, CTGF) stimulate

both proliferation and fibrogenesis.

The vasoactive peptides endothelin-1 and angiotensin II, each of which have pleotrophic cell

biologic and molecular effects, are notable not only because they have been emphasized in

the pathogenesis of hepatic fibrogenesis 6, 43–45, but also because these compounds have

vasoactive properties, and as such, may be important in the pathogenesis of portal

hypertension. This raises the possibility that therapy directed at them could affect both

fibrogenesis and portal hypertension. Other biologically active peptides (including

unidentified compounds) may also be important in fibrogenesis. For example, dopamine

beta-hydroxylase deficient mice, which cannot make norepinephrine, are resistant to

fibrogenesis 46. Thus, antagonism of these systems is attractive.

A number of cytokines and peptides appear to have anti-activation or anti-fibrogenic

properties towards stellate cells. Although the number of the agents is considerably less than

the number reported to be pro-fibrogenic and/or stimulate proliferation, included in this

group are interferon γ 47, interferon α 48, adiponectin 49, hepatocyte growth factor 50, and

possibly STAP 51.

Evolving evidence indicates that the extracellular matrix and the local environment plays an

important role in modulating stellate cell activation. For example, culture of stellate cells on

a basement membrane mimicking the normal basement membrane inhibits stellate cell

activation and matrix synthesis 52, while culture of stellate cells on abnormal substrates such

as the EDA isoform of fibronectin leads to increased activation of stellate cells 1. Further,

data suggest that stellate cells sense their surrounding environment 53. For example, it was

demonstrated that stellate cells became activated preferentially while exposed to a stiff

substrate (compared to a softer substrate), and that this stiffness-dependent activation

required adhesion to matrix proteins and the generation of mechanical tension 54. It has also
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been shown that integrins, which link the extracellular matrix to stellate (and other cells)

play an important role in transmitting fibrogenic and contractile signals 55. Recently,

integrin linked kinase (ILK), an integrin-intracellular signaling molecule, has been shown to

transmit fibrogenic signals in stellate cells 56, 57.

It should also be pointed out that fibrogenesis is a dynamic process with elements of

extracellular matrix synthesis as well as degradation. During fibosis progression, there is not

only increased expression of extracellular matrix protiens as highlighted above, but also

metalloproteinases (MMPs) and in particular their tissue inhibitors (TIMPs). Evolving

evidence suggests that early in the injury process, increases in expression of MMP-2 and

membrane type 1-MMP lead to degradation of normal basement membrane matrix, which

appears to facilitate stellate cell activation 58–60. Additionally, overexpression of the TIMPs

(TIMP-1 and TIMP-2) contributes to the profibrogenic phenotype 58. This dynamic interplay

of matrix synthesis and degradation is complex, but an attractive therapeutic target. As proof

of concept, overexpression of MMP8 has been shown to lead to partial reversal of

fibrosis 61.

Stellate cell contractility—Activation of stellate cells is accompanied by an increase in

expression of proteins characteristic of contractile cells (i.e., such as smooth muscle α actin

and smooth muscle myosins 26, 62). Stellate cell contraction has been reported to be

mediated by Ca++ dependent and independent mechanisms 63–66. Stellate cell contraction

has a multitude of effects in the injured liver including in perisinuoidal constriction and

portal hypertension, and may also lead to the collapse and shrunken state of cirrhotic

livers 45. Stellate cell contractility is likely tied to multiple different systems, including the

endothelin, angiotensin, adrenergic, and perhaps other systems 44, 45, 66–71.

Other stellate cell activation phenotypes—Beyond the phenotypes highlighted

above, during liver injury and activation, stellate cells exhibit a number of important features

(Figure 2). For example apoptosis (i.e., programmed cell death) is prominent in stellate cells

and appears to be an important mechanism for fibrosis regression 5. The data suggest that a

balance between cell proliferation and apoptosis is important in determining the dynamics of

the total overall stellate cell population in the liver. Based on these data, stimulation of

stellate cell apoptosis could be an attractive therapeutic approach 72. However, it has also

been shown that stellate cell apoptosis may stimulate stellate cell activation, and thus may

not be desirable 73. Additionally, stellate cells may undergo senescence 74 or revert to a

normal phenotype 75. Recently, autophagy, a catabolic mechanism involviing cell

degradation of unnecessary or dysfunctional cellular components through the lysosomal

pathway, appears to play a role in stellate cell activation 76–78. In mice with stellate cell

specific deletion of autophagy-related protein 7 (Atg7), a protein important in mammalian

autophagy, led to reduced activation following liver injury, leading to reduced fibrosis in

vivo 78.

Approach to therapy for fibrosis

It is important to emphasize that the most effective anti-fibrotic therapies are those that

target the primary stimulus to fibrogenesis (Table 2). For example, eradication or inhibition
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of hepatitis B virus (HBV) 7, 9 or hepatitis C virus (HCV) 8 leads to reversion of fibrosis,

and is associated with improved clinical outcomes 11, 12, 14. Fibrosis (and cirrhosis) in

patients with autoimmune hepatitis who respond to medical treatment (prednisone or

equivalent) is reversible 13, 17. Fibrosis may improve in patients with alcoholic liver disease

who respond to anti-inflammatory therapy such as corticosteroids 79, 80. Fibrosis reverts in

patients with hemochromatosis during iron depletion 81, 82 and after relief of bile duct

obstruction 15. Additionally, in patients with non-alcoholic steatohepatitis (NASH) treated

with the peroxisomal proliferator active receptor (PPAR) gamma agonist, rosiglitazone

reduced both steatosis and fibrosis 83.

Experimental studies have demonstrated that many different interventions are capable of

inhibiting (usually preventing) fibrogenesis. Such therapies have been targeted at inhibition

of collagen synthesis, matrix deposition, modulation of stellate cell activation, stimulation of

matrix degradation or stimulation of stellate cell death. A number of these preclinical

approaches have been transitioned to clinical trials in humans (Table 3). The summary

presented below indicates that as of the current writing, a specific anti-fibrotic that fits the

profile of an ideal agent - one that is potent, safe, orally bioavailable, and inexpensive - is

not yet available.

Specific anti-fibrotic targets and therapies

Colchicine is a plant alkaloid that inhibits polymerization of microtubules, and has anti-

fibrotic properties in experimental animal models 84. Although it has been studied in a

number of clinical trials 85–88, including in primary biliary cirrhosis, alcoholic cirrhosis, as

well as in miscellaneous other liver diseases 86, evidence supporting its effectiveness

remains lacking.

Interleukin-10, an anti-inflammatory and immunomodulatory cytokine can down regulate

production of proinflammatory cytokines, such as tumor necrosis factor-α, interleukin-1,

and interleukin-2 from T cells. When administered to patients with HCV, interleukin-10

reduced hepatic inflammation and fibrosis scores (mean change from 5.0 ± 0.2 to 4.5 ± 0.3,

p <0.05). However, serum HCV RNA levels increased during therapy and thus has not been

pursued.

Several studies have shown that interferon γ has potent inhibitory effects on stellate cells,

inhibiting multiple aspects of stellate cell activation including fibrogenesis 47, 89. A

preliminary recent report in patients with chronic hepatitis C infection and fibrosis indicated

that a subgroup of patients had an anti-fibrotic response 90. However, a larger randomized

study found that interferon γ failed to have an antifibrotic effect in patients with HCV and

advanced fibrosis, presumably because it enrolled patients with advanced cirrhosis and

treated them for too short a time period 91.

The peroxisomal proliferator activated receptor (PPAR) system has gained considerable

attention in the hepatic fibrogenesis field 92–94. PPAR γ in particular is reduced during

stellate cell activation, and PPAR γ ligands inhibit activation and synthesis of extracellular

matrix 92–94. Further, the adipocytokine, adiponectin, appears to have prominent anti-

fibrotic actions, and the PPAR γ effects on stellate cells are at least in part, adiponectin
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dependent 95. Because of its added putative beneficial role in the metabolic syndrome,

adiponectin, is an attractive therapeutic target. Given the potential of PPAR γ agonists in

treatment of patients with fibrosis and preliminary studies that demonstrated significant anti-

fibrotic effects of the PPAR γ agonist, farglitazar, in animal models of fibrosis 96, a large

multicenter randomized trial of farglitazar in patients with HCV was performed 97. This well

deisgned study demonstrated that farglitazar therapy for 52 weeks failed to have an effect on

stellate cell activation or fibrosis in this population.

Polyenylphosphatidylcholine contains a mixture of polyunsaturated phosphatidylcholines,

extracted from soybeans. Because of its presumed cytoprotective effect, it has been

examined in humans 98. Unfortunately, in a major multicenter, prospective, randomized,

double-blind placebo-controlled trial study of 789 alcoholics (average alcohol intake of 16

drinks/day). comnparing either polyenylphosphatidylcholine or placebo for 2 years, there

was no significant improvement in fibrosis. Of note, the majority of subjects reduced their

ethanol consumption during the trial (presumably leading to an improvement in fibrosis in

the control group).

Silymarin extract, derived from the milk thistle Silybum marianum (the major active

component of which is silybinin), reduces lipid peroxidation and inhibits fibrogenesis in

animal models 99–101. In humans with fibrosis, the compound has had mixed effects 102, 103.

Thus, although silymarin appears to be safe, data supporting its use are lacking and further

study is underway in patients with HCV (ClinicalTrials.gov Identifier: NCT00680342) and

NASH (ClinicalTrials.gov Identifier: NCT00680407).

Ursodeoxycholic acid binds to hepatocyte membranes and appears to be cytoprotective,

thereby reducing inflammation and thus fibrogenesis 104. The aggregate data suggest that

ursodeoxycholic acid may impede progression of fibrosis in primary biliary cirrhosis via

effects on bile ductal inflammation, particularly if given early in the disease course 105, 106.

In a large randomized controlled trial of ursodeoxycholic acid in patients with non-alcoholic

steatohepatitis over a 2-year course, examining 107 subjects who had paired biopsy data,

there was no improvement in fibrosis 106. In aggregate, rsodeoxycholic acid is safe, and

while expensive, it is this author’s belief that the available data justify its use at least in

patients with primary biliary cirrhosis as an anti-fibrotic.

Vitamin E has gained a great deal of attention as a potential antifibrotic; it appears to be

effective in animal models 107. In humans vitamin E has has equivocal effects in patients

with HCV 108, and alcoholic hepatitis 109, 110. In patients with NASH, vitamin E led to

reductions in aminotransferases, hepatic steatosis, and lobular inflammation, but failed to

lead to an improvement in fibrosis 111.

A number of herbal medicines have been shown to have anti-fibrotic properties in animal

models, and in some, specific mechanisms have been identified 112–115. Herbal medicines

with putative anti-viral, anti-inflammatory, and anti-fibrotic effects are being used

extensively in the Far East in patients with a variety of liver diseases 116. Medications

containing herbs of the Salvia genus have been popular in particular as anti-fibrotics 116.

Although human trials have suggested effectiveness of specific herbal medicines in some
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studies 116, data in peer-reviewed Western journals remains lacking. Since it is well

appreciated that such herbal medicines may have significant toxicity, including

hepatotoxicity 117, these medications should be used with caution.

The use of anti-tumor necrosis factor alpha (TNF-α) compounds in patients with alcoholic

hepatitis is predicated on the rationale that TNF-α is upregulated after alcohol mediated

hepatocellular injury (Figure 1), and thus these compounds should reduce inflammation, and

resultant fibrosis. While early studies suggested an improvement in inflammation, 118–121,

further larger studies revealed that their use was associated with an increase in the risk of

serious infection 122 and mortality 123. Pentoxyfylline appears to reduce TNF-α expression,

and may also have primary antifibrotic effects 124, 125. While data suggest an effect on

certain clinical outcomes 118, 126, definitive evidence of an antifibrotic effect in humans is

lacking.

Malotilate, penicillamine, methotrexate, S-adenosylmethionine, and propylthiouracil all

have have been shown to exhibit some degree of anti-inflammatory and/or cytoprotective

effects (presumably through their anti-oxidant properties) and as such, may have an effect

on fibrogenesis 127, 128, 129. However, evidence of an effect on fibrosis is equivocal at

best 130–138. It is important to emphasize that for many of these human studies, subjects with

alcoholic hepatitis and liver injury were examined, and in these studies fibrosis was not

typically measured as a specific outcome. Thus, it is may not be entirely appropriate to

consider these agents as primary anti-fibrotics, but rather as compounds that could have

secondary effects on fibrogenesis due to other properties.

Novel Approaches

A number of novel approaches to treat liver fibrosis exist. This includes novel mechanisms

of targeting the liver, such as the use of siRNA 139, 140 or specific targeting systems 69, 141.

For example, TGF-β is well known to play a central role in the fibrogenic cascade and

therefore is an important therapeutic target. Multiple proof of concept studies have

demonstrated that its inhibition (through use of specific antibodies that immobilize active

TGF-β or receptor antagonists) is likely to be effective in fibrosis 38, 142, 143. However,

given its important role in regulation of cell growth, global inhibition of TGF-β, or similar

agents that have widespread biological effects such as PDGF or endothelin-1 could be

potentially harmful. Thus, it will likley be critical to localize biological effects to fibrogenic

effector cells. Early studies have provided proof of concept of this approach for stellate

cells 144.

Previous and exciting new pathophysiologic studies point to further translational

opportunities to treat fibrosis (Table 4). Given the central role of inflammation in chronic

hepatic injury and the ensuing wound-healing process (Figure 1), it follows that bacterial

products, particularly LPS may be important pathogenically. New evidence suggests that the

microbiota may be important in the pathogenesis of liver inflammation 145, fibrosis 146, and

even development of hepatocellular cancer 147. In quiescent stellate cells, TLR4 (a major

LPS receptor) activation not only upregulates chemokine secretion (further driving

inflammation), but it also downregulates the transforming growth factor (TGF)-β
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pseudoreceptor Bambi, which in turn sensitizes stellate cells to TGF-β-induced signaling 148.

In another study, liver injury was associated with early onset of increased intestinal

permeability and bacterial translocation that preceded changes in the microbiota 149.

Changes in the microbiota have also been associated with fibrosis progression 146. As such,

manipulation of the intestinal flora may be an innovative approach to anti-fibrotic therapy.

MicroRNAs (miRs) have become recognized as being important in gene regulation and

recent evidence suggests that a number of miRs are invovled in the pathogenesis of different

forms of organ fibrosis 150 and in stellate cell function and liver fibrosis and 151, 152, and

therefore may represent novel therapeutic targets.

A variety of other systems are also attractive. Among these include those related to collagen

synthesis, such as the lysyl oxidase system; inhibition of this copper-dependent extracellular

enzyme that catalyzes lysine-derived cross-links in collagen and elastin, could abrogate

tissue fibrosis 153, 154. Angiogenic pathways appear to be important in fibrosis, including the

liver, and thus, interruption of this pathway could be an effective treatment approach. For

example, a short peptide derived from endostatin, a naturally-occurring 20-kDa C-terminal

fragment derived from type 18 collagen, appeared to have potent anti-fibrotic activity in skin

and pulmonary fibrosis in vivo 155. Nuclear factor (erythroid-derived 2)-like 2 (nrf2), a

transcription factor that appears to active a number of genes involved in oxidative stress

reponse appears to have protective effects for fibrosis 156, 157. Additionaly, compounds such

as pirfenidone 158, and 5′-lipoxygenase inhibitors 159 appear to have direct effects on stellate

cells and/or in vivo effects in hepatic fibrogenesis. While there has been much interest in

manipulating the balance between matrix synthesis and degradation via stimulation of

collagen degrading metalloproteases, or dampening the effect of metalloprotease inhibitors,

this area remains largely open.

Vascular biologic systems are intriguing because they could potentially have benefical

effects both for fibrosis and for portal hypertnesion. Stellate cells express angiotensin II and

endothelin receptors and stimulation of these receptors with their cognate ligands leads to

prominent stellate cell effects 45.

Challenges in Developing Anti-fibrotic Therapy

Currently, a potent and effective anti-fibrotic drug or agent is not available. This is likely the

result of several factors, highlighted below. Additionally, in order to develop a highly

effective anti-fibrotic agent(s), several key features - as highlighted - will be important.

1. Diagnosis/Monitoring of Hepatic Fibrosis and Cirrhosis

Perhaps one of the most difficult challenges in the field of development of antifibrotic

medications is monitoring the effectiveness of putative compounds. An ideal test would be

one that is non-invasive and simple to perform, yet inexpensive. Currently, liver biopsy is

considered to be the gold standard test for determining the extent and progression of

fibrosis 160. A quantitative measure of collagen content can be made by colorimetric assay

of sirius red in liver tissue or by image analytic quantitation of collagen containing tissue 6.

Additionally, scoring systems have been developed 161–163 to quantitate fibrosis and to help
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standardize the interpretation of biopsies amongst different centers; such systems are most

useful for standardization and comparison of fibrosis in studies.

Unfortunately, liver biopsy, while considered the gold standard tool to assess fibrosis, is

inexact. Not only is liver biopsy subject to inter-observer variability, but sampling error may

be important, as evidenced by studies examining liver samples from different regions of the

liver 164. Additionally, liver biopsy is also associated with significant potential morbidity,

including a significant risk of death 160 Thus, noninvasive measures that can monitor

fibrogenesis would be ideal 165. Noninvasive tools used to assess fibrosis include

radiographic tests 166, combinations of routine laboratory tests 167, 168, and specific serum

markers 169. In particular, serum marker panels, including several that utilize mathematical

algorithms 167, 168, 170, have been emphasized. Although some of these may even have

predictive clinical value 171, 172, they have generally proven to be of limited clinical utility.

Finally, the field of molecular imaging is emerging, and with it, it is possible that effectors

cells such as stellate cells may be imaged in order to more precisely quantitate their activity

and or fibrogenic features 173, 174.

2. Cell Specific Targeting

As emphasized above, it would be ideal to localize therapy to only effector cells. This is

particularly imporant for the targeting of systems involving systems that have widespread

biological effects such as TGF-β, PDGF or endothelin-1 for example. TGF-β, in particular,

is an attractive target since it appears to be the most potent stimulator of fibrogenesis.

However, given its important role in regulation of cell growth, and neoplasia, it is highly

likely that its global inhibition would have undesirable effects. A number of studies have

provided proof of concept that at least stellate cells can be specifically targeted; by taking

advantage of the expression of the mannose 6-phosphate/insulin-like growth factor II (M6P/

IGF-II) receptor on stellate cells, it has been elegantly demonstrated that M6P-modified

albumins conjugated to specific inhibitors or toxins reduced stellate cell mediated

fibrogenesis 144, 175. Alternatively, it is possible that physical properties of activated stellate

cells may be taken advantage of, and that stellate cells could be targeted with specialized

liposomes or similar compounds 176–178.

3. Length of Therapy

As emphasized above, fibrogenesis is a dynamic process that occurs over a period of time;

advanced fibrosis typically develops over prolonged periods of time. Thus, it is likely that

reversion of fibrosis would be expected to also occur over more prlonged periods of time.

Most of the trials examining novel agents have been performed over relatively short periods

of time, typically over 6 or 12 months. To see meaningful regression of fibrosis, it is likely

that a trial will require longer than 1 year, and perhaps longer than 2 years.

3. Endpoints

The most appropriate endpoint for a novel treatment is a signal that the compound has

antifibrotic effects. Notwithstanding this point, trials to date have used histologic

assessment. This means that it is likely that the agent to be tested must be effective enough
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to cause a change in histology. It may be more appropriate to use a marker or set of markers

that detect a fibrogenic signal. For example, serum markers assessed over time may be

acceptable. Additionally, some have suggested that an anti-fibrotic agent should have an

effect on clinical outcomes. This would require a prolonged treatment, which would make

the likelihood of developing an effective agent difficult.

Summary and Future Directions

The pathogenesis of hepatic fibrogenesis is now better understood than ever before. The

central event in fibrogenesis appears to be activation of effector cells, most prominently

hepatic stellate cells. Stellate cell activation is characterized by many important features

including prominently, enhanced matrix synthesis and a contractile phenotype. The

activation process is complex, leading to multiple potential sites for therapeutic

interventions. A further critical concept is that the fibrogenic lesion, in particular, the

extracellular matrix, is a dynamic structure; even advanced fibrosis may be reversible. These

data have helped spawn interest in development of therapeutic antifibrotics.

Notwithstanding, the most effective therapy for hepatic fibrogenesis is removal of the

underlying disease process. While a number of challenges exist, including in the area of cell

specific targeting, fibrosis monitoring, and execution of suitable clinical trials, the prospects

for translation of the basic pathophysiology to therapy are bright. As for specific therapy

directed primarly at the fibrotic lesion, the most effective therapies will most likely be

directed fibrogenic effectors, in most cases hepatic stellate cells. In aggregate, although

specific, effective, safe, and inexpensive anti-fibrotic therapies are not yet currently

available, multiple potential targets have been identified, and one or more will likely

emerge.
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Figure 1. Liver injury and fibrogenesis
In the liver, many different types of injury (i.e., chronic hepatitis, ethanol, metabolic disease,

biliary tract disease, iron, copper, etc…) lead to hepatocyte injury, and then typically an

inflammatory response. This injury process is complicated, but in aggregate, it stimulates a

wound healing response, which involves a number of different systems. Paramount in this

process is often including recruitment of inflammatory cells. Among other properties,

inflammatory cells produce a variety of mediators, cytokines, and other factors, which in

turn are responsible for stimulation and/or recruitment of other cells. Key among these other

cells include effector cells, highlighted in the figure and including stellate cells, fibrocytes,

fibroblasts, and even fibroblasts derived though epithelial to mesenchymal transition (EMT).

These effectors produce extracellular matrix proteins (see text), and importantly interact

with other cells in the wounding mileu. Additionally, it is important to emphasize that many

forms of injury lead to activation and transformation of other cells in the liver, such as

endothelial and bile duct epithelial cells. Injury to these cells in turn leads to a variety of

downstream effects. Each injured endothelial bile duct epithelial cells are capable of

stimulatulation of effector cells to produce extracellular matrix consitutents.
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Figure 2. Stellate cell activation
A key pathogenic feature underlying liver fibrosis and cirrhosis is activation of hepatic

stellate cells (note that activation of other effector cells is likely to parallel that of stellate

cells). The activation process is complex, both in terms of the events that induce activation

and the effects of activation. Multiple and varied stimuli participate in the induction and

maintenance of activation, including, but not limited to cytokines, peptides, and the

extracellular matrix itself. Recently, signaling through TLR4 on stellate cells has been

identified as important in activation. Key phenotypic features of activation include

production of extracellular matrix, loss of retinoids, proliferation, of upregulation of smooth

muscle proteins, secretion of peptides and cytokines (which have autocrine effects on

stellate cells and paracrine effects on other cells such as leukocytes and malignant cells), and

upregulation of various cytokine and peptide receptors. Additionally, evidence indicates that

stellate cells exhibit several cell fates, highlighted at the bottom of the figure, and each of

these appear to play a role in the biology of fibrogenesis.

Rockey Page 21

Clin Gastroenterol Hepatol. Author manuscript; available in PMC 2014 September 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Rockey Page 22

T
ab

le
 1

C
yt

ok
in

es
 a

nd
 g

ro
w

th
 f

ac
to

rs
 im

po
rt

an
t i

n 
st

el
la

te
 c

el
l f

ib
ro

ge
ne

si
s

P
ro

fi
br

og
en

ic
A

nt
if

ib
ro

ge
ni

c

T
ra

ns
fo

rm
in

g 
gr

ow
th

 f
ac

to
r-

β
In

te
rf

er
on

 γ

T
ra

ns
fo

rm
in

g 
gr

ow
th

 f
ac

to
r-

α
In

te
rf

er
on

 α

C
on

ne
ct

iv
e 

tis
su

e 
gr

ow
th

 f
ac

to
r

A
di

po
ne

ct
in

*  
In

su
lin

-l
ik

e 
gr

ow
th

 f
ac

to
r 

(I
, I

I)
**

 E
nd

os
ta

tin

*  
Pl

at
el

et
 d

er
iv

ed
 g

ro
w

th
 f

ac
to

r
H

ep
at

oc
yt

e 
gr

ow
th

 f
ac

to
r

*  
M

on
oc

yt
e 

ch
em

ot
ac

tic
 f

ac
to

r

*  
Fi

br
ob

la
st

 g
ro

w
th

 f
ac

to
r

**
 I

nt
er

le
uk

in
-1

**
 I

nt
er

le
uk

in
-4

*  
In

te
rl

eu
ki

n-
6

*  
T

hr
om

bi
n

E
nd

ot
he

lin
-1

N
or

ep
in

ep
hr

in
e

A
ng

io
te

ns
in

 I
I

T
hr

om
bo

sp
on

di
n 

(1
,2

)

L
ep

tin

**
 L

ip
op

ol
ys

ac
ca

ri
de

* A
ge

nt
s 

w
ho

se
 e

ff
ec

t i
s 

la
rg

el
y 

vi
a 

st
im

ul
at

io
n 

of
 p

ro
lif

er
at

io
n

**
In

di
re

ct
 e

ff
ec

ts
 o

n 
st

el
la

te
 c

el
ls

**
* In

cl
ud

in
g 

fr
ag

m
en

ts

Clin Gastroenterol Hepatol. Author manuscript; available in PMC 2014 September 02.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Rockey Page 23

T
ab

le
 2

L
iv

er
 D

is
ea

se
s 

in
 w

hi
ch

 tr
ea

tm
en

t o
f 

th
e 

un
de

rl
yi

ng
 p

ro
ce

ss
 m

ay
 r

ev
er

se
 f

ib
ro

si
s

D
is

ea
se

C
om

m
en

ts

H
ep

at
iti

s 
B

A
nt

iv
ir

al
 tr

ea
tm

en
t i

m
pr

ov
es

 o
ut

co
m

es

H
ep

at
iti

s 
C

V
ir

al
 e

ra
di

ct
io

n 
im

pr
ov

es
 o

ut
co

m
es

A
ut

oi
m

m
un

e 
he

pa
tit

is
C

or
tic

os
te

ro
id

s 
m

ay
 im

pr
ov

e 
ou

tc
om

es

A
lc

oh
ol

ic
 h

ep
at

iti
s

C
or

tic
os

te
ro

id
s 

m
ay

 im
pr

ov
e 

ou
tc

om
es

B
ile

 d
uc

t o
bs

tr
uc

tio
n

B
ili

ar
y 

de
co

m
pr

es
si

on
 im

pr
ov

es
 h

is
to

lo
gy

H
em

oc
hr

om
at

os
is

Ir
on

 d
ep

le
tio

n 
m

ay
 im

pr
ov

e 
ou

tc
om

es

Pr
im

ar
y 

bi
lia

ry
 c

ir
rh

os
is

U
D

C
A

, M
T

X
 h

av
e 

w
ea

k 
ef

fe
ct

s

N
on

-a
lc

oh
ol

ic
 s

te
at

oh
ep

at
iti

s
PA

R
 li

ga
nd

s 
ha

ve
 w

ea
k 

ef
fe

ct
s

Se
e 

te
xt

 f
or

 d
is

cu
ss

io
n 

an
d 

re
fe

re
nc

es
.

A
bb

re
vi

at
io

ns
: M

T
X

 =
 m

et
ho

tr
ex

at
e;

 P
PA

R
 =

 p
er

ox
is

om
al

 p
ro

lif
er

at
or

 a
ct

iv
at

ed
 r

ec
ep

to
r

Clin Gastroenterol Hepatol. Author manuscript; available in PMC 2014 September 02.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Rockey Page 24

T
ab

le
 3

Po
te

nt
ia

l a
nt

i-
fi

br
ot

ic
 th

er
ap

ie
s 

te
st

ed
 in

 h
um

an
s

A
ge

nt
D

is
ea

se
C

om
m

en
ts

St
at

us

C
om

po
un

ds
 w

ith
 a

nt
i-

in
fl

am
m

at
or

y,
 a

nt
i-

ox
id

an
t o

r 
ge

ne
ra

l e
ff

ec
ts

In
te

rl
eu

ki
n-

10
H

C
V

In
cr

ea
se

d 
vi

ra
l l

oa
d

N
ot

 s
ui

ta
bl

e 
fo

r 
th

er
ap

y

PP
C

E
T

O
H

M
in

im
al

 if
 a

ny
 e

ff
ec

t
N

ot
 r

ec
om

m
en

de
d

SA
M

E
T

O
H

M
in

im
al

 if
 a

ny
 e

ff
ec

t
N

ot
 r

ec
om

m
en

de
d

Si
ly

m
ar

in
H

C
V

/E
T

O
H

Fu
rt

he
r 

st
ud

ie
s 

pe
nd

in
g

A
nt

i-
T

N
Fα

E
T

O
H

In
cr

ea
se

d 
m

or
ta

lit
y

L
ik

el
y 

da
ng

er
ou

s

U
D

C
A

M
ul

tip
le

M
od

es
tly

 e
ff

ec
tiv

e,
 s

af
e

M
ay

 b
e 

ac
ce

pt
ab

le
 (

PB
C

)

V
ita

m
in

 E
H

C
V

/N
A

SH
M

od
es

tly
 e

ff
ec

tiv
e,

 s
af

e
M

ay
 b

e 
ac

ce
pt

ab
le

Pe
nt

ox
if

yl
lin

e
E

T
O

H
M

in
im

al
ly

 e
ff

ec
tiv

e,
 s

af
e

M
ay

 b
e 

ac
ce

pt
ab

le

C
om

po
un

ds
 w

ith
 s

pe
ci

fi
c 

an
ti-

fi
br

ot
ic

 e
ff

ec
ts

C
ol

ch
ic

in
e

M
is

c
M

in
im

al
 if

 a
ny

 e
ff

ec
t

N
ot

 r
ec

om
m

en
de

d

In
te

rf
er

on
 g

am
m

a
H

C
V

M
in

im
al

 if
 a

ny
 e

ff
ec

t
N

ot
 s

ui
ta

bl
e 

fo
r 

th
er

ap
y

Fa
rg

lit
iz

ar
N

A
SH

N
o 

cl
ea

r 
ef

fe
ct

N
ot

 s
ui

ta
bl

e 
fo

r 
th

er
ap

y

A
R

B
s

M
is

c
M

in
im

al
 if

 a
ny

 e
ff

ec
t

M
ay

 b
e 

ac
ce

pt
ab

le

* Se
e 

th
e 

te
xt

 f
or

 s
pe

ci
fi

c 
di

sc
us

si
on

 o
f 

m
ec

ha
ni

sm
 a

nd
 f

or
 r

ef
er

en
ce

s.

A
bb

re
vi

at
io

ns
: P

PC
 =

 P
ol

ye
ny

lp
ho

sp
ha

tid
yl

ch
ol

in
e;

 S
A

M
 =

 s
-a

de
no

sy
lm

et
hi

on
in

e,
 T

N
F 

=
 tu

m
or

 n
ec

ro
si

s 
fa

ct
or

; P
PA

R
 =

 p
er

ox
is

om
al

 p
ro

lif
er

at
or

 a
ct

iv
at

ed
 r

ec
ep

to
r,

 E
T

O
H

 =
 a

lc
oh

ol
, H

C
V

 =
 h

ep
at

iti
s 

C
vi

ru
s,

 N
A

SH
 =

 n
on

 a
lc

oh
ol

ic
 s

te
at

oh
ep

at
iti

s,
 m

is
c 

=
 m

is
ce

lla
ne

ou
s,

 U
D

C
A

 =
 u

rs
od

eo
xy

ch
ol

ic
 a

ci
d;

 P
B

C
 =

 p
ri

m
ar

y 
bi

lia
ry

 c
ir

rh
os

is
; A

R
B

 =
 a

ng
io

te
ns

in
 r

ec
ep

to
r 

bl
oc

ke
r.

Clin Gastroenterol Hepatol. Author manuscript; available in PMC 2014 September 02.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Rockey Page 25

T
ab

le
 4

Po
te

nt
ia

l A
nt

i-
Fi

br
ot

ic
 T

ar
ge

ts

A
ge

nt
 o

r 
Sy

st
em

M
ec

ha
ni

sm

In
te

st
in

al
 m

ic
ro

bi
ot

a/
T

L
R

4
T

L
R

4 
on

 m
ul

tip
le

 c
el

ls
 ty

pe
s,

 in
cl

ud
in

g 
st

el
la

te
 c

el
ls

 a
ct

iv
at

es
 in

fl
am

m
at

or
y 

pa
th

w
ay

s

N
R

F2
T

ra
ns

cr
ip

tio
n 

fa
ct

or
 w

ho
se

 d
ow

ns
tr

ea
m

 ta
rg

et
 g

en
es

 p
la

y 
an

 im
po

rt
an

t r
ol

e 
in

 c
el

lu
la

r 
an

ti-
ox

id
an

t d
ef

en
se

L
ox

l2
E

nz
ym

e 
ca

 th
et

al
yz

es
 f

ir
st

 s
te

p 
in

 th
e 

fo
rm

at
io

n 
of

 c
ro

ss
lin

ks
 in

 c
ol

la
ge

ns
 a

nd
 e

la
st

in

A
di

po
ne

ct
in

24
4-

am
in

o-
ac

id
-l

on
g 

po
ly

pe
pt

id
e 

re
gu

la
tin

g 
gl

uc
os

e 
le

ve
ls

 a
s 

w
el

l a
s 

fa
tty

 a
ci

d 
br

ea
kd

ow
n 

th
at

 h
as

 d
ir

ec
t e

ff
ec

ts
 o

n 
st

el
la

te
 c

el
l f

ib
ro

ge
ne

si
s

A
ng

io
st

at
in

/E
nd

os
ta

tin
E

nd
og

en
ou

s 
an

gi
og

en
es

is
 in

hi
bi

to
rs

E
nd

ot
he

lin
21

 a
a 

po
te

nt
 v

as
oc

on
st

ri
ct

or
, t

ha
t a

ls
o 

st
im

ul
at

es
 s

te
lla

te
 c

el
l a

ct
iv

at
io

n

T
L

R
4 

=
 T

ol
l l

ik
e 

re
ce

pt
or

 4

N
R

F2
 =

 N
uc

le
ar

 f
ac

to
r 

(e
ry

th
ro

id
-d

er
iv

ed
 2

)-
lik

e 
2

L
O

X
L

2 
=

 L
ys

yl
 o

xi
da

se
 h

om
ol

og
 2

Clin Gastroenterol Hepatol. Author manuscript; available in PMC 2014 September 02.


