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To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association
approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming
problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the
global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties
of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking
accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art
methods and can operate in real time.

1. Introduction

Multiple object tracking is a hot topic in the field of computer
vision. Robust tracking of objects is important for many
computer vision applications, such as human-computer
interaction, video surveillance, intelligent navigation [1, 2].
Apart from a high performance detection algorithm as
an auxiliary, high quality multiobject tracking should also
track the algorithm for support, which can address certain
types of complex cases, for example, illumination, occlusion,
clutter, and so on [3]. The data association (DA) method
is a favorite for multiobject tracking. The often utilized
techniques include the nearest neighbor method [4], joint
probability data association [5], andmethods based on neural
networks [6].

The effect of the DA methods mentioned above is closely
related to the detection accuracy in adjacent frames. These
typical approaches are resilient to false negatives and false
positives: if an object is not detected in a frame but is
in previous and following frames, it is a false negative. A
false positive is mistaking the tracking object “A” as object
“B.” Although this problem can be solved using targeted

design a statistical trajectory model with filtering [7, 8], the
calculation method that provides the maximum posterior
probability is NP-complete.

Recent papers have proposed different approaches to
this problem. Giebel et al. [9] use sampling and particle
filtering to remove clutter from the same object and reduce
the probability of NP-completeness. This method obtains a
relatively accurate tracking trajectory but requires a sufficient
number of sampling points. Perera et al. [10] divides a
long sequence into several short ones, yielding lots of short
tracking tracks, and links them using Kalman filtering. This
can avoid the NP-completeness. The accuracy of this method
is inversely proportional to the length of the short tracking
tracks, the shorter the length, the better the tracking. How-
ever, the excessive division increases the computation time,
due to which the method cannot track objects for long time.
Fleuret et al. [11] processes trajectories individually over long
sequences using reasonable greedy dynamic programming
(DP) to choose the order. These approaches, while effective,
cannot attain the global optimal solution.

Zhang’s approach [12] relies on a min-cost network flow
framework-based optimization method to find the global
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optimum for multiple object tracking. However, the two
algorithms he proposes have several defects in practice
and their complexity is polynomial. Under this framework,
Berclaz et al. [13] formulate multiobject tracking as an
integer programming (IP) problem and reduce it to linear
programming (LP). By relying on the k-shortest paths (KSP)
algorithm for the optimization of the LP problem, their
approach reduces the complexity to perform robust multi-
object tracking in real time. However, because of KSP’s lack
of a motion model over dynamic programming (DP), the
tendency of the DP to ignore fragmentary trajectories makes
it more robust. Pirsiavash [14] continues the work of Zhang
and uses his method to obtain the global optimal solution
with the greedy algorithm for𝐾 = 1 in𝑂(𝑁) but only obtains
the approximate solutions for𝐾 > 1 in𝑂(𝐾𝑁), where𝐾 is the
unknown optimal number of unique tracks.

By contrast, in this paper, we effectively combine the
models proposed by Zhang and Berclaz to devise a more
efficient framework for the shortest path faster algorithm
(SPFA). Not only can the SPFA algorithm directly obtain the
global solution, it also shows the advantage of the DPmotion
model, which enables the algorithm to ignore incomplete
trajectories and behave more robustly against this type of
noise.Moreover, it is far better with respect to both the worst-
case complexity and the run time than the above-mentioned
state-of-the-art algorithms. Our main contributions in this
paper are as follows.

(1) Based on the min-cost network model, we introduce
a novel general mathematical integer programming
formulation for multiobject tracking. The proposed
IP method is conducive to naturally filtering out false
positives and false negatives using SPFA.

(2) To solve the integer linear programming formulation
of the proposed framework and to obtain the global
optimal solution, we propose to use the more rapid
and more efficient SPFA algorithm. Compared with
the state-of-the-art methods of [13, 14], the SPFA
algorithm can improve the running time obviously
while themultiobject tracking precision and accuracy
are not loss.

The rest of this paper is organized as follows. In Section 2,
we formulate an IP using the min-cost network flow frame-
work and relax it to continuous LP. Section 3 contains
our proposed shortest path faster algorithm for the relax-
ation of the original IP. We introduce approaches to target
localization and long sequence segmentation processing in
Section 4. Section 5 contains the experimental results and a
complete evaluation metrics. Finally, conclusions are drawn
in Section 6.

2. Network Flow Framework

The target motion of multiobjet tracking can be better
described using the relationship between the neighborhood
locations that use the DPmethod in a min-cost network flow
framework. We define an objective function for multiobject
tracking in the samemanner as in [13].The objective presence

of likelihood will be estimated by the marginal posterior
probability in every frame, thereby obtaining the potential
trajectory of the moving object.

2.1. Min-Cost Flow Model. We formulate the multiobject
tracking as a process, where the objective location of each
object discretely changes in continuous time. A directed 3D
spatiotemporal group with random variable 𝑘

𝑡
is used to

describe the video sequence. Consider

𝑘
𝑡
= (𝑥, 𝑦, 𝑡) , 𝑘

𝑡
∈ 𝑉, (1)

where 𝑘
𝑡
denotes any location of an object in this spatiotem-

poral group at time 𝑡, 𝑉 is the set of all space-time locations
in a sequence, and 𝑥 and 𝑦 are the pixel positions of the target
in the transverse and longitudinal axes, respectively.

For any location 𝑘
𝑡
at time 𝑡, the neighborhood 𝑁(𝑘

𝑡
) ⊂

{1, 2, . . . , 𝐾} denotes the locations that an object can reach at
time 𝑡 + 1. A single track as an ordered set of state vectors
𝑇 = (𝑘

1
, . . . , 𝑘

𝑁
), and 𝑋 = (𝑇

1
, . . . , 𝑇

𝐿
) is a set of tracks. We

assume that the tracking tracks are independent of each other
and describe the network flow framework of multiobject
tracking using the dynamic model as follows:

𝑃 (𝑋) = ∏

𝑇∈𝑋

𝑃 (𝑇) ,

where 𝑃 (𝑇) = 𝑃source (𝑘1)(
𝑁−1

∏

𝑛=1

𝑃 (𝑘
𝑛+1

| 𝑘
𝑛
))𝑃sink (𝑘𝑁) .

(2)

𝑃source(𝑘1) is the probability of a tracking track starting at
location 𝑘

1
and 𝑃sink(𝑘𝑁) is the probability of a tracking track

ending at location 𝑘
𝑁
.

In the spatial coordinate set𝑉, a binary indicator variable
𝜑
𝑖,𝑡
represents the directed flow from location 𝑘

𝑖
to location

𝑘
𝑡
; that is, it stands for the number of objects moving from

𝑘
𝑖
to 𝑘
𝑡
. 𝜑
𝑖,𝑡
is 1 when the space-time locations 𝑘

𝑖
and 𝑘

𝑡
are

included in some track, given that the object is at 𝑘
𝑡−1

at time
𝑡, which means that an object remains at the same spatial
location between times 𝑡 − 1 and 𝑡. For locations 𝑘

𝑡
and 𝑘

𝑗

at time 𝑡 + 1, some constraint conditions are executed for the
variable 𝜑

𝑖,𝑡
:

∀𝑘
𝑡
, ∑

𝑘𝑖 ,𝑘𝑡∈𝑁(𝑘𝑖)

𝜑
𝑖,𝑡
= ∑

𝑘𝑗∈𝑁(𝑘𝑡)

𝜑
𝑡,𝑗
, (3)

∀𝑘
𝑖
, 𝑘
𝑡
, ∑

𝑘𝑡∈𝑁(𝑘𝑖)

𝜑
𝑖,𝑡
≤ 1. (4)

Let a random variable𝑀
𝑡
stand for the true presence of

an object at location 𝑘
𝑡
in space time. For every instant of time

𝑡, the detector is used to check every location of the tracking
zone.Themarginal posterior probability of an existing object
is calculated as follows:

𝜌
𝑡
= �̂� (𝑀

𝑡
= 1 | 𝐼

𝑡
) , (5)

where 𝐼
𝑡
is the single image at frame 𝑡. We write 𝑚 = {𝑚

𝑡
}

for a feasible set of the likelihood probability distributions for
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the existence objects in 𝑉 by the method in Section 4.1. 𝑀
is the spatial set of 𝑀

𝑡
. The likelihood probability of the

existence of an object in the given set of tracks𝑋 is

𝑃 (𝑀 = 𝑚 | 𝑋) = ∏

𝑘𝑡∈𝑋

𝑃 (𝑀
𝑡
= 𝑚
𝑡
| 𝑋) . (6)

𝑀
𝑡
is conditional independence in 𝑋. We can infer the

maximum posteriori estimate of tracks by the probability
distributions of the existence of objects:

𝑋
∗
= argmax
𝑋

𝑃 (𝑋) 𝑃 (𝑀 = 𝑚 | 𝑋) (7)

= argmax
𝑋

∏

𝑇∈𝑋

𝑃 (𝑇) ∏

𝑘𝑡∈𝑋

𝑃 (𝑀
𝑡
= 𝑚
𝑡
| 𝑋) (8)

= argmax
𝑋

∑

𝑇∈𝑋

log𝑃 (𝑇) + ∑

𝑘𝑡∈𝑋

log𝑃 (𝑀
𝑡
= 𝑚
𝑡
| 𝑋) (9)

= argmax
𝑋

∑

𝑇∈𝑋

log𝑃 (𝑇)

+∑

𝑘𝑡

[(1 − 𝑚
𝑡
) log𝑃 (𝑀

𝑡
= 0 | 𝑋)

+𝑚
𝑡
log𝑃 (𝑀

𝑡
= 1 | 𝑋)]

(10)

= argmax
𝑋

∑

𝑇∈𝑋

log𝑃 (𝑇) +∑
𝑘𝑡

𝑚
𝑡
log

𝑃 (𝑀
𝑡
= 1 | 𝑋)

𝑃 (𝑀
𝑡
= 0 | 𝑋)

(11)

= argmax
𝑋

∑

𝑇∈𝑋

log𝑃 (𝑇) +∑
𝑘𝑡

𝑚
𝑡
log(

𝜌
𝑡

1 − 𝜌
𝑡

) , (12)

where (10) is true because𝑚
𝑡
is 0 or 1 according to (4), and (11)

is obtained by ignoring a term that does not depend on 𝑚
𝑡
.

The cost value of a directed flow between the neighborhood
locations of any adjacent frames is defined as

𝑐 (𝑒
𝑡,𝑡+1

) = − log(
𝜌
𝑡

1 − 𝜌
𝑡

) , (13)

where 𝑒
𝑡,𝑡+1

is a directed edge from location 𝑘
𝑡
at time 𝑡 to

location 𝑘
𝑡+1

at time 𝑡+1, and the total cost between any two
locations in 𝑉 is

𝐶 (𝑒
𝑖,𝑗
) = ∑

𝑒𝑡,𝑡+1∈𝑒𝑖,𝑗

𝑘𝑡+1∈𝑁(𝑘𝑡)

𝑐 (𝑒
𝑡,𝑡+1

) .

(14)

2.2. Integer Linear Programming. In our framework, because
the objects can enter and leave the tracking area, we introduce
additional nodes for the source and sink that have been

Source

Sink
Frame 1 Frame 2

Frame 3

Figure 1: The simple flow network model.

defined proposed by [13]. Equations (7)–(12) can then be
translated naturally into an integer linear program (ILP):

Minimize 𝐶 (𝜑) = 𝐶 (𝑒
𝑖,𝑗
) ∑

𝑘𝑗∈𝑁(𝑘𝑖)

𝜑
𝑖,𝑗
+ 𝐶 (𝑒source,𝑖)

×∑

𝑘𝑖

𝜑source,𝑖 + 𝐶 (𝑒𝑖,sink)∑
𝑘𝑖

𝜑
𝑖,sink

Subject to ∀𝑘
𝑡
, ∑

𝑘𝑖 ,𝑘𝑡∈𝑁(𝑘𝑖)

𝜑
𝑖,𝑡
= ∑

𝑘𝑗∈𝑁(𝑘𝑡)

𝜑
𝑡,𝑗

∀𝑘
𝑖
, 𝑘
𝑡
, ∑

𝑘𝑡∈𝑁(𝑘𝑖)

𝜑
𝑖,𝑡
≤ 1,

(15)

where the constraint conditions are the same as (3) and (4),
and 𝜑∗ = argmin𝐶(𝜑) is the optimal solution of the ILP.
𝐶(𝑒source,𝑖) is the total cost of the flow from the source node
to the locations of the tracking track, and 𝐶(𝑒

𝑖,sink) is that
from the locations of the track to the sink node. Figure 1
shows a simple flow network constructed from multiobject
tracking, where the costs are 𝑐(𝑒

𝑖,𝑗
) for blue edges, 𝑐(𝑒source,𝑖)

and 𝑐(𝑒
𝑗,sink) for black edges.

The costs are defined as follows:

𝑐 (𝑒source,𝑖) = − log𝑃source (𝑘𝑖) ,

𝑐 (𝑒
𝑖,sink) = − log𝑃sink (𝑘𝑖) .

(16)

The relaxation of the IP using standard methods is NP-
complete. In general, the variants of the simple algorithm
[15, 16] or the interior point based methods [17, 18] can be
used to solve this problem. However, these algorithms have
very high worst-case time complexities. In [13, 14], whereas
the methods of KSP and successive shortest path (SSP) can
relax the IP successfully to continuous LP, both of them
have their own deficiencies. We use the SPFA algorithm to
compensate the deficiencies of these methods.

3. Fast Dynamic Shortest Path Algorithm

In this paper, we use the shortest path faster algorithm to
relax the integer programby the network flow framework; the
average case complexity of this algorithm is 𝑂(𝐸). The global
optimum of the SPFA algorithm makes the tracking more
reliable and more efficient. The network flow framework
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needs two particular properties to realize the SPFA algorithm
as follows.

(1) All edges and nodes are independent of each other; all
edges are unit capacity.

(2) The network is a directed acyclic graph (DAG).

3.1. SPFA Algorithm. The shortest path faster algorithm has
been proposed in [19]. The data structure of the SPFA
algorithm uses an adjacency list and a First-in, First-out
(FIFO) queue. Applying the dynamic optimal approach, the
time complexity of SPFA algorithm is 𝑂(𝐸), where 𝐸 is the
number of edges in the graph. It is better than the complexity
of Dijkstra’s algorithm, 𝐸 ≪ 𝑁

2, where 𝑁 is the number of
nodes. No particular limitation conditions are needed for this
algorithm.Therefore, the SPFA algorithm can be adopted for
all directed graphs, except for the ones where negative weight
cycles are reachable from the source.

3.2. SPFA Algorithm with Virtual Nodes. Let 𝐶 be the total
cost of any location in space 𝑉, and let 𝐸 be the set of the
edges between adjacent frames of any neighborhood location.
The state transition between any pair of nodes of the model
can be attained by 𝐸, and the DAG 𝐺(𝑉, 𝐸, 𝐶) can completely
describe the flow activity of an object of the min-cost flow
model.

In ourmin-cost flowmodel,𝑄 is a FIFO queue, 𝐿 denotes
an adjacency list used to store 𝐺(𝑉, 𝐸, 𝐶), and 𝑐(𝑒

𝑖,𝑗
) is an

element of 𝐿. Let array𝐷 record the current cost of a directed
flow from source to all other nodes.The total cost value of the
shortest path from the source to V is stored in array 𝐷(V). In
the initialization, each element of array 𝐷 has its maximum
value. Array𝐷will then output the shortest path between the
source and the sink through the SPFA algorithm when queue
𝑄 is empty.

To improve the robustness of multiobject tracking in an
environment of false negatives, we define 𝐺

𝑟
as the residual

graph of𝐺(𝑉, 𝐸, 𝐶) that denotes all locations from the current
node to the terminal node. Two additional virtual nodes,
source and sink, are introduced into 𝐺

𝑟
and are linked

to all nodes representing locations. We can then find the
shortest path between node source and node sink by the SPFA
algorithm in 𝐺

𝑟
. Moreover, the shortest path between source

and node V can be obtained in array 𝐷, where V is any node
in the shortest path from the source to the sink.

In the proposed min-cost flow framework, we can obtain
the shortest path through the following steps.

(1) Create the FIFO queue 𝑄, the adjacency list 𝐿, and
the array𝐷. Initialize𝐷(𝑗) := ∞ and𝐷(source) := 0,
where source is the beginning node and 𝑗 is any other
node. Add source to the queue 𝑄.

(2) Add all neighborhood nodes that can be reached form
source to𝑄 and record their cost values in array𝐷. Let
𝐷(𝑖) store the total cost value of the shortest path from
the source to the node 𝑖, 𝑖 ∈ 𝐺

𝑟
.

(3) Assess the neighborhood nodes 𝑗 of the new node 𝑖 in
𝑄, where 𝑗 is the node that can be reached from node
𝑖. If𝐷(𝑖) + 𝑐(𝑒

𝑖,𝑗
) < 𝐷(𝑗),𝐷(𝑗) := 𝐷(𝑖) + 𝑐(𝑒

𝑖,𝑗
).

(4) Iterate (3) until queue𝑄 is empty and the shortest path
𝑇 = (𝑘

1
, . . . , 𝑘

𝑁
), 𝑘
𝑁
∈ 𝐺
𝑟
, between source and the

node V can be obtained in array𝐷, where V is any node
in the shortest path from source to sink.

Figure 2 shows the simple processing steps of the SPFA
algorithm in our proposed model. Here, birth represents the
node where an object was first discovered, and end is that
where it was last discovered. Each relaxation operation using
the SPFA algorithm is a process of the current node visiting
adjacent nodes.The 𝑛th relaxation operation ensures that the
path is the shortest in 𝑛. As the length of the edge for the
shortest path in the residual graph does not exceed 𝑁 − 1,
the path that we obtain using the SPFA algorithm is the
shortest one. Compared with the method in [14], which uses
the SSP algorithm with the additional greedy method, the
SPFA algorithm can find the global optimum. Its convergence
has been proved inTheorem 2 of [19].

It is not sufficient to be able to trackmultiple objects by the
SPFA algorithm because some target movements during this
process are easily overlooked. To enable the SPFA algorithm
to better describe the movement of the target, we offer
additional constrains for the algorithm.

3.3. Constraints for SPFA Algorithm. When we search the
shortest path between birth and end in the original residual
graph 𝐺𝑟, one problem arise. It is that the algorithm cannot
handle the entry and departure of the object in any position
between birth and end; that is, the tracking process is
incomplete and not robust.

To improve the tracking robustness by the SPFA algo-
rithm, we use the neighbors of birth and end to replace
the original position and form a new DAG with the virtual
positions source and sink, as shown in Figure 1. Source and
sink here denote the positions where an object appears
and disappears, respectively. This method can optimize
the dynamic correlation between the nodes of the SPFA
algorithm.

Moreover, at no iteration the SPFA algorithm generates
a large amount of calculation because there are only three
neighborhood locations calculated in each relaxation for
a node, and the number of available nodes is inversely
proportional to the number of iterations.

3.4. Time Complexity Analysis. The Dijkstra’s algorithm is
recognized as an effective method to compute the shortest
path in 𝑂(𝑁 log𝑁) time. Unfortunately, in our proposed
flow network, there are negative costs, which contradict the
precondition of the Dijkstra’s algorithm. Fortunately, there
are no negative weight cycles in the proposedmodel and thus
the SPFA algorithm can be adopted.

The proposed algorithm is an optimization of the
Bellman-Ford algorithm. While we blindly go through each
edge for 𝑁 rounds in the Bellman-ford algorithm, a queue
is maintained in SPFA to make sure that we only check
the relaxed nodes. SPFA is simpler than the 𝑂(𝑁𝐸) of the
Bellman-Ford algorithm, where 𝑁 is the number of nodes
and 𝐸 is the number of edges.
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Frame 4

Frame 1 Frame 2

Frame 3

Source

Sink
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End

(a)

Frame 2

Frame 3 Frame 4
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Sink
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End

Frame 1
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(b)

Frame 2

Frame 3 Frame 4

Source

Sink

Birth

End

Frame 1

k1

k2

k3

(c)

Frame 2

Frame 3 Frame 4

Source

Sink

Birth

End

Frame 1

k1

k2

k3

(d)

Figure 2: The shortest path faster algorithm. (a) Recording all nodes of 𝐺
𝑟
in an adjacency list, starting from the source node. Adding the

source into the queue 𝑄, let𝐷(source) = 0; (b) adding all the nodes that can be reached from source to 𝑄 and recording the cost values in 𝐷.
(c) Adding all nodes that can be reached from 𝑘

1
to𝑄 and recording their total cost values. If a node has been in queue𝑄, update its total cost

value to the smaller value in 𝐷; (d) iterating (c) until queue 𝑄 is empty and the shortest path 𝑇 = (𝑘
1
, . . . , 𝑘

𝑁
), 𝑘
𝑁
∈ 𝐺
𝑟
from source to sink

can be obtained at the same time. Legend: black solid line, all edges among positions that can be reached, red solid line, all edges from the
current position to potential locations that can be reached, black dashed line, all edges between virtual positions and the potential locations
that can be reached, and red dashed line, all edges from the current position (or virtual positions) to virtual positions (or potential locations)
that can be reached.

For the DAG, the average case complexity of the SPFA
algorithm is 𝑂(𝐸), where 𝐸 is the number of edges in the
graph. In this case, each node enters the queue only once.
TheSPFAalgorithm is a breadth-first search algorithm,which
is the common case in our proposed approach. If each node
enters the queue𝑁−1 times, the proposed algorithmdegener-
ates into the Bellman-Ford algorithm with a time complexity
that is the worst-case complexity of that algorithm, that is,
𝑂(𝑁𝐸). The complexity of the SPFA algorithm in the general
case has been proved in [19]. Reference [20] analyzes the
theoretical and experimental worst-case complexity of the
SPFA algorithm in detail.

References [13, 14] propose the KSP and SSP algorithms,
respectively, to compute the relaxation of the integer linear
program. The worst-case complexity of both algorithms is
𝑂(𝐾𝑁 log𝑁), where 𝐾 is the unknown optimal number
of unique tracks and 𝑁 is the frame number of the video
sequence. Note that because of the different values of 𝐾, [14]
uses different methods to obtain the solution. The specific
complexity of this algorithm is related to the value of𝐾.

The average case complexity of our proposed algorithm
is 𝑂(𝐸), which is far less than that of the above mentioned
methods. The worst-case complexity of the SPFA algorithm
is 𝑂(𝑁𝐸), but this almost is never obtained.
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Moreover, like the KSP algorithm, the SPFA algorithm
successfully calculates the global optimal solution, as proved
in [19]. However, SSP with the greedy algorithm as in [14]
cannot obtain the global optimal solution.

4. Target Localization and Long
Sequence Processing

High quality multiobject tracking requires a reliable tracker,
a detector that can accurately segment and locate multiple
objects, and a preprocessing method that can improve the
performance of the algorithm.

4.1. Target Detection and Localization. To obtain the accurate
target for the tracker, we establish a background model with
the improved codebook algorithm and extract the observed
characteristic information of the tracking object by the
foreground/background subtraction method of [21]. Using
the method from [22], we segment objects that were initially
merged together.We then obtain the probability distributions
of the planes of the objects from the detector, and these can
serve as the input to the SPFA algorithm. A few selected
frames of target localization are shown in Figure 3.

Full range tracking in the camera field of view increases
the processing time of the algorithm and consumes a sig-
nificant portion of the limited memory resources. For this
reason, because most of the calculated probabilities of the
objective presence are 0, we can reduce the number of nodes
and computational cost by this characteristic. On the other
hand we limit the potential birth area of targets to reduce the
amount of computation. The proposed method also checks
themaximumdetection probability of each location 𝑘

𝑡
within

a given spatiotemporal neighborhood of each frame 𝑡:

max
‖𝑘𝛼−𝑘𝑡‖<𝜀1
𝑡−𝜀2<𝛼<𝑡+𝜀2

𝜌
𝛼
.

(17)

If the value at a location is below the set threshold, an
object represented by the value is considered unable to reach
the location, and all flows from and to it are removed from
the model.This method can reduce by an order of magnitude
the number of required variables and constraints. In our
experiment, we pruned the graph by a radius of 𝜀

1
= 𝜀
2
= 3.

4.2. Long Sequence Processing. In theory, processing a long
sequence using the SPFA algorithm can yield the global
optimum for tracking time but requires a large amount
of operation time. To address this issue, we split the long
sequence into segments of 100 frames each, which yields good
results with a delay of less than 0.5 seconds between input and
output and can be performed in real time.

For each segment maintaining temporal consistency, we
use the method of multiframe overlay, as shown in Figure 4,
and add the last 10 frames of the previously optimized
segmentation to the first 10 frames of the current one.

We then force the sum of flows of every location of the
first 10 frames of the current frame to be consistent with the
total number of flows of the last locations of the object in

the last 10 frames of the previous one. This effectively solves
the problem of the missing target on the piecewise point:

∀𝑘
𝑡
∈ {1, . . . , 𝐾} , ∑

𝑘𝑗∈𝑁(𝑘𝑖)

𝜑
𝑖,𝑗
= ∑

𝑘𝑖∈𝑁(𝑘𝑡)

𝜑
𝑡,𝑖
= 𝜃
𝑡
, (18)

where 𝜃
𝑡
is the total flow of the last position 𝑘

𝑡
of object

appearing in the last 10 frames of the previous segment. For
the corresponding first position 𝑘

𝑗
of an object appearing in

the first 10 frames of the current segment, the net flow into it is
equal to the flowout of position 𝑘

𝑡
and is also equal to the total

flow out of any potential position 𝑘
𝑖
of any object between 𝑘

𝑡

and 𝑘
𝑗
.This is implemented as an additional constraint in our

model.
If we cannot find the tracking target in the first 10 frames

of the current segment, the proposedmethod searches for the
object in 𝑡 frames after the current one. In our experiment,
we let 𝑡 = 10. If we find the tracking target in a frame within
𝑡
, this frame is the first frame of the current segment; the
tracking fails otherwise.

5. Experimental Results

In our simulation, video sequences with different charac-
teristics were selected from the PETS09, CAVIAR, BEHAV-
EDATA, and ETHMS (BEHAVEDATA, http://groups.inf.ed
.ac.uk/vision/BEHAVEDATA/INTERACTIONS/index.html,
CAVIAR, http://groups.inf.ed.ac.uk/vision/CAVIAR/CAV-
IARDATA1/, ETHMS, http://www.vision.ee.ethz.ch/∼
aess/dataset/, and PETS09, http://www.cvg.rdg.ac.uk/data-
sets/index.html) datasets.The challenges for each of these are
summarized in Table 1. The selected sequences cover almost
all problems that commonly occur in multiobject tracking.

5.1. Parameter Setting. In the training period, a detector
is designed using the background subtraction method of
the improved codebook algorithm model. We combine the
detection result with the activity scope of the object by
foreground/background segment update in real time and
calculate the location of the object with a high probability.
Because the size of the activity scope of the object and the
number of the pixels of the object are not identical in every
sequence, our method can generate 900–1000 detections per
frame in each video sequence. We set the log-likelihood ratio
of each detection process to be the negative score as the results
of the linear detector.

We used a bounded value dynamic model: we define the
cost 𝑐
𝑖,𝑗

between two locations in consecutive frames in the
case of spatial overlap (i.e., an object remains at a location) as
0. The costs from the virtual location to the neighborhood
of birth and end are 𝑐source,birth = 10, 𝑐end,sink = 10,
respectively.Moreover, because global search using SPFA is in
the established adjacency list, finding the shortest path must
be the global optimal solution without auxiliary constraints.

5.2. Evaluation Metrics. Let GT
𝑖,𝑡

be the 𝑖th ground truth
bounding box for the 𝑡th frame, and let TR

𝑖,𝑡
be the tracked

bounding box. 𝐶
𝑖,𝑡
for the 𝑡th frame and 𝑖th object is defined
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Figure 3: Separating merged objects and locating them with the probability distribution.

Table 1: The challenges of the experimental sequences.

Sequence name Occ. Scaling Pose Clutter Ill Dynamic background Blur
Multiple flow view1 √ √ √ √

Threepastshop2 √ √

Sequence3 √ √ √ √ √

S2 L1 view5 √ √ √ √ √

Seq03 view1 √ √ √

Long
sequence

Segment long
sequence

The first
segmentation The second

segmentation
The third

segmentation

· · · · · · · · · · · ·

· · ·

· · ·

· · ·

· · ·

Figure 4: Segment processing of a long sequence.

as the ratio between the area of intersection GT
𝑖,𝑡
∩ TR
𝑖,𝑡
and

the area of union GT
𝑖,𝑡
∪ TR
𝑖,𝑡
[23]:

𝐶
𝑖,𝑡
=
AREA {GT

𝑖,𝑡
∩ TR
𝑖,𝑡
}

AREA {GT
𝑖,𝑡
∪ TR
𝑖,𝑡
}
. (19)

In our experiment, we set the threshold of 𝐶
𝑖,𝑡

to 0.5,
which means that the tracking is successful when the over-
lapping areas of the ground truth bounding box and tracked
bounding box exceed 0.5.

Our results are evaluated using the multiple object track-
ing accuracy (MOTA) and multiple object tracking precision
(MOTP) metrics of the standard CLEAR2006 metrics [24]:

MOTA = 1 −

∑
𝑡
(𝑐
𝑚
(𝑚
𝑡
) + 𝑐
𝑓
(𝑓𝑝
𝑡
) + 𝑐
𝑠
)

∑
𝑡
𝑔
𝑡

, (20)

MOTP =
∑
𝑖,𝑡
𝐶
𝑖,𝑡

∑
𝑡
𝑁𝑚
𝑡

, (21)

where 𝑔
𝑡
is the number of ground truth objects in the 𝑡th

frame, 𝑁𝑚
𝑡
refers to the number of mapped objects in the

𝑡th frame,𝑚
𝑡
represents the missed detection count, and 𝑓𝑝

𝑡

is the false positive count for each frame. 𝑐
𝑠
= log

10
ID-

SWITCHES
𝑡
, where ID-SWITCHES

𝑡
is the number of ID

mismatches in 𝑡 considering the mapping in frame 𝑡 − 1.

We started the count from 1 because of the log function.
𝑐
𝑚

and 𝑐
𝑓

represent, respectively, the cost functions for
missed detections and false positives. The values used for the
weighting functions in (20) are 𝑐

𝑚
= 𝑐
𝑓
= 1. Figure 5 shows

the histograms ofMOTA andMOTP in the experiment using
the SPFA algorithm.

5.3. Analysis of Results. To ensure the unique identification
for each tracking target, we use different colors to indicate the
order.The sequences used in our experiment are fromTable 1.
The detection results are obtained by the process described in
Section 4.1 as the input of our algorithm. We then conduct a
performance test of the multiobject tracking circumstances
of false positives, false negatives, and a dynamic background,
respectively.

5.3.1. Performance Test for False Negatives. The sequences
use Multiple flow view1 and S2 L1 view5 from the PETS09
dataset. We show typical results in Figures 6 and 7. In
particular, the former uses bright yellow coats worn by
pedestrians as the tracking object. Although the probability
of false negatives increases significantly because of occlusion
with nontracking objects, the SPFA algorithm can ensure
persistent tracking (the color of the tracking box has not
changed) for each object in the entire tracking process.
The experiment for S2 L1 view5 verifies the robustness of
the SPFA algorithm when the targets leave the area of
nonrestricted departure and reappear soon.

5.3.2. Performance Test for False Positives. The sequences use
the Threepastshop2 of the CAVIAR dataset and Sequence3
of the BEHAVEDATA dataset. Typical results are shown
in Figures 8 and 9. We used the method from Section 4.1
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Figure 5: MOTA (a) and MOTP (b) measures applied to the results of recently proposed trackers (Zhang’s method 2, SSP, and KSP) and our
SPFA tracker on various experimental sequences.

Figure 6: The typical results of Multiple flow view1 (Frame: 12, 17, 24, 48, 55, and 75).

for detection and localization. Because of the superior solu-
tion and anti-interference of the SPFA, we can stably track
multiple objects in a timely fashion in case of false positives.

5.3.3. Performance Test for Dynamic Background. There are
two conditions that must be satisfied by the sequence of the
experiment.

(1) The available probability distribution of the dynamic
background of the sequence needs to be relatively
consistent. Only in this way can the algorithm quickly
obtain the location of an object for tracking.

(2) The targets should be fixed access areas in the tracking
ground. Because the tracking ground is moving, the
potential area in which the objects can enter and exit
changes.We require the borders of the camera field of
view to be the area for all objects that can enter and
exit.

The sequence uses Seq03view1 from the ETHMS dataset.
We obtain object characteristics by the method of combining
skin color and the method in [25] and show the typical
results in Figure 10. The method of detection and localiza-
tion in Section 4.1 only considers the available probability
distribution of the target characteristic in the tracking ground
and does not relate to the background conditions. Therefore,

the sequence for our experiment requires a consistent proba-
bility distribution.This constraint, in a way, limits the experi-
mental conditions of performance for a dynamic background
but does not affect the conclusion that multiobject tracking
using the SPFA algorithm in a dynamic background is robust.

5.4. Simulation Analysis. All of above experiments were
performed on a Windows XP PC equipped with a 2.7GHz
Pentium (R) Dual-Core CPU and 8GB of memory. The
software platform uses Visual Studio 2010 and Open CV2.2.

We contrasted the SPFA algorithm with three other
algorithms (Zhang’s method 2 [12], KSP [13], and SSP [14])
in two sequences from different datasets (Seq03view1 of
the ETHMS dataset and Sequence3 of the BEHAVEDATA
dataset) with regard to the average tracking errors.The results
are shown in Figure 11.We also compared the algorithmswith
respect to the tracking accuracy. Figure 12 shows detection
rate versus false positives per image (FPPI) for all algorithms.
We use the same detection method detailed in Section 4.1 for
all our experiments.

Figure 11 shows that the tracking errors of these algo-
rithms are not significantly different in cases not involving
occupancy and clutter. However, when tracking an object
in the case of false positives and false negatives for a long
time, our SPFA algorithm exhibits clear superiority. Although
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Figure 7: The typical results of S2 L1 view5 (Frame: 26, 50, 57, 83, 93, and 103).

Figure 8: The typical results of Threepastshop2 (Frame: 375, 453, 459, 465, 484, and 509).

Figure 9: The typical results of Sequence3 (Frame: 2751, 2825, 3430, 3750, 3900, and 5010).

Figure 10: The typical results of Seq03view1 (Frame: 10, 40, 70, 100, 103, and 125).

the occupancy problem in the case of simple assumptions can
be satisfied by Zhang’s method 2, the required assumptions
result in omission and eventually lead to tracking failure
when several false negatives and false positives occur fre-
quently. In Figure 12, when the above algorithms have the
same target detection rate, the SPFA algorithm performs bet-
ter than other algorithms in controlling FPPI.The superiority
of the SPFA algorithm is due to its faster relaxation method
and to finding the global optimal solution more quickly.

With the same target detection method as above, we
compared the false positives generated using SPFA method
with those from the other methods on the ETHMS dataset
and the CAVIAR dataset, as shown in Table 2. The results
show that the SPFA algorithm can track better. Further, as
shown in Figure 13, the run time of the SPFA algorithm
significantly outperforms the other three algorithms.

5.5. Run Time. We evaluated the speed of our SPFA tracking
algorithm on the sequences of the BEHAVEDATA dataset at
25 fps. The curves of the run time for SPFA and the above
algorithms have been shown in Figure 13. The vertical axis
representing run time is plotted on a log scale. The solution
of Zhang’s method 2 does not converge for a significant
running time. When dealing with a sequence of 1000 frames,

Table 2: Our algorithm’s performance compared with the state-of-
the-art methods for the ETHMS and CAVIAR datasets.

Dataset Algorithm False positives per image

ETHMS

Zhang’s method 2 0.97
KSP 0.86
SSP 0.89
SPFA 0.77

CAVIAR

Zhang’s method 2 0.105
KSP 0.057
SSP 0.636
SPFA 0.051

the KSP solver takes approximately 20 seconds and SSP takes
0.9 seconds, but our SPFA solver only takes 0.08 seconds.

6. Conclusions

In this paper, we proposed a reliable tracker with a flow
network framework. In the min-cost flow model established
by the theory of integer program, we then used SPFA
algorithm to relax the integer assumption and to successfully
identify the global optimal solution. The resulting algorithm
can better solve the problems of short-time false positives
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Figure 11: The comparison of the average tracking errors with Sequence3 of the BEHAVEDATA dataset (a) and Seq03view1 of the ETHMS
dataset (b).
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Figure 12: Detection rate versus false positive image on Sequence3 of the BEHAVEDATA dataset (a) and Seq03view1 of the ETHMS dataset
(b).
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Figure 13: The comparison of run time.

and false negatives inmultiobject tracking and is more robust
than state-of-the-art methods. Our proposed method can
quickly find the global optimal solution of the relaxed LP by
using SPFA.

Experiment results indicate that the proposed algorithm
is helpful in improving trajectory consistency and solving
serious occlusion problems between multiple objects and
can satisfy real time measurement requirements. Compared
with other algorithms, there are obvious advantages of SPFA.
Tracking multiple types of targets with a dynamic back-
ground in real time will be the focus of our future research.
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