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Abstract

The least squares fitting algorithm is the most commonly used algorithm in Raman spectroscopy.

In this paper, however, we show that it is sensitive to variations in the background signal when the

signal of interest is weak. To address this problem, we propose a novel algorithm to analyze

measured spectra in Raman spectroscopy. The method is a hybrid least squares and principal

component analysis algorithm. It explicitly accounts for any variations expected in the reference

spectra used in the signal decomposition. We compare the novel algorithm to the least squares

method with a low-order polynomial residual model, and demonstrate the novel algorithm’s

superior performance by comparing quantitative error metrics. Our experiments use both

simulated data and data acquired from an in vitro solution of Raman-enhanced gold nanoparticles.

I. INTRODUCTION

Raman spectroscopy is a powerful technique for analyzing chemical compounds using laser

light. It works by exploiting the Raman effect, which is explained as follows. When

incoming photons hit a sample surface, most photons are scattered elastically, after which

they continue traveling with the same energy and wavelength. However, a very small

fraction of the photons is scattered inelastically, meaning that they lose energy and continue

traveling with a longer wavelength. The amount of energy lost by the photons depends on

the particular molecules they interact with. In fact, the chemical bonds in the molecules
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absorb energy in highly specific patterns. As a result, the Raman scattered photons possess

highly compound-specific wavelength spectra.

Raman spectroscopy exploits the Raman effect in order to identify and quantify compound

concentrations. It does so by exciting a particular sample with photons from a laser beam,

and measuring the highly specific spectral fingerprints of the resulting Raman scattered

photons. Given that they are known a priori, the spectra of compounds of interest can then

be extracted from the measured spectrum using an appropriate signal analysis algorithm.

Raman spectroscopy allows rapid sample analysis of single or multiple compounds (known

as multiplexed analysis) at high detection sensitivities [5]. Amongst its many promising

areas of application, Raman spectroscopy has gained overwhelming interest from the

biomedical research community, where it promises to enable sensitive imaging of

nanoparticles for both diagnostic and therapeutic applications [1], [5].

Various methods have been used to analyze Raman spectra (i.e. detect and potentially

quantify compounds), such as ordinary least squares [5], least squares with a low-order

polynomial background model [3], and principal component analysis [4], [2]. While fast and

quantitative, the ordinary least squares method is sensitive to variations in the background

spectrum and known compound spectra supplied to the algorithm. Lutz et. al [3] addressed

this problem by allowing the background spectrum to vary according to a low-order

polynomial model. While this reduces the sensitivity of the least squares fit to variations in

the background signal, the algorithm cannot accommodate higher-order variations such as

the slight peak shifts and changes in the relative amplitudes of peaks that have been

observed in practice. The principal component analysis (PCA) method is a non-parametric

method that does not require an explicit background model. However, while useful as a

classification method for determining whether or not a particular compound is present, PCA

does not explicitly quantify the signal strength of any compounds present.

In the current work, we develop a novel algorithm that combines the strengths of least

squares algorithms (quantitative) and PCA methods (non-parametric). We test it on both

simulated data and data acquired from an in vitro solution of Raman-enhanced gold

nanoparticles [5]. From here on, we refer to our method as the hybrid least squares and

principal component analysis (HLP) algorithm. Section II presents the mathematical details

of the method. Section III demonstrates the improved performance of the novel method

compared to that of the least squares method with an explicit background model [3].

II. METHODS

A. Least squares method with explicit background model

Here we briefly review the least squares method with a low-order polynomial residual

model, as proposed by Lutz. et al. [3]. The measured spectrum can be modeled as a linear

combination of known spectra (a.k.a. reference spectra):

(1)
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where xl is the modeled intensity at wavelength l, K is the number of reference spectra

provided, Slk is the value of the reference spectrum of the kth compound at wavelength l, and

wk is the weight for the kth compound. In the method proposed by Lutz et al. [3], the spectra

Sk include the compounds of interest as well as an average background signal and the q + 1

components of a qth order polynomial. The concentrations of the various compounds are

then estimated by solving for the weights wk that give the closest fit with the measured

spectrum. This can be done by writing the problem in the matrix form M = SW, where M is

the L×1 vector containing the measured spectrum values ml, S is the L×K matrix of reference

spectra, and W is the K ×1 matrix containing the weights wk. The least squares solution is

then given by Ŵ = S†M, where S† = (ST S)−1 ST is the Moore-Penrose pseudoinverse of the

matrix S.

B. Novel hybrid algorithm (HLP)

As mentioned, the low-order polynomial model used above cannot account for higher-order

variations such as changes in peak position and relative amplitude. Here we extend the

signal model in order to account for such variations. More specifically, we allow each of the

reference spectra Sk (not including low-order polynomial terms) to vary according to the

principal components of variation observed in sets of previous scans of the respective

compounds in isolation1. For each reference spectrum, we penalize deviations from the

mean signal in accordance with the eigenvalues obtained from the principal component

analysis. In essence, this constrains the variations in the reference spectra to the statistically

plausible. Mathematically, we extend the signal model to

(2)

where S̄k is the mean spectrum observed for compound k, and Zpk is the pth principal

component with a non-zero eigenvalue for compound k, observed during prior

characterization experiments. Our objective is now to estimate the coefficients W = {wk}

and C = {cpk} that give the best signal fit. We do so by using a Bayesian probability

framework, where we maximize the posterior probability of W and C, given the measured

signal M, the mean reference spectra S̄, the principal components Z, and the eigenvalues λ

(corresponding to Z). Using Bayes’ theorem and the rules of conditional probability, we can

decompose this posterior probability as

(3)

where  is a normalization constant, and we recognized that P (M|S̄, Z, λ, W, C) = P (M|S̄,

Z, W, C). We also assumed S̄, Z, W, and C are statistically independent of each other.

1Note that our novel algorithm is also capable of incorporating a polynomial background model, which is achieved by adding the
appropriate Sk spectra. However, in our experiments we found that this did not yield further improvements in signal analysis accuracy.
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The first term of Eqn. 3 is the data likelihood term. Assuming statistical independence of the

samples at each wavelength, it is given by

(4)

Assuming a zero-mean Gaussian noise model, the probabilities P (ml|S̄, Z, W, C) are given

by

(5)

where σ is the standard deviation of the noise in the measured signal. It can be estimated by

taking repeated measurements of the same location on a given sample. For the second term

in Eqn. 3, we assume that the coefficients cpk are independent, which yields

(6)

where P is the number of non-zero eigenvalues2. By definition, the eigenvalues λpk obtained

by the principal component analysis are equal to the variance of the coordinates obtained

when projecting all data points on the principal component axis corresponding to λpk, i.e.

. Hence we have

(7)

Next, the prior probabilities P (λ), P (S̄), and P (Z) are independent of W and C, and are

hence of no consequence to our optimization problem. Lastly, we assume a uniform

distribution for P (W).

Following standard practice in optimization problems, we optimize the logarithm of the

Bayesian cost function given in Eqn. 3. This simplifies the optimization problem by

converting multiplications into summations. After dropping constant terms and cancelling

common factors, the cost function can be reduced to

(8)

2In practice, one can select a limited number of principal components corresponding to the largest eigenvalues, since they already
capture most of the variation seen in prior characterization experiments. However, we found that such a selection was unnecessary, as
the computation time was already minimal, and the problem already well-defined by the regularization using the eigenvalues.
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where β = σ2. Note that Eqn. 8 takes the familiar form of a penalized maximum likelihood

(PML) problem, where β functions as the hyperparameter.

The cost function in Eqn. 8 can be efficiently optimized (maximized) by alternatingly

solving it as a standard least squares problem in W, and a Tikhonov regularized least squares

problem in C. Convergence was observed in all experiments after on the order of 100

iterations. For the experiments in Section III, where L = 1015, the time per iteration was

0.02 seconds. All coefficients were initialized with a zero initial guess. The expression for

the update of the coefficients wk is, similar to in Section II-A, given by Ŵn = S†nM, where

S†n is the Moore-Penrose pseudoinverse of the nth estimate of the L × K matrix S, which is

composed of the signals , where  are the latest estimates of cpk.

To obtain the update steps for the coefficients cpk, it is instructive to substitute Eqn. 2 into

Eqn. 8, and to rewrite the latter as

(9)

where , and  are the latest estimates of wk. To formulate our update

step, we store the elements pl into an L×1 vector Q, and the elements  in an L×KP

matrix A = {wkZlpk}. The matrix C is of size KP ×1. Maximizing Eqn. 9 is then equivalent to

minimizing the cost function

(10)

where , and Iσ′ is a KP × KP diagonal matrix that contains the values 

along its diagonal entries. Eqn. 10 is a standard Tikhonov regularized least squares problem,

and has the explicit solution

(11)

III. RESULTS

Here we compare the performance of the least squares algorithm using a third-order

polynomial background model (LS-3P)3 to that of our hybrid least squares PCA (HLP)

algorithm, for various nanoparticle signal strengths (see below). We present preliminary

results for cases where K = 2. In other words, the signals considered contain one compound

spectrum of interest and one significant background signal.

3The third order polynomial was found to give optimal results for similar Raman signals as the ones used here by Lutz et al. [3].
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A. Simulation results

In this section, we simulated the presence of a signal of interest within a background signal.

Both signals were subject to a realistic amount of variability. The experiment was repeated

for various relative amplitudes of the signal of interest, and was designed to characterize the

accuracy with which the weight of the signal of interest could be recovered, in spite of

variability in both the signal of interest and the background signal. To obtain a realistic

amount of signal variability, we collected real Raman spectroscopy signals from a 0.8nM

solution of Raman-enhanced S440 gold nanoparticles produced by Oxonica (now owned by

Cabot Security Systems, Boston, MA, USA), as well as signals from a paraffin background

material. By performing raster scans across the solution as well as background material, we

obtained 106 signals for the S440 nanoparticle solution, and 476 signals for the paraffin

background. The collection of all signals and the mean signal for each set are shown in Fig.

1.

For each simulated S440 signal strength, we performed a series of leave-one-out

experiments. In each such experiment, we picked one S440 signal, and one paraffin

background signal. The remaining signals in our data base were then used to compute the

mean S440 and background signals, as well as their respective principal components. We

then simulated a measurement signal by weighting the chosen S440 signal and adding it to

the chosen paraffin background signal4. This was done for S440 weights of 20, 2−1, …, 2−12,

and 2−13.

The performance of each method was evaluated using the fractional error, defined as

, where West and Wtrue are the estimated and true weights of the S440 signal

(which are roughly linearly related to the nanoparticle concentration). An example spectrum,

as well as the fitted spectra by LS-3P and HLP are shown in Fig. 2(a). The fractional errors,

as well as their mean and standard deviation are shown for both algorithms in Fig. 2(b–d).

The HLP algorithm clearly outperforms the LS-3P algorithm at all weights/concentration

levels for the S440 signal, and most markedly so at lower strengths of the S440 signal.

B. Experimental results

To demonstrate that HLP outperforms LS-3P on experimental data as well, we designed

another example where the background signal varied significantly. We placed eight drops of

decreasing concentrations of S440 nanoparticles on paraffin, which was in turn placed on a

background of various colors (see Fig. 3). The colors each had distinct Raman spectra, and

were obtained by printing a color image of a matrix of random numbers between 0 and 1.

The mean signal, as well as the collection of all signals obtained from a raster scan of the

background are shown in Fig. 4. The first drop had a concentration of 0.8nM, and

subsequent drops were obtained by each time halving the concentration. The logarithm-

transformed (base 2) images of the estimated S440 signal strength are shown in Fig. 3 for

both the LS-3P and HLP algorithms. The black pixels in the images are points for which the

algorithms produced negative weights. The signal estimates by HLP and LS-3P are almost

identical when the nanoparticle signal strength is high. However, HLP proves far more

4Hence the total number of combination experiments per simulated S440 signal strength was 106 × 476 = 50, 456.
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stable than LS-3P when the nanoparticle signal strength is low (i.e. when variations in the

background signal become more significant). The relationship between the drop

concentrations and the estimated signal weights was found to be approximately linear (not

shown due to space limitations).

IV. CONCLUSIONS AND FURTHER WORK

A. Conclusions

In this work, we showed that the LS-3P algorithm for Raman spectroscopy is sensitive to

variations in the background signal when the nanoparticle signal of interest is weak. We

proposed a novel algorithm (HLP) that is more robust to such background variations.

Improved performance was shown for both simulated and experimental data. The simulated

data was generated by digitally combining weighted instances of experimentally obtained

background and nanoparticle spectra. The experimental data was obtained from serially

diluted in vitro solutions of Raman-enhanced gold nanoparticles.

B. Further work

While the background signal in our experimental data was of an artificial nature (obtained

from a color printout from an office printer), we expect the HLP algorithm to become useful

for future in vivo experiments, where inherent tissue variations or variations in ambient light

may cause background signal variations. A likely example is joint white light and Raman

colonoscopy, where both the tissue background and the intensity of the LED light reflecting

from the colon wall may vary. The varying contributions of ambient light cannot be

generally captured by a low-order polynomial. In our future work, we will also further

characterize the quantitative accuracy of the HLP algorithm in terms of its ability to estimate

the concentration of one or more nanoparticle solutions. Second, we will evaluate the merits

of a Poisson instead of Gaussian noise model in decreasing the lowest detectable

nanoparticle concentration. Third, we will examine the performance of HLP for multiplexed

spectroscopy (K > 2). Lastly, we will evaluate the performance of HLP for in vivo imaging

data (eg., in mice or in pig colon).
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Fig. 1.
Acquired signals and mean signal. Left: S440 nanoparticle. Right: paraffin background.
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Fig. 2.
(a) Example of fitted spectra and (b–d) fractional errors by the LS-3P and HLP algorithms.
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Fig. 3.
Top: Experimental phantom. Middle: log2 of S440 signal by LS-3P. Bottom: log2 of S440

signal by HLP.
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Fig. 4.
Signals from background scan. Left: all signals. Right: mean signal.
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