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Genomic selection is an upgrading form of marker-assisted selection
for quantitative traits, and it differs from the traditional marker-
assisted selection in that markers in the entire genome are used to
predict genetic values and the QTL detection step is skipped.
Genomic selection holds the promise to be more efficient than the
traditional marker-assisted selection for traits controlled by poly-
genes. Genomic selection for pure breed improvement is based on
marker information and thus leads to cost-saving due to early
selection before phenotypes are measured. When applied to hybrid
breeding, genomic selection is anticipated to be even more efficient
because genotypes of hybrids are predetermined by their inbred
parents. Hybrid breeding has been an important tool to increase
crop productivity. Here we proposed and applied an advanced
method to predict hybrid performance, in which a subset of all
potential hybrids is used as a training sample to predict trait values
of all potential hybrids. The method is called genomic best linear
unbiased prediction. The technology applied to hybrids is called
genomic hybrid breeding. We used 278 randomly selected hybrids
derived from 210 recombinant inbred lines of rice as a training sam-
ple and predicted all 21,945 potential hybrids. The average yield of
top 100 selection shows a 16% increase compared with the average
yield of all potential hybrids. The new strategy of marker-guided
prediction of hybrid yields serves as a proof of concept for a new
technology that may potentially revolutionize hybrid breeding.

hybrid rice | IMF2 | mixed model | restricted maximum likelihood |
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The mission of plant breeding is to develop high-yield varieties
to increase crop productivity to meet the need of human

population. Hybrid breeding has been proved to be an important
tool to improve yield. The most successful examples are hybrid
maize and rice, which have greatly increased the global food security.
Despite the successes of hybrid breeding programs, selection of
desirable hybrids has largely been a practice of trial and error in the
past. It takes much luck to find desired matches between selected
parents. The biggest challenge in hybrid breeding is how to predict
the performance of future crosses based on existing data. Large
efforts have been made in the past to develop methods for hybrid
prediction, with the goal to facilitate hybrid breeding by obtaining
better hybrids with fewer crosses. A common approach in the early
days was to find correlations between marker polymorphisms and
hybrid performance in crosses involving diverse germplasms. Ex-
tensive studies in corn and rice using this approach have produced
variable results depending on the germplasms used in the studies (1).
Bernardo (2) applied best linear unbiased prediction technology

to predict hybrid corn. He used existing hybrids and the pedigree
relationship between them and untested hybrids to make pre-
diction. Recent development in genomic research has greatly
increased the availability of molecular makers to easily cover the
entire genome, which are used to calculate the relationship matrix,
leading to a method called genomic best linear unbiased predic-
tion (GBLUP) (3). This method has been used to predict heterotic
traits in maize hybrids (4). However, no attempt has been made to
incorporate nonadditive effects into the prediction models.
Genomic selection aims to use whole-genome markers to pre-

dict future individuals, and it differs from traditional predictions in

that the marker-detection step is skipped; instead, all markers are
used to predict genomic values. Theoretically, when the number
of markers is larger than the sample size, there is no unique es-
timation of effects, but the total genomic value remains estimable.
Therefore, genomic prediction does not require accurate esti-
mates of effects; it concerns the predictability resulted from the
combination of all markers and their collective effects. Such ge-
nomic prediction has been applied to many agricultural species,
including dairy cattle (5), crops (6), mice (7), and even humans
(8). However, this approach has not been used to predict hybrid
performance, an unexplored area that has a great potential to
significantly improve efficiency of hybrid breeding.
Current methods for genomic prediction include Bayes B (9),

empirical Bayes (10), least absolute shrinkage selection operator
(LASSO) (11), and GBLUP (3). The first three procedures are
classified into a category called selective shrinkage. Although
simulation studies repeatedly showed that selective shrinkage is
superior over GBLUP (12), experimental studies using cross-
validation often showed similar performance (13), and GBLUP
can be superior if a trait is controlled largely by polygenes, which
implies that GBLUP may be more robust than the selective
shrinkage methods. These genomic selection tools are mainly
based on the additive model. Incorporating nonadditive var-
iances is the next step in genomic prediction, but little study has
been done so far. Incorporating dominance has been shown to be
effective (14), but the benefit of incorporating epistasis has never
been correctly demonstrated. One goal of this study is to in-
vestigate the effect of nonadditive variances on the efficiency of
genomic prediction for hybrid performance.

Results
Predicting Hybrid Performance Using GBLUP.Results of the restricted
maximum likelihood (REML) analysis under the additive model
are summarized in Table 1. The narrow sense heritability, defined
as the ratio of the additive variance to the phenotypic variance,
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ranges from 0.38 for yield to 0.84 for 1,000 grain weight (KGW).
The goodness of fit (squared correlation between observed and
predicted trait values) varies from 0.51 for yield to 0.89 for KGW,
which are all relatively high. The predictability drawn from fivefold
cross-validation is much lower than the goodness of fit. Yield has
the lowest predictability (0.13), and KGW has the highest pre-
dictability (0.68). The other two traits have predictabilities between
the two. This analysis shows that genomic selection will be effective
for all traits, especially for KGW. The difference between goodness
of fit and predictability will be explained elsewhere in the text.

Comparison of GBLUP with LASSO and SSVS. The estimated marker
effects (including the intercepts) of GBLUP for all traits are given
in Dataset S1, where the results of the two competing methods are
stored in separate sheets named LASSO and stochastic search
variable selection (SSVS), respectively. The predictabilities drawn
from fivefold cross-validation are listed in Table 2 along with the
predictability from GBLUP. Results of the fivefold cross-validation
depend on the partitioning of the sample. We randomly partitioned
the sample into five parts of equal size and repeated the parti-
tioning 20 times. Table 2 gives the average predictability for each
trait under each method. The LASSO method barely outperformed
GBLUP. The SSVS method is the worst one, especially for trait
yield, which is 0.0943, compared with 0.1264 for GBLUP and 0.1601
for LASSO. In general, the three methods produced similar results
for three of the four traits.

GBLUP Incorporating Epistasis. The immortalized F2 (IMF2) pop-
ulation is unique in the sense that we can incorporate dominance
and all four types of epistatic variances into the model. There are
six genetic variance components, which are additive (a), domi-
nance (d), additive by additive (aa), dominance by dominance
(dd), additive by dominance (ad), and dominance by additive (da)
variance components. The estimated variance components are
given in Table 3, where ad and da are combined into a single
composite term named (ad). Yield (YIELD) and tiller number
(TILLER) are largely controlled by the (ad) interactions. Additive
variance plays a major role for grain number (GRAIN) and KGW.
None of the traits are controlled by the dominance variance. We
also evaluated six different models, designated models 1–6, where
the model number also represents the model size (number of ge-
netic variances included in the model). For example, model 4 means
that the model contains four genetic variance components, a, d,
aa, and dd. Model 6 means that all six genetic variances are
included (see Table S1 for model definitions).
Fig. 1 shows the goodness of fit (Upper) and the predictability

(Lower) plotted against the model size. Both goodness of fit and
predictability were expressed as the squared correlation between
observed and predicted phenotypes, but the predicted pheno-
types were calculated using different approaches. For the
goodness of fit, individuals predicted were also used to estimate
parameters. For the predictability, the predicted values were
drawn from fivefold cross-validation where individuals predicted
did not contribute to parameter estimation. As the model size
grows, the goodness of fit also grows until it reaches perfect fit
when all six genetic variances are included in the model. To our
surprise, the predictability does not show noticeable change as
the model grows. The conclusion is that adding dominance and
epistatic variances did not help genomic prediction. The estimated

variance components for all traits are given in Table S2 for all six
models. The lack of improvement is due to the large SEs of the
estimated variances (Figs. S1 and S2 and Table S3) and the high
correlation between different estimated variance components
(Table S4). Large sample sizes are required to demonstrate the
benefit of adding epistatic variances.

Simulation Study on Prediction Under Epistasis. We performed a
simulation study to demonstrate the effects of sample size and
model size on model predictability. A hypothetic trait was sim-
ulated with equal values for all variance components (six genetic
variances and a residual variance). We took the genotypes of n
randomly selected hybrids (of 21,945 potential hybrids) as the
true genotypes, where n ranged from 200 to 1,000 incremented
by 100. The results are illustrated in Fig. 2. The goodness of fit
started at ∼60% (additive variance only) and reached 100% for
the full model (all six variance components) under all sample
sizes. Small samples sizes tend to have a higher goodness of fit
(Fig. 2, Upper). The predictability (Fig. 2, Lower) shows that
adding dominance has increased the predictability under all
sample sizes, but no further improvement are observed when the
sample sizes are below n = 500. When n > 500, the predictability
has progressively increased as the model size grows. For large
sample sizes, there is benefit in prediction by including epistatic
variances in the model. Our simulation experiments demonstrated
the benefit of adding dominance for all sample sizes, but the real
data analysis did not support this because we actually simulated
dominance in the experiment. However, in the real experiment,
dominance may be absent or very small. Further simulation study
showed that it is safe to include dominance and epistatic variances
in the model, even if the trait is only controlled by additive variance.

Prediction of Genomic Values for Future Crosses. The 278 hybrids
analyzed in this experiment are a random sample of all potential
crosses, where 210 is the number of recombinant inbred lines
(RILs) that initiated the current hybrid population. From the
available RILs, we deduced the genotypes of all potential hybrids.
We now try to predict the phenotypic values of the 21,667
remaining hybrids using the genetic parameters given in Table 1
under the additive model. The extended kinship matrix for all of the
21,945 hybrids is partitioned as follows:

K =
�
K11 K12
K21 K22

�
; [1]

where K11 is the kinship matrix (278× 278) for the current sample,
K22 is the kinship matrix (21; 667× 21; 667) for the 21; 667 future
hybrids, and K21 is the relationship matrix (21; 667× 278) between
the future hybrids and the current hybrids. The predicted pheno-
typic values for all of the 21; 945 crosses are given in Dataset S2.
We also predicted the genomic values using the LASSO and SSVS
methods; their predicted genomic values are also given in Dataset
S2. The Spearman rank correlation coefficients of the predicted
genomic values between the three methods are given in Table S5.
The correlations are all high except the correlation between
GBLUP and SSVS for yield, which is 0.65. The highest correla-
tion occurs between GBLUP and LASSO for KGW (0.98).
We then sorted the predicted phenotypic values in descending

order and calculated the running average. For example, if we

Table 1. Parameters estimated using REML method for four
traits in rice under the additive model

Parameter YIELD TILLER GRAIN KGW

Additive variance 14.4912 1.3879 254.6365 2.8200
Residual variance 23.3308 1.3998 124.1658 0.5472
Heritability 0.3831 0.4979 0.6722 0.8375
Goodness of fit 0.5148 0.6052 0.7280 0.8980
Predictability 0.1269 0.2259 0.3471 0.6797

Table 2. Comparison of the predictability for three methods
drawn from fivefold cross-validation analysis

Trait GBLUP LASSO SSVS

YIELD 0.1264 0.1601 0.0943
TILLER 0.2259 0.2046 0.2115
GRAIN 0.3471 0.3706 0.3527
KGW 0.6797 0.6868 0.6720
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choose the top 100 crosses, the mean predicted breeding value
of the top 100 crosses will be 50.5589 ± 0.23034 for yield. The
average predicted genomic value of the entire hybrid population
for yield is 43.6152. With genomic selection of the top 100 crosses,
we expect to gain 50:55− 43:61= 6:94 g in yield. Breeders can
actually produce these 100 crosses based on the result of this
study. Fig. 3 shows the average predicted genomic value for
each trait against the top crosses selected for breeding (figure
only shows the plot up to the top 500 crosses).
Among the 21,667 potential crosses, we field evaluated 105

crosses in year 2012. These crosses were not included in the training
sample, but their trait values have been predicted from the training
sample. We calculated the squared correlation between the pre-
dicted and the observed trait values for the 105 crosses. This
squared correlation is the actual predictability of our model under
the assumption of no G×E interaction. The predictabilities are
given in Table 4 for the four traits using the three competing
methods. YIELD and TILLER have lost their predictability due
to G×E interaction. The predictabilities for GRAIN and KGW
remain relatively high, although both are lower than the cross-
validation generated predictabilities due to possible G×E in-
teraction. Recall that our training sample was collected in years
1998 and 1999, but the 105 additional crosses were collected in
year 2012, which experienced an unusually high temperature. For
traits with strong G×E interaction, such as YIELD and TILLER,
our model can fail to predict the genomic values. However, her-
itable traits with less G×E interaction, such as GRAIN and KGW,
are highly predictable.

Discussion
The study demonstrated the application of advanced technolo-
gies, including genotype by sequencing and new statistical mod-
els to hybrid prediction. We used 278 existing hybrids derived
from 210 RIL parents to predict the genomic values of all 21,945
potential hybrids for yield component traits in rice. The predicted
best-performing hybrids can be generated from the original
RIL parents. Genotypes of the future hybrids are not measured but
determined from their inbred parents. The top crosses can be used
immediately and converted to high-performing hybrids. What is the
optimal proportion of the top crosses that should be selected for
hybrid breeding? Two factors should be considered: one is the es-
timation error of the average performance of the selected top
crosses. From Fig. 3, it is obvious that we should not select only the
top five crosses because the average predicted value has a large
prediction error. We need to keep at least 10 top crosses to reduce
the prediction error. The other point to consider is that the genetic
diversity of the top crosses tends to be narrow relative to that of
the entire hybrid population. To maintain a high genetic di-
versity, one should select as many top crosses as possible, but the
average predicted genomic value should remain high. For ex-
ample, if we select the top 100 crosses (of 21,945 hybrids) for
yield, the gain would be 50:56− 43:62= 6:94± 0:23 g per plant.
This number represents a substantial gain in yield. Similar gains
would also be obtained with other traits, which would potentially
bring a substantial improvement of future hybrids. The pre-
dictability for yield (∼0.1) appears to be low; yet the 6:94=
43:62= 16% gain obtained from selection of the top 100 hybrids
would mean a significant achievement. How can we get the high
gain with the low predictability? The key relies on the high se-
lection intensity, represented by the small proportion selected
(100/21,945 = 0.004556). Recall that selection response equals
the product of the heritability and the selection differential,

Fig. 1. Goodness of fit (Upper) and predictability (Lower) of four traits
plotted against model size, where the model size is determined by the number
of variance components.

Fig. 2. Effects of model size and sample size on the goodness of fit (Upper)
and the predictability (Lower) of genomic prediction.

Table 3. Estimated variances and proportions (in parentheses)
of phenotypic variance contributed by the variances

Trait a aa dd (ad)* e†

YIELD 0.00 (0.00) 7.01 (0.18) 5.27 (0.14) 23.83 (0.63) 1.96 (0.05)
TILLER 0.45 (0.17) 0.59 (0.22) 0.00 (0.00) 1.25 (0.47) 0.37 (0.14)
GRAIN 150.91 (0.42) 66.84 (0.19) 6.58 (0.02) 110.18 (0.31) 21.51 (0.06)
KGW 2.27 (0.73) 0.31 (0.10) 0.23 (0.07) 0.19 (0.06) 0.11 (0.04)

*Composite additive × dominance interaction that represents the sum of ad
and da.
†Residual variance. The dominance variance (d) is zero for all traits.
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called the breeder’s equation. The predictability drawn from
cross-validation is analogous to the heritability, and the pro-
portion selected is inversely related to the selection differential.
Therefore, the marker-guided selection of hybrids may achieve
high gain largely through the high selection intensity.
One special feature of this experiment was that all of the RILs

are from the same two parents, and this will limit the inference
space of the results, i.e., the estimated parameters cannot be
used to predict crosses of RILs that are not derived from the two
parents. However, these types of crosses (IMF2) represent the
best scenario to capture genetic variation of the parents because
the F2-like genotypes provide the largest possible genetic varia-
tion. In addition, the two inbred lines that initiated the IMF2 were
carefully selected to represent the best germplasms in hybrid rice
breeding; they are the parents of Shanyou 63, the most popular

rice hybrid in China and other Asian countries. Moreover, many
widely used hybrids have one or the other line as their parents.
Furthermore, most of the parental lines now commonly used in
hybrid rice breeding programs have parentage of the two lines.
Therefore, the result obtained here is important in its own rights.
Our cross-validation analysis showed that incorporating non-

additive variances did not show improvement in prediction,
which may give the impression that we are not taking advantage
of special combining ability and using only the general combining
ability to predict heterosis. In fact, we are predicting hybrid
performance, not heterosis, which is defined as the difference of
the hybrid performance from the midparent performance. It is
also important to emphasize that the six genetic kinship matrices
are highly correlated. Therefore, the additive kinship matrix may
already capture much information about the other kinship matrices.
We need a very large sample size to well-separate the six variance
components due to the multicollinearity of the kinship matrices.
For general application to a broader range of germplasms,

imagine that if a half-diallel cross is to be conducted from 1,000
varieties, there would be 1; 000× ð1; 000− 1Þ=2= 499; 500 possi-
ble hybrids. If the top 100 hybrids are selected, the proportion
selected would be 100=499; 500= 0:0002; even a low predictability
would be translated into a huge gain. However, it is practically
impossible to conduct a half-diallel cross in such a large scale. An
experimental design involving a subset of the crosses has to be
used. Such a design is called partial diallel cross. For example, an
experiment with 500 crosses is certainly realistic. Parameters
estimated from the 500 hybrids can be used to predict all of the
499,500 potential hybrids, provided that the 500 crosses are

Fig. 3. Average predicted genomic value of selected
top crosses plotted against the number of crosses
selected. The two dotted curves define the 95%
confidence intervals of the mean predicted genomic
value. The minimum value of the y axis for each trait
is the average predicted genomic value for that trait.
The plot is truncated at 500, and the total number of
top crosses can run to 21,945 (all potential crosses).

Table 4. Predictability (squared correlation between predicted
and observed trait values) for 105 additional crosses evaluated in
year 2012 using three competing methods

Trait GBLUP LASSO SSVS

YIELD* 0.0053 0.0014 0.0076
TILLER 0.0727 0.0566 0.0773
GRAIN 0.2685 0.2473 0.2862
KGW 0.6107 0.6397 0.6378

*Predictabilities for YIELD are not significantly different from zero. All other
predictabilities listed are significant.
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selected in such a way that their genome composition represents
the parental genomes as uniformly as possible. Further study on the
optimal design should be the first priority of genomic hybrid
breeding. As discussed earlier, IMF2 represents the best scenario
for genetic analysis aiming to detect the difference between the two
parents. Crosses from randomly selected inbred lines (not derived
from two parents) do not share the same features as the IMF2
crosses. Therefore, detecting nonadditive variances, especially the
epistatic variances, can be difficult. This argument is true for de-
tecting individual pairwise epistatic variance. In our prediction
model, we used genome-wide epistasis for prediction.Although, each
pair of loci may be hard to detect because of the rare combination of
some genotypes, all these rare events are given the same variance and
thus all are combined together. Therefore, the genome-wide epistatic
variances may not be as hard to detect as pairwise epistatic effects. It
is the multicollinearity of the kinship matrices that causes the diffi-
culty of separation. Therefore, predicting hybrid performance using
a large number of inbred lines may be as efficient as IMF2 crosses
and certainly better in terms of the broader inference space.
We also compared the performance of three different statistical

methods to ensure that there are no artifacts caused by human
errors in any single method. Three methods produced very similar
results. Theoretically, selective shrinkage methods (LASSO and
SSVS) perform better for traits controlled by a few large QTL,
whereas GBLUP performs better for traits controlled under the
infinitesimal model. GBLUP is more robust than the other methods
because it does not depend on estimated marker effects, and has an
additional advantage of being able to incorporate epistatic variances.
In real-life experiments, any one of the three methods may be used
under the additive and dominance model. If software packages are
available, all methods should be tried to cross-confirm the results.
We reported the results of hybrid prediction under the main

effect model, models incorporating dominance and epistatic effects
were also investigated (see SI Text for methods and results incor-
porating epistasis). We originally hoped to demonstrate some im-
provement of the epistatic model over the additive model. To our
surprise, there was no noticeable improvement; this does not
disqualify the epistatic model because our training sample size is
not large enough. The fact that the simple additive model per-
formed equally well as the nonadditive models does not mean
that nonadditive variances are not important to these traits. These
additional variances are mostly captured by the additive variance
because of the high correlations among the different types of
kinship matrices (Table S4). Increasing sample size may not nec-
essarily help to decrease the correlations of the kinship matrices
but will reduce the estimation errors of different variance com-
ponents, which in turn will improve prediction.

Materials and Methods
The rice population was constructed by randomly dividing 240 RILs derived
from a cross between two indica rice, Zhenshan 97 and Minghui 63, into two
groups and pairing lines in the two groups at random to create 120 crosses
(15). Two additional rounds of crossing resulted in 360 crosses, IMF2. The
two inbred lines that initiated the IMF2 were carefully selected to represent
the best germplasms in hybrid rice breeding.

Field Data and Genotyping of the Population. Field data of yield (YIELD),
number of tillers per plant (TILLER), number of grains per panicle (GRAIN), and
1,000grainweight (KGW)for the IMF2populationand theRILSwerecollected in
the 1998 and 1999 rice-growing seasons from replicated field trials on the ex-
perimental farm of Huazhong Agricultural University (15). The RILs were gen-
otyped using next-generation sequencing (16). More than 250,000 high-density
SNP markers were obtained to infer recombination breakpoints (crossovers)
and then construct bins. The 1,619 bins were treated as markers, and the
genotypes of the hybrids in the IMF2were deduced based on the bin genotypes
of the RILs. Only 278 of the 360 crosses were available in both phenotypes and
bin genotypes. For each trait, there were two temporal replications (years 1998
and 1999). The phenotypic values of the two replicates were pooled for each
cross after removing the year effect using yj = 1

2½ðyj1 − y1Þ+ ðyj2 − y2Þ�, where y1
and y2 are the mean values of the trait measured in 1998 and 1999, re-
spectively. This pooled trait value was treated as the actual phenotypic value
for analysis. Apparently, we ignored G×E effects, if there were any.

Statistical Methods. Three methods were used to predict hybrid performance:
GBLUP (3), LASSO (11), and SSVS (17). The LASSO and SSVS methods are well
known in statistics and in the genomic selection community, and the GBLUP
method is not as familiar to the plant-breeding community. In addition, we
adopted an efficient algorithm to perform variance component analysis for GBLUP.
Therefore, GBLUPwill be described inmore detail than the other twomethods.
Mixed model. Let y be an n×1 vector for the phenotypic values of a quantita-
tive trait measured from n individuals of a diploid population with genotypes
denoted by A1A1, A1A2, and A2A2, respectively. We first numerically coded the
genotype of individual j at locus k by a variable Z with Zjk =1 for A1A1, Zjk = 0
for A1A2 and Zjk =−1 for A2A2. The linear model that includes all m markers is

y =Xβ+
Xm
k=1

Zkγk + «, [2]

where X is an n×q design matrix, β is a q× 1 vector of nongenetic effects
(called fixed effects), Zk = fZjkg is an n× 1 vector for the genotype indicator
variable of all n individuals for marker k, γk is the effect of marker k, and «

is a vector of residual errors with an assumed Nð0,Iσ2Þ distribution. The
residual variance σ2 is an unknown parameter. Assume that all marker
effects follow a normal distribution with mean zero and a common vari-
ance, i.e., γk ∼N

�
0, 1mϕ

2
�
,∀k= 1,:::,m, where ϕ2 is called the polygenic vari-

ance. The expectation of y is EðyÞ=Xβ and the variance matrix is
varðyÞ=V =Kϕ2 + Iσ2 = ðKλ+ IÞσ2, where λ=ϕ2=σ2 is the variance ratio and
K = 1

m

Pm
k=1ZkZ

T
k is a marker-generated kinship matrix, which measures the

genetic similarity of all individuals in the sample. The REML method was
used to estimate the variance ratio. The log likelihood function is

LðλÞ=−
1
2
ln
��V��− 1

2
ðy −XβÞTV−1ðy −XβÞ− 1

2
ln
��XTV−1X

��, [3]

where β is substituted by β = ðXTV−1XÞXTV−1y and σ2 by σ2 = 1
n−q

ððy −XβÞÞTV−1ðy −XβÞ. Therefore, the likelihood function only involves λ.
Such a likelihood function is called the profiled likelihood function.
When n is very large, the eigen-decomposition algorithm can be used to estimate
λ, which is briefly described as follows. The eigen-decomposition is K =UDUT ,
where U is the eigenvector (an n×n matrix) and D=diagfδ1,:::,δng is the ei-
genvalue (a diagonal matrix). The two matrices, U and D, are obtained using
marker information only before the REML analysis. With this algorithm, the
variance matrix is rewritten as V = ðUDUT λ+ IÞσ2. The inverse and determinant
of V are calculated using V−1 =UðDλ+ IÞ−1UT=σ2 and

��V ��  = ��Dλ+ I
��ðσ2Þn, re-

spectively. Because matrix Dλ+ I is diagonal, the inverse and determinant
can be computed instantly using ðDλ+ IÞ−1 =diagfðλδ1 + 1Þ−1,⋯, ðλδn + 1Þ−1g
and

��Dλ+ I
��=∏n

j=1ðλδj + 1Þ. Any numerical optimization algorithm can be used
to search for the REML estimate of λ, e.g., the Newton’s iterative method.

The model goodness of fit is expressed as the squared correlation co-
efficient between the observed (y) and the predicted (ŷ) phenotypic values,
where the latter were calculated using ŷ =Xβ̂+ ϕ̂2KV̂

−1ðy −Xβ̂Þ where
V̂

−1
=UðDλ̂+ IÞ−1UT=σ̂2. The model goodness of fit is not the same as the

model predictability because individuals predicted also contribute to pa-
rameter estimation. The predictability should be obtained using an indepen-
dent validation sample or via cross-validation where individuals predicted
should not contribute to parameter estimation.
Genomic best linear unbiased prediction. Let us define ξ=

Pm
k=1Zkγk as the

polygenic effect (the sumof allmarker effects) and rewrite Eq. 2by y = Xβ+ ξ+ «.
Denote the polygenic covariance matrix by varðξÞ=Kϕ2 and the residual co-
variancematrix by varð«Þ= Iσ2. Suppose thatwehave two independent samples
collected from the same population. One sample contains n1 individuals with
both phenotypes and genotypes, denoted by sample one. The other sample
contains n2 individuals with genotypes only, denoted by sample two. The
models for the phenotypic values of the two samples are written together as

�
y1
y2

�
=
�
X1β
X2β

�
+
�
ξ1
ξ2

�
+
�
«1
«2

�
, [4]

where y1 is a vector of length n1 for the observed phenotypic values from
sample 1 and y2 is a vector of length n2 for the unobserved phenotypes for
individuals from sample 2. The purpose of genomic selection is to predict the
polygenic values for individuals in sample 2 using observed phenotypes for
individuals in sample 1. The GBLUP estimate of ξ2 is interpreted as the
conditional expectation of ξ2 given y1, denoted by Eðξ2jy2Þ. The predicted
phenotypic values for individuals of sample 2 are

ŷ2 =X2β̂+ ϕ̂
2
K21

�
K11ϕ̂

2
+ Iσ̂2

�−1�
y1 −X1β̂

�
: [5]

In the future when y2 is measured, we will be able to calculate the pre-
dictability using the R2

yŷ = cov2ðy2,ŷ2Þ=½varðy2Þvarðŷ2Þ�. The GBLUP method of
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genomic prediction does not require estimation of marker effects. The in-
formation to predict the genomic values of sample 2 comes from the genomic
covariance between the unobserved and the observed individuals, K21ϕ

2. We
predict the phenotypic value of a new individual in sample 2 by comparing
marker genotypes of the new individual with the genotypes of individuals in
sample 1, which is analogous to comparing DNA sample of a suspect to the
DNA database to determine the criminal status of the suspect. In other words,
genomic selection using GBLUP requires a database (the training sample)
containing both the phenotypes of traits and the genotypes of markers.

Alternatively, estimated polygenic effects can be converted into estimated
marker effects using the following equation, γ̂ = EðγjξÞ= λ̂ZT ðλ̂ZZT +mInÞ−1
ðy −Xβ̂Þ, which are then used to predict the genomic values of future indi-
viduals. This approach of genomic selection (by estimating γ) does not need
to store the marker genotypes and the trait phenotypes for the training
sample. Information of those types has already been incorporated into the
estimated marker effects. Details about estimation of marker effects using
GBLUP are given in SI Text.
LASSO and SSVS. Two additional models were compared with the GBLUP
method, which are the LASSO method and the SSVS method; the latter is also
called Bayes B (9) and is the very first method for genomic selection. Both
methods use the model given in Eq. 2, i.e., they directly estimate marker
effects in the training sample and predict the genomic values for individuals
in the testing sample. The LASSO method minimizes a penalized sum of
squares and was implemented using the GlmNet/R program (18) in this
study. The SSVS method is a Markov chain Monte Carlo (MCMC) sampling-
based method; it assumes that eachmarker effect has a mixture of two normal
distributions, described as γk ∼ ηkNð0,ΔÞ+ ð1−ηÞkNð0,δÞ, where Δ= 1; 000 and
δ=1=Δ are preset by the investigator. The mixing label ηk ∼BernalliðπÞ is a
binary variable to indicate whether γk is from Nð0,ΔÞ or Nð0,δÞ distribution.
The situation of γk from Nð0,ΔÞ distribution is equivalent to the effect being
included in the model. Finally, π ∼betað1; 1Þ is a beta variable representing
the proportion of the effects included in the model relative to the total
number of markers in the dataset. All parameters were sampled via the
MCMC algorithm. The SSVS algorithm was implemented using a SAS/IML
program written by S.X. (10).

The three methods (GBLUP, LASSO, and SSVS) were compared using the
predictability drawn from fivefold cross-validation, in which four parts of the
sample were used to estimate parameters for prediction of the phenotypic
values in the remaining part of the sample. Eventually, each individual was
predicted once and used four times to estimate parameters. The squared
Pearson correlation coefficient between the observed and the predicted
phenotypic values is a measure of the predictability.
Incorporation of nonadditive variances. In addition to Zjk , here we define a
dominance genotype indicator variable with Wjk = 1 for heterozygote and
Wjk = 0 for homozygotes. Let Wk = fWjkg be an n× 1 vector for all hybrids at
locus k. The polygenic effect is now partitioned into six polygenic components,

ξ= ξa + ξd + ξaa + ξdd + ξad + ξda, [6]

where ξa =
Pm

k=1Zkak and ξd =
Pm

k=1Wkdk are the polygenic additive and
dominance effects, respectively, and the remaining terms are the polygenic
epistatic effects,

ξaa =
Xm−1

k=1

Xm

k′=k+1
ðZk#Zk′ÞðaaÞkk′

ξdd =
Xm−1

k=1

Xm

k′=k+1
ðWk#Wk′ÞðddÞkk′

ξad =
Xm−1

k=1

Xm

k′=k+1
ðZk#Wk′ÞðadÞkk′

ξda =
Xm−1

k=1

Xm

k′=k+1
ðWk#Zk′ÞðdaÞkk′

[7]

Note that Zk#Wk represents element-wise vector multiplication, and ak and
dk are the additive and dominance effects. The four terms, ðaaÞkk′, ðddÞkk′,
ðadÞkk′, and ðdaÞkk′, are the additive × additive, dominance × dominance,
additive × dominance, and dominance × additive effects, respectively,
between markers k and k′ for k≠k′. These four terms are called the epistatic
effects. By treating each genetic effect as a randomly distributed normal
variable with mean zero and a common variance across all markers or
marker pairs, the model becomes a mixed model. Let σ2a, σ

2
d , σ

2
aa, σ

2
dd , σ

2
ad , and

σ2da be the variance components of the six types of genetic effects. The ex-
pectation of y is EðyÞ=Xβ and the variance matrix of y is varðyÞ=V =G+R,
where R= Iσ2 is the residual error covariance matrix and

G=Kaσ
2
a +Kdσ

2
d +Kaaσ

2
aa +Kddσ

2
dd +Kadσ

2
ad +Kdaσ

2
da [8]

is the genetic covariance matrix, in which the Ks are marker-generated
kinship matrices developed by Xu (19). Given these marker-generated kinship
matrices, the variance components were estimated using the standard mixed-
model procedure. We used the REML method to estimate the parameters,
a vector denoted by θ= fσ2a,σ2d ,σ2aa,σ2dd ,σ2ad ,σ2da,σ2g. The fixed effects were
expressed as a function of the six variance components using the general-
ized least-squares equation. The REML likelihood function is defined as

LðθÞ=−
1
2
ln
��V��− 1

2
yTPXy −

1
2
ln
��XTV−1X

��, [9]

where PX =V−1 −V−1X
�
XTV−1X

�−1
XTV−1. The Newton–Raphson iteration

was used to find the solutions of the parameters. The variance matrix of the
REML estimated variance components varðθ̂Þ was approximated by the neg-
ative inverse of the hessian matrix, which is a 7× 7 covariance matrix; square
roots of its diagonal elements are the SEs of the estimated parameters. The
model with six genetic variance components is the full model. Various re-
duced models were also evaluated. For example, if only the additive variance
is included, the model is called the additive model or model 1 with a model
size 1. The dominance model includes both the additive and dominance var-
iances and is thus called model 2. The full model is called model 6. The model
number represents the model size. Table S1 lists all six models evaluated in this
study. Finally, the GBLUP analysis was performed using the mixed procedure in
SAS. The SAS code is provided in Dataset S3.
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