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Glioblastomas (GBMs) diffusely infiltrate the brain, making com-
plete removal by surgical resection impossible. The mixture of
neoplastic and nonneoplastic cells that remain after surgery form
the biological context for adjuvant therapeutic intervention and
recurrence. We performed RNA-sequencing (RNA-seq) and histo-
logical analysis on radiographically guided biopsies taken from
different regions of GBM and showed that the tissue contained
within the contrast-enhancing (CE) core of tumors have different
cellular and molecular compositions compared with tissue from
the nonenhancing (NE) margins of tumors. Comparisons with the
The Cancer Genome Atlas dataset showed that the samples from CE
regions resembled the proneural, classical, or mesenchymal subtypes
of GBM, whereas the samples from the NE regions predominantly
resembled the neural subtype. Computational deconvolution of the
RNA-seq data revealed that contributions from nonneoplastic brain
cells significantly influence the expression pattern in the NE samples.
Gene ontology analysis showed that the cell type-specific expression
patterns were functionally distinct and highly enriched in genes
associated with the corresponding cell phenotypes. Comparing the
RNA-seq data from the GBM samples to that of nonneoplastic brain
revealed that the differentially expressed genes are distributed
across multiple cell types. Notably, the patterns of cell type-specific
alterations varied between the different GBM subtypes: the NE
regions of proneural tumors were enriched in oligodendrocyte
progenitor genes, whereas the NE regions of mesenchymal GBM
were enriched in astrocytic and microglial genes. These subtype-
specific patterns provide new insights into molecular and cellular
composition of the infiltrative margins of GBM.
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Glioma cells diffusely infiltrate the brain and intermingle with
neural cells in the surrounding brain tissue, resulting in

a complex mixture that includes variable proportions of glioma
cells, neurons, and various lineages of reactive or recruited glia.
At the infiltrative margins of glioblastoma (GBM), the non-
neoplastic brain cells can far outnumber the glioma cells and,
therefore, will have a significant effect on the molecular features
of the tissue. Expression profiling and whole genome sequencing
from hundreds of GBM specimens by The Cancer Genome Atlas
(TCGA) has revealed a broad spectrum of genetic alterations
and discrete expression signatures or subtypes that stratify the
majority of patients (1, 2). These studies analyzed tumor samples
that were removed during surgery, but were not radiographically
localized and, therefore, do not address the question of how the
molecular signature may vary across different regions of a tumor.
Recent studies have sampled multiple regions within a GBM and
shown that more than one molecular subtype can coexist within
a single tumor (3). However, the effect of varying cellular com-
position on GBM subtype, particularly the contribution of non-
neoplastic cells, has not been addressed.

GBM typically appears as a contrast-enhancing mass, which
represents the highly cellular core of the tumor with vascular
proliferation and blood–brain barrier breakdown. This contrast-
enhancing (CE) region is typically surrounded by a diffuse,
nonenhancing (NE) region of abnormal T2/FLAIR signal, which
represents edematous brain tissue with varying numbers of in-
filtrating glioma cells. The primary treatment of GBM is surgical
resection, during which the surgeon removes as much of the CE
mass as possible. Thus, molecular and genetic profiling of GBM,
including the TCGA effort, has predominantly used samples
from the CE regions of tumor. However, it is the NE regions of
glioma that are left behind after surgery, which neurooncologists
must treat and which inevitably give rise to recurrence. Thus,
there is immense prognostic and therapeutic significance to un-
derstanding the cellular and molecular features of the NE
regions of tumor, yet often these areas are not resected and,
therefore, have not been directly studied.
There are two major obstacles to this goal. The first is the

surgical challenge of radiographically localized sampling of the
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NE tumor margins. The second is the issue of the complex cel-
lular composition that characterizes these regions of diffuse in-
filtration. In this study, we have addressed both challenges, and
associated distinct molecular and cellular features of the NE
regions of GBM with the molecular subtype, as defined by the
resected CE regions of the tumor.

Results
Image-Guided Biopsies Reveal Distinct Molecular and Cellular
Composition in the CE and FLAIR+ NE Regions of GBM. We collected
radiographically localized biopsies from the CE and FLAIR+ NE
regions of GBM from 69 patients. Histological and immunohis-
tochemical analysis of the samples showed significant differences
in the cellular density and cellular composition between the CE
and NE samples (Fig. 1). The CE samples had significantly higher
cellularity (P < 0.00001) than NE samples and were significantly
more likely to contain the histological hallmarks of GBM, in-
cluding glomeruloid-type vascular proliferation and necrosis (P <
0.00001 for each feature). Conversely, the NE regions showed the
histological features of diffusely infiltrating glioma with neoplastic
glial cells intermingled with nonneoplastic and reactive cells (SI
Appendix, Fig. S1). The cellular composition of the NE samples
was variable but showed significantly higher numbers of NeuN+

neurons compared with CE samples (Fig. 1). In addition to dem-
onstrating that cellular composition varies across different radio-
graphically localized regions of the tumor, these results show that
nonneoplastic cells are a major component of the NE regions of
GBM and highlight the importance of considering this complex
cellular composition when analyzing the expression pattern of
diffusely infiltrating gliomas.
We performed RNA-seq analysis on 75 glioma samples from

27 different glioma patients including 39 samples from the CE
regions and 36 samples from the NE regions (SI Appendix, Table
S1). We also performed RNA-seq on 17 nonneoplastic/normal
brain (NB) samples acquired from 11 patients with no oncological
history undergoing ventriculoperitoneal shunt placement or re-
section for seizures. For each CE and NE tumor sample in the
RNA-seq dataset, we determined the GBM subtype as reported
(4). Briefly, we calculated the Spearman correlation between
each RNA-seq profile and the subtyped TCGA profiles from
Verhaak et al. (2). We used the median value of the correlation

between an RNA-seq profile and the TCGA microarray data for
a given subtype as a similarity score for that subtype (Fig. 2 and
SI Appendix, Table S1). The majority of CE samples showed the
highest correlation with the proneural, classical, or mesenchymal
subtypes. In contrast, the majority of samples from NE regions
showed the highest correlation with the neural subtype. A heatmap
shows the expression level of the GBM subtype classifier genes
across all samples (including the 17 NB samples), with the majority
of CE samples clustered into three groups showing enrichment in
proneural, classical, or mesenchymal genes. In contrast, most NE
samples were clustered with the NB samples and were classified
as neural or proneural (Fig. 2 and SI Appendix, Table S1). Notably,
the NE and NB samples tended to show higher expression in
only a subset of the neural classifier genes (SI Appendix, Fig. S2).
This subset of neural genes is selectively up-regulated in “neural
GBM” and contains genes that are normally expressed by mature
neurons and oligodendrocytes (2). Together with the histological
and immunohistochemical data showing that the NE samples
represented infiltrated brain, these results suggest that the
composite gene expression profile of the NE samples contains
a significant contribution from nonneoplastic brain cells such as
neurons and oligodendrocytes.

Computational Deconvolution of RNA-Seq Data Identifies Cell-Type
Specific Expression Profiles. As glioma cells infiltrate the brain,
they encounter a uniquely complex and interconnected environ-
ment consisting of several different cell types, including astrocytes,
neurons, microglia, and oligodendrocytes. Most efforts at expres-
sion profiling in glioma, including a large-scale microarray study
by TCGA (1), have not addressed the complex cellular composi-
tion of the tumor. However, efforts to physically separate the
various cell types by flow sorting or other methods face technical
challenges and run the risk of perturbing RNA expression levels.
To address these issues, we used a computational approach to
deconvolve the composite RNA-seq expression data from ho-
mogenized NE samples (5–8). A report in which expression pro-
files of multiple neural cell types were deconvolved by microarray
analysis of brain tissue is particularly relevant to our application
(7). Our approach is based on the algorithm described by
Kuhn et al. (7), where constrained, least-squares fitting is used to
estimate average expression profiles of each cell type based on

Fig. 1. MRI screen captures show the radiographi-
cally localized sampling of CE (A′–A′′′) and NE (B′–B′′′)
regions of GBM, and micrographs of the corre-
sponding biopsies show the histological features
of the highly cellular core (A) and the infiltrative
margin (B) of the tumor (stained with hematoxylin
and eosin). A′ and B′ show the axial FLAIR, A′′ and B′′
show the sagittal T1 with contrast, and A′′′ and B′′′
show the coronal T1 with contrast. The green cross-
hairs mark the biopsy sites. Quantitative analysis of
CE (blue bars) and NE (tan bars) samples shows
significant differences in cellular density (C) and the
presence of histopathological hallmarks of high-
grade glioma (D). Immunohistochemical analysis for
NeuN shows numerous positive neurons in samples
from NE regions (E) and only rare entrapped neu-
rons in samples from the CE regions (F). Quantitative
analysis of theses stains shows significant differences
in the fractional abundance of NeuN+ neurons in NE
vs. CE samples (G). In C, D, and G, **P < 0.001; ***P <
0.0001; ****P < 0.00001.
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multiple homogenate expression profiles. The expression levels
of marker genes are used to approximate the fractional com-
position of each cell type in each sample, allowing us to estimate
the average expression profile of each cell type for a set of samples.
We deconvolved the NE and nonneoplastic brain RNA-seq

profiles into average profiles for each of six cell types, which
represent the major lineages present in brain tissue. Specifically,
we seeded the algorithm with OLIG2 for oligodendrocyte pro-
genitor-like (OPC-like) cells, CD44 for reactive astrocytes,
AQP4 for unreactive gray matter astrocytes, MAL and MOG for
mature oligodendrocytes, RBFOX3 (NEUN) and NEUROD6
for neurons, and AIF1 (IBA1) and CD68 for microglia. Our
decision to distinguish between two different astrocyte pop-
ulations (CD44+ and CD44−) was motivated by recent studies
showing that astrocytes in normal and pathological brain tissue
can be subdivided into CD44+ and CD44− populations, and that
these cell types have very different characteristics (9). Further-
more, it has been shown that reactive astrocytes associated with
a variety of pathological conditions, including GBM, up-regulate
CD44 as part of their phenotypic transformation (10, 11). The
other lineages that we included are also likely to contain distinct
subpopulations. For example, the NE samples likely contained
multiple subpopulations of neurons that were not resolved by
our deconvolution algorithm, and the neuron-specific expression
profile represents a composite of these different subpopulations.
The microglial/monocytic lineage may contain a mixture of res-
ident microglia and blood-derived monocytes. Notably, the NE
samples also contain neoplastic glia, and their expression profiles
are distributed into the six cell types in an unsupervised manner.
Previous studies have shown that glioma samples contain two
prominent and distinct types of tumor cells, one that expresses
OLIG2 and is OPC-like, and the other that expresses CD44 and

is more astrocytic (12–14). Distinct populations of reactive/
nonneoplastic glial cells also express these markers. Therefore,
the CD44+ populations likely contain both reactive and trans-
formed astrocytes, and the OLIG2+ population likely contains
a mixture of transformed and recruited OPCs.
We compared the cell type-specific expression profiles derived

from our computational deconvolution of the NE glioma and NB
samples to expression data generated in previous studies by
physical separation and purification of neural cell types from
mouse brain tissue (11, 15, 16). This comparison showed that
each of the deconvolved expression profiles was significantly
enriched for at least one of the cell type-specific gene lists derived
from these previous studies. Furthermore, for each gene list, the
most significant enrichment was seen in the appropriate cell type,
with P values ranging from <1 × 10−16 to 7 × 10−6 (Fig. 3 and
SI Appendix, Table S3). Interestingly, two of the deconvolved
cell types also showed significant enrichment for a second cell
type-specific gene list: Microglia showed enrichment for genes
expressed by reactive astrocytes (11), and neurons showed en-
richment for genes expressed by OPCs (15). We also performed
gene ontology analysis, which showed that the cell type-specific
expression profiles derived from the deconvolution of the NE
glioma samples were each associated with the distinct, expected
cellular functions of the corresponding cell lineage (SI Appendix,
Table S2). Taken together, these analyses demonstrate that the
pattern of cell type-specific expression profiles predicted by
computational deconvolution of the NE samples is remarkably
consistent with the cell type-specific expression patterns reported
in previous studies and with the expected functionality of these
cell types as independently determined by gene ontology anal-
ysis. As further validation of the deconvolution analysis, immu-
nohistochemical analysis with antibodies against three neural
classifier genes that are predicted to be predominantly expressed
in neurons (HPCA, CRYM, and CHN1) showed selective stain-
ing of neurons in both NB and glioma samples (SI Appendix,
Fig. S3).

Differentially Expressed Genes Are Distributed in Multiple Cell Types
in a GBM Subtype-Specific Pattern. Although the above analysis
demonstrated that nonneoplastic brain cells contribute signifi-
cantly to the NE expression data, histological analysis showed
that the NE glioma samples are distinct from normal brain. Not
only do they contain infiltrating glioma cells, but they also show
reactive astrocytosis and microgliosis (SI Appendix, Fig. S1).
Therefore, to characterize the changes in expression patterns
associated with these histological alterations, we performed dif-
ferential gene expression analysis between NE glioma samples
and nonneoplastic brain samples. We divided the NE glioma
specimens into the different subtypes, based on the GBM sub-
type assignment of the CE portion of the tumor and compared
the nonneoplastic brain and the NE glioma from each group. We
then queried the NE deconvolution data to assess the cellular
distribution of the differentially expressed genes in each sample
group (Fig. 4). Although the deconvolution algorithm receives
no input from the differential expression analysis, we consistently
observe a sharp transition in cellular distribution between over-
expressed and underexpressed genes. Genes that are highly
expressed in the NE tumor tissue relative to nonneoplastic brain
are expressed mainly in OPC-like cells, astrocytes, or microglia.
Conversely, genes that are highly expressed in nonneoplastic
brain were localized primarily to neurons and oligodendrocytes.
Furthermore, the cellular distributions of differentially expressed
genes in NE tissue were subtype-specific. We found that genes
that were increased in NE regions of proneural tumors pre-
dominately distributed to OLIG2+ OPC-like cells, whereas the
genes that were increased in the NE regions of mesenchymal
tumors predominately distributed to CD44+ astrocytes and micro-
glia (Fig. 4). We also performed differential expression analysis

Fig. 2. RNA-seq–based expression profiling showing the expression of the
Verhaak classifier genes across 92 samples (39 CE, 36 NE, and 17 NB). The
samples were clustered by using Spearman correlation into five major clusters.
Two clusters are predominantly composed of NE and NB samples, and the
other three clusters are predominantly composed of CE samples, with samples
correlating with proneural, classical, and mesenchymal subtypes. The NE clus-
ters contain the majority of neural samples. The colored bars above the
heatmap show the sample origin (upper bar: NB, yellow; NE, green; CE, pink)
and the subtype classification (lower bar: neural, brown; proneural, green;
classical, blue; mesenchymal, red). The heatmap shows high levels of ex-
pression as red and low levels as green.
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between nonneoplastic brain and the NE samples from recurrent
mesenchymal GBM (the majority of the recurrent tumors were
subtyped as mesenchymal). These results revealed a prominent
expression of genes mapped to CD44+ astrocytes and microglia
and a marked decrease in genes that mapped to OLIG2+ OPC-
like cells (Fig. 4).
To complement our deconvolution analysis of the differen-

tially expressed genes, we also conducted a pathway analysis
for each of the four sample groups. Using iPAGE, a mutual
information-based algorithm for gene ontology enrichment
analysis, we determined the key pathways that are enriched
among differentially expressed genes. The results, shown in Fig.
5, are remarkably consistent with our assessment of the cellular
distributions for these genes. For example, iPAGE shows that
cellular proliferation ontologies like DNA replication and M
phase are enriched among highly expressed genes in proneural
NE tissue, consistent with the predominance of proliferating
OPC-like cells. However, immune response and inflammatory
ontologies are preferentially enriched in the primary mesenchy-
mal NE tissue, consistent with the microglial cellular distribution
described above. In recurrent mesenchymal NE tissue, which we
find to be largely devoid of OPC-like expression, we do not ob-
serve enrichment of cell cycle- and proliferation-related ontologies.

Discussion
We used radiographically localized biopsies and RNA-seq to
show that the molecular and cellular composition of NE regions
differ significantly from those of the CE regions of a GBM. We
also used a computational strategy for deconvolving composite
expression profiles into cell type-specific profiles to identify GBM
subtype-specific relationships between CE and NE regions. One
important implication of these results is that the molecular and
cellular characteristics of NE regions of a glioma, which are often
left behind after surgery, may be inferred from the molecular
subtype of the CE component of the tumor, which is resected
during surgery. Understanding these relationships could lead to
development of new therapies that target these subtype-specific
alterations, which are expressed in residual tumor cells or reactive
cells in the tumor microenvironment. For example, our results
show that the NE regions of proneural GBM are enriched in genes
expressed by OLIG2+/OPC-like cells, which most likely represent
infiltrating glioma cells. Conversely, the NE regions of mes-
enchymal GBMs were highly enriched in genes expressed by
microglia and CD44+ astrocytes. These findings are consistent
with previous studies showing that proneural GBM is highly
enriched in OPC genes (17, 18), whereas mesenchymal GBM
harbors an inflammatory signature (13, 19, 20). However, our

Fig. 3. Computational deconvolution reveals cell type-specific
expression profiles. (A) The heat map shows the expression of
cell-type genes in the six cell types that were deconvolved from
the NB and NE samples: High expression is yellow, and low
expression is black. The lists of cell type-specific genes were
derived from previous studies (11, 15, 16). (B) We performed
a hypergeometric test to assess the significance of the cell type
enrichment of each gene list compared with deconvolution of
the whole transcriptome. Each of the six gene lists showed the
most significant enrichment in the expected cell type (high-
lighted in red). In addition, microglia show significant enrich-
ment for genes expressed by reactive astrocytes and neurons
show significant enrichment for OPC genes (each highlighted
in green). The list of cell type-specific genes and associated cell
type-specific expression profiles are provided in SI Appendix,
Table S3.

Fig. 4. Heatmaps showing the deconvolved cellular distri-
bution of gene expression for differentially expressed genes
(P < 0.05) comparing normal brain (NB) to NE of proneural
GBMs (A), NE of classical GBMs (B), NE of Primary mesen-
chymal GBMs (C), and NE of Recurrent mesenchymal GBMs
(D). For each gene (rows), the expression level is normalized
across cell types (columns) so that the value in the heat map
reflects its fractional abundance in a given cell type. To
obtain these cellular distributions, we deconvolved the NE
and NB samples in aggregate and obtained a single average
cellular distribution estimate for each gene. Although dif-
ferential expression information was not provided to the
deconvolution algorithm, all four heatmaps show a sharp
transition in cellular composition between genes that are
expressed at higher levels in the NE tumor tissue vs. genes
that are expressed at higher levels in normal brain. The small
heat maps that appear underneath each image represent
the fraction of the total number of differentially expressed
genes in each sample group are predominantly expressed in
each of the six cell types.
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results provide new insight into how the expression of mesen-
chymal and inflammatory genes are distributed among different
cell types. Notably, the deconvolution analysis shows that
within the NE regions of GBM, the majority of classifier genes
used to define the mesenchymal subtype are predominantly ex-
pressed by microglia, whereas a smaller subset of mesenchymal
genes are expressed in CD44+ astrocytes (SI Appendix, Fig. S4
and Table S4). Similarly, differential gene expression analysis of
our samples identified a set of CD44+ astrocytic and microglial
genes that are up-regulated in the NE regions of mesenchymal
GBM compared with nonneoplastic brain. Gene ontology anal-
ysis shows that these genes are associated with inflammatory and
immune response, and include cytokines and cytokine receptors
that may mediate reciprocal signaling between glioma cells and
microglia in the infiltrative margins of mesenchymal GBM.
Gene ontology analysis of the deconvolved expression data

shows that both OLIG2+ and CD44+ cells are highly enriched in
genes involved in cellular proliferation (Fig. 5 and SI Appendix,
Fig. S5), suggesting that these cell types include the neoplastic
glioma cells. Previous studies have shown that CD44 and OLIG2
are markers for distinct populations of glioma cells (13, 14). Our
deconvolution analysis suggests that these two cell types have
different expression patterns, with the OLIG2+ cells most re-
sembling OPCs and CD44+ cells most closely resembling reactive
astrocytes (Fig. 3). In addition, the expression patterns of these
two cell types differ with respect to the classifier genes used to
define different GBM subtypes. Notably, OLIG2+ cells show the
highest expression of proneural and classical genes and low levels
of mesenchymal genes, whereas CD44+ cells show high levels of

classical and mesenchymal genes and lower levels of proneural
genes (SI Appendix, Fig. S4). These findings suggest that the NE
regions of proneural gliomas predominantly contain OLIG2+,
OPC-like glioma cells, whereas NE regions of mesenchymal
gliomas contain a larger proportion of CD44+ astrocyte-like tu-
mor cells. Notably, Sox2, a proneural classifier gene and stem cell
marker that has been implicated in glioma growth and progression
(21, 22) is expressed by both OLIG2+ cells and CD44+ cells. Im-
munohistochemical stains of NE glioma samples showed that
SOX2 is expressed in a high percentage of infiltrating glioma cells
in primary samples; however, recurrent gliomas showed a signifi-
cantly lower SOX2 labeling index (SI Appendix, Fig. S6). These
findings are consistent with our RNA-seq analysis and with pre-
vious published results showing that SOX2 is widely expressed in
primary glioma, but is reduced in recurrent glioma (22).
Our results also suggest that some samples may contain a

mixture of OLIG2+ and CD44+ glioma cells, particularly in the
NE regions of classical GBMs where genes from both cell types
are highly represented. In a recent study, Pietras et al. show that
CD44 is differentially expressed across the three major GBM
subtypes (23). In mesenchymal and classical GBM, high levels
of CD44 were seen throughout the tumors, whereas in proneural
GBM CD44 expression was predominantly localized to peri-
vascular cells. They also show a significant correlation between
CD44 expression levels and survival in patients with proneural
GBM. These findings suggest that even a minor population of cells
(such as CD44+ cells in proneural GBM) can potentially confer an
aggressive behavior, highlighting the importance of resolving the
cellular composition of residual tumor tissue.

Fig. 5. iPAGE gene ontology analysis of differentially expressed genes comparing normal brain (NB) to NE of proneural GBMs (A), NE of classical GBMs (B), NE
of Primary mesenchymal GBMs (C), and NE of Recurrent mesenchymal GBMs (D). The gene ontology categories highlighted in red are associated with genes
that are highly expressed in the NE tissue relative to normal brain, whereas those in green are associated with genes that are highly expressed in normal brain
relative to NE tissue. Gene ontology categories in black are associated with genes that are not differentially expressed. Although cell cycle and proliferation-
related pathways dominate the proneural and classical NE, an immune response/inflammatory signature dominates the mesenchymal NE. These expression
signatures are consistent with the cellular distributions that we estimated for differentially expressed genes by deconvolution analysis.
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In further support of these subtype specific differences in
lineage relationships of the transformed cell populations, the
deconvolution showed that EGFR, which is frequently amplified
in the classical subtype of GBM, is predominantly expressed by
CD44+ astrocytes, whereas PDGFRa, which is amplified or
overexpressed in proneural GBM, is predominantly expressed
by OPC-like cells (SI Appendix, Tables S3 and S4). These two
populations are likely to have different susceptibilities to che-
motherapy and radiation, and what is therapeutically effective for
one population may be relatively ineffective for the other. Con-
sistent with this idea, the deconvolution analysis also revealed
a marked loss of the OLIG2+ population in GBM samples that
have recurred after treatment (Fig. 4). Previous studies have
shown that OPCs are highly sensitive to chemotherapy and ra-
diation (24–26). OLIG2+ OPC-like glioma cells are more sen-
sitive to radiation than CD44+ astrocytic tumor cells (13). It is
also possible the OPC-like glioma cells undergo mesenchymal
transformation to CD44+ glioma cells. In either case, such a shift
in cellular composition might explain the previously reported
tendency for recurrent tumors to acquire a mesenchymal phe-
notype (20, 27). Future studies with greater numbers of primary
and recurrent tumor specimens will be needed to address this
possibility.
The computational approach used in this study could be used

to characterize the cell type-specific expression patterns of any
sample with a heterogeneous cellular composition. However, the
samples taken from the margins of glioma, which contain a variable
mixture of infiltrating glioma cells and nonneoplastic brain cells,
provide a particularly robust and clinically relevant dataset for this
type of analysis. The deconvolution of cell type-specific expression
profiles offers a means to disentangle the molecular signature of
neoplastic cells, which can be a minority of the total cell population,
from the nonneoplastic populations, which may have significant
molecular alterations of their own. In future applications, this ap-
proach can be used to refine the analyses of intracellular signaling
pathways and transcription networks, which presume expression in
the same cell. Conversely, identifying signaling molecules (such as
ligand-receptor partners) that are distributed in different cell types

may give new insights into paracrine signaling interactions. This
type of analysis can be used to identify and access new therapeutic
targets that may be expressed by infiltrating glioma cells or by
nonneoplastic/reactive cells that also play a role in disease pro-
gression. Finally, understanding common patterns that relate the
center of the tumor, which is commonly resected during surgery, to
the infiltrative margins, which are often left behind, will greatly
facilitate the design of clinical trials that target residual disease.

Materials and Methods
This study included 69 adult patients presenting for open surgical resection of
glioma. MRI-localized biopsies measuring ∼1.0 cm × 0.5 cm × 0.5 cm were
obtained before surgical debulking. Sampled regions included areas within
the gadolinium enhancing core of the tumors (CE) and areas of non-
enhancing, FLAIR hyperintense tissue at the margins of the tumors (NE).
Radiographic localization was confirmed by using intraoperative stereotaxis
with T1+Gadolinium and FLAIR sequences using the Brainlab Neuro-
navigation interface (Brainlab). Samples from each region were divided into
two pieces in the operating suite: One piece was immediately flash frozen in
liquid nitrogen; the other piece was fixed in 10% (vol/vol) formalin and used
for histological and immunohistochemical analysis. A total of 17 nonneo-
plastic brain tissue samples were collected from 11 patients, with no onco-
logical history, who were undergoing ventriculoperitoneal shunt placement
for normal pressure hydrocephalus or surgical resection for seizure control.
A small biopsy was obtained at the cortical entry point before passing the
ventricular catheter. These samples are referred to as nonneoplastic/normal
brain (NB). A detailed description of the methods used for immunohisto-
chemistry, microscopy, RNA extraction, sequencing, computational decon-
volution of RNA-seq data, gene ontology, and differential expression
analysis are available in SI Appendix, SI Materials and Methods. All RNA-seq
data is available on the Gene Expression Omnibus (accession no. GSE59612).
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