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Ammonia-oxidizing archaea (AOA) are now implicated in exerting
significant control over the form and availability of reactive nitrogen
species in marine environments. Detailed studies of specific meta-
bolic traits and physicochemical factors controlling their activities
and distribution have not been well constrained in part due to the
scarcity of isolated AOA strains. Here, we report the isolation of two
new coastal marine AOA, strains PS0 and HCA1. Comparison of the
new strains to Nitrosopumilus maritimus strain SCM1, the only ma-
rine AOA in pure culture thus far, demonstrated distinct adaptations
to pH, salinity, organic carbon, temperature, and light. Strain PS0
sustained nearly 80% of ammonia oxidation activity at a pH as low
as 5.9, indicating that coastal strains may be less sensitive to the
ongoing reduction in ocean pH. Notably, the two novel isolates are
obligate mixotrophs that rely on uptake and assimilation of or-
ganic carbon compounds, suggesting a direct coupling between
chemolithotrophy and organic matter assimilation in marine food
webs. All three isolates showed only minor photoinhibition at
15 μE·m−2·s−1 and rapid recovery of ammonia oxidation in the
dark, consistent with an AOA contribution to the primary nitrite
maximum and the plausibility of a diurnal cycle of archaeal ammo-
nia oxidation activity in the euphotic zone. Together, these findings
highlight an unexpected adaptive capacity within closely related
marine group I Archaea and provide new understanding of the
physiological basis of the remarkable ecological success reflected
by their generally high abundance in marine environments.
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The discovery of ammonia-oxidizing archaea (AOA), some-
times constituting up to nearly 40% of marine microbial

plankton, challenged the traditional view of microbial controls of
nitrogen speciation in the ocean (1–5). The AOA are now gen-
erally recognized as the major drivers of nitrification in marine
environments (5–8). Their activities are of importance to trophic
interactions that influence primary production and export of car-
bon to the deep ocean, they are a known source of atmospheric
greenhouse gases (nitrous oxide and indirectly methane), and their
high demand for copper may also alter food web dynamics (9–14).
Although enrichments of AOA strains belonging to groups

I.1a and I.1b from a variety of marine and terrestrial environ-
ments have been reported (15–22), no additional pure cultures of
marine representatives have been described since the isolation of
Nitrosopumilus maritimus strain SCM1 (henceforth referred to as
SCM1) (23). However, many complex biological traits of signif-
icance to marine biogeochemistry and marine food webs cannot
be unambiguously established using metagenomic, metatran-
scriptomic studies and enrichment cultures. Initial understanding
of the physiological basis for high AOA abundance in the marine
water column came from the demonstration that SCM1 is an
extreme oligotroph, having one of the highest affinities (low Ks)
for ammonia (here defined as combined ammonia/ammonium)
yet observed in pure culture (24). The discovery of a previously
unidentified pathway for methylphosphonate synthesis, a plausi-
ble source of methane in the upper ocean, in the AOA and

other abundant marine plankton (including Pelagibacter and
Prochlorococcus) was made possible by genomic and biochemical
characterization of SCM1 (13, 14). More recent physiological
studies examining the copper requirements of SCM1 provided
a framework to evaluate the significance of copper in controlling
the environmental distribution and activity of marine AOA (12).
The capture of a greater representation of AOA environ-

mental diversity in pure culture should therefore serve to expand
understanding of traits influencing their activity patterns in
coastal and open marine systems. For example, a capacity to use
fixed carbon and urea as alternative carbon and energy sources,
respectively, has been suggested by tracer, metagenomic, and
metatranscriptomic studies (25–33). The contribution of AOA to
endogenously generated nitrate in marine surface waters, of
fundamental relevance to the source of nitrogen sustaining pri-
mary production in the photic zone, was suggested by relating
nitrification activity and the archaeal amoA (the gene coding for
the α-subunit of the ammonia monooxygenase) distribution
patterns (7, 8, 34–36). A reported sensitivity of marine pop-
ulations to small reductions in pH, important to understanding
the possible impact of ongoing ocean acidification on the marine
nitrogen cycle, was inferred from a pH perturbation study (37).
Thus, as was shown for studies of SCM1, the availability of ad-
ditional AOA isolates will both inform inferences made in the
field as well as provide a physiological basis to direct future
field research.

Significance

Ammonia-oxidizing archaea (AOA) influence the form and
availability of nitrogen in marine environments and are a major
contributor to N2O release and plausible indirect source of
methane in the upper ocean. Thus, their sensitivity to ocean
acidification and other physicochemical changes associated
with climate change has global significance. Here, we report on
the physiological response of marine AOA isolates to key en-
vironmental variables. Although reported as highly sensitive to
reduction in ocean pH, we now show that some coastal marine
AOA can remain active with increasing acidification of the
oceans. All AOA isolates assimilate fixed carbon and two are
obligate mixotrophs, suggesting this globally significant as-
semblage serves a significant function in coupling chemolitho-
trophy with organic matter assimilation in marine food webs.
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We now report the isolation of two novel coastal marine AOA
strains from the Puget Sound estuary system in Washington, signif-
icantly expanding the ecotypic diversity of marine Thaumarchaeota
available in pure culture. Despite relatively close phylogenetic
relationships, the three marine isolates comprise physiologically
distinct ecotypes of AOA, varying in their capacity to use different
carbon and energy sources, and in their tolerance to changes in pH,
salinity, and light. These distinctive differences are directly relevant
to their possible contribution to nitrification in different marine
environments—including lower salinity coastal regions, the photic
zone of the upper water column, and the increasing acidification of
ocean waters associated with climate change.

Results
Enrichment and Isolation of Marine AOA. Enrichment cultures were
initiated from Puget Sound main basin near surface (47.55 N,
122.28 W) and 50 m water from the Puget Sound Regional
Synthesis Model (PRISM) Station P10 (47.91 N, 122.62 W) in
Hood Canal. Our previous molecular surveys showed these
coastal waters to be dominated by AOA, relative to ammonia-
oxidizing bacteria (AOB) (8, 38, 39). Predominance of AOA was
consistent with generally submicromolar concentrations of am-
monia at these stations, sufficient to support AOA such as SCM1
but not known AOB (24). Enrichment conditions were designed
to simulate the low substrate availability of these marine systems.
The growth medium was supplemented with 2 μM NH4Cl, and
cultures were incubated at 15 °C (SI Materials and Methods).
Once the enrichments showed stable activity, they were

transferred to artificial seawater medium supplemented with
2 μM NH4Cl and 100 μM α-ketoglutaric acid. Earlier studies of
strain SCM1 had shown that only a few central metabolites, in-
cluding α-ketoglutaric acid, stimulated growth (SI Materials and
Methods). Highly enriched AOA cultures were obtained follow-
ing ∼2 y of consecutive transfer of 10% (vol/vol) late–exponen-
tial-phase subcultures into the same medium. Comparable growth
kinetics was observed at ammonia concentrations between 2 and
500 μM ammonia, but concentrations above 1 mM significantly
impaired growth. Thus, 500 μM ammonia was subsequently used
to isolate the two new AOA strains from enrichment culture.
Pure cultures were ultimately obtained by filtration of the en-
richment cultures through a 0.22-μmMillex-GP syringe filter, and
diluting the filtrate to extinction (SI Materials and Methods). The
two new oligotrophic AOA strains were designated HCA1 (Hood
Canal station P10) and PS0 (Puget Sound main basin).
Exponential growth of both isolates in synthetic seawater

medium containing 500 μM ammonia and 100 μM α-ketoglutaric
acid was supported by the near stoichiometric oxidation of am-
monia to nitrite (Fig. 1 A and B). No growth was observed in
medium containing α-ketoglutaric acid and no ammonia, sup-
plemented with nitrite or nitrate as possible nitrogen sources.
The maximum specific growth rates for strains HCA1 and PS0
were 0.55 d−1 and 0.23 d−1, respectively. The growth rate
of HCA1 was comparable to SCM1 (0.65 d−1) and the one
described thermophilic AOA, “Candidatus Nitrosocaldus
yellowstonii” (0.8 d−1) (22, 23). The lower growth rate of PS0
was similar to the previously described pelagic AOA enrichments,
CN25 and CN75 (0.17 d−1) and to the estimated in situ growth
rates of AOA in winter polar waters (0.21 d−1) (18, 28). Because
both strains were of similar shape and size to SCM1 (Fig. 1 C and
D; see description below), calculations of maximum ammonia
oxidation activity were based on the reported cellular biomass of
SCM1, using a factor of 10.2 fg of protein per cell (24). The
values for HCA1 (24.5 μmol of NH4

+ per mg of protein per h)
and PS0 (12.2 μmol of NH4

+ per mg of protein per h) (Table S1)
were both lower than SCM1 (51.9 μmol of NH4

+ per mg of
protein per h) and characterized AOB (30–80 μmol of NH4

+ per
mg of protein per h) (40, 41), but within the range estimated for

in situ cell-specific rates of a natural marine community (0.2–15
fmol of NH4

+ per cell per d) (6).

Morphology and Phylogeny. The morphologies of strains HCA1
and PS0, as characterized by transmission electron microscopy
(Fig. 1 C and D), are very similar to SCM1 (23). Both are small
rods, with a diameter of 0.15–0.26 μm and a length of 0.65–1.59 μm.
Unlike “Candidatus Nitrosoarchaeum limnia” (16), no flagella
were observed. Cells reproducing by typical binary fission were
also observed in images of mid–exponential-phase cultures.
We earlier reported on the high similarity and synteny of the

SCM1 genome to the metagenome of globally distributed marine
group I Archaea (11). A close phylogenetic relationship between
strain SCM1 and the two new isolates was here established by
16S rRNA and amoA gene sequencing. All are affiliated with
Thaumarchaeota group I.1a, together forming a monophyletic
clade sharing >95% amoA and >99% 16S rRNA gene sequence
identity (Fig. 2 and Fig. S1). The amoA genes are more than 11%
divergent from environmental sequences previously termed ma-
rine water column clusters “A” and “B,” and more than 16%
divergent from the symbiotic archaeon “Candidatus Cen-
archaeum symbiosum” (2, 42). “Candidatus Nitrosoarchaeum
limnia,” previously described in an enrichment from a low-salinity
estuarine system in California, differed from the new isolates by
greater than 4% and 7% sequence divergence of the 16S rRNA and
amoA genes, respectively (43). All share less than 90% and 80%
identity with the 16S rRNA and amoA genes, respectively, of the
cultured soil representatives “Candidatus Nitrosotalea devanaterra”
and Nitrososphaera viennensis (15, 17).

Relationships Among Growth Rate, Temperature, Salinity, and pH.
The temperature-dependent growth kinetics of the new isolates
differed significantly from strain SCM1. The highest growth rates
for strains HCA1 and PS0 were observed at 25 °C and 26 °C,
respectively, in contrast to a maximum at 32 °C for strain SCM1
(Fig. S2 A–C). No growth (nitrite production) could be detected
for SCM1 at 10 °C, whereas the two new isolates continued to
grow at 10 °C. An Arrhenius analysis revealed a good linear
relationship between the natural logarithm of the ammonia
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Fig. 1. Growth and morphology of strains HCA1 and PS0. Correlation be-
tween ammonia oxidation and growth of HCA1 (A) and PS0 (B) in an arti-
ficial seawater medium containing 500 μM NH4

+ and 100 μM α-ketoglutaric
acid. Transmission electron micrographs of negative-stained cells of HCA1
(C) and PS0 (D). (Scale bars: 200 nm.)
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oxidation rate and the inverse of the absolute temperature (Fig.
S2D). The inferred activation energy (78.25 kJ·mol−1) and Q10
value (2.89) of SCM1 were somewhat greater than strain HCA1
(Ea = 67.67 kJ·mol−1, Q10 = 2.62) and strain PS0 (Ea = 64.20
kJ·mol−1, Q10 = 2.49). These values are comparable to those es-
timated for representatives of estuarine nitrifying bacteria (Ea =
67.4–82.5 kJ·mol−1, Q10 = 2.7–3.3) (44) (Table S2).
Growth of strains SCM1 and HCA1 was restricted to pH

values between 6.8 and 8.1, with the highest ammonia oxidation
rates observed at pH 7.3 (Fig. 3A). In contrast, strain PS0 grew
well at significantly lower pH values, having a maximum growth
rate at pH 6.8 and maintaining nearly 80% of its maximum
growth rate at pH values as low as 5.9. At pH values closer to
that of open ocean surface waters (∼8.1), the growth of PS0 was
depressed relative to the other two isolates. Thus, strain PS0
appears well adapted to the lower pH waters of the Puget Sound
main basin from where it was isolated, having a pH range of
7.71–8.05 near the surface and of 7.70–7.83 at depths greater
than 100 m (45). No ammonia oxidation was observed at pH 8.7
for any of the strains, which is consistent with observations of
other neutrophilic AOA (15, 19, 46).
Salinity is also a significant environmental variable, particu-

larly in coastal regions influenced by varying inputs of terrestrial
freshwater. The Hood Canal fjord is influenced by seasonally
varying riverine and surface runoff sources of freshwater, and by
the intrusion of low pH and high-salinity water from seasonal
coastal upwelling of deep ocean water (47). All strains grew best
at midsalinity (25–32‰), but differed markedly in response to
low- and high-salinity conditions (Fig. 3B). Strain SCM1 grew well
at high salinities (35–40‰), was significantly inhibited at 20‰,
and ceased to grow at 15‰. Strains HCA1 and PS0 were less
inhibited at 20‰ and still remained active at 15‰. However,
unlike SCM1, both of these strains were significantly inhibited at
40‰. Because 40‰ is much higher than the normal oceanic
environment, these differences likely reflect strain specific adap-
tations to the varying salinities intrinsic to this coastal system.

Photoinhibition. The influence of light on growth kinetics was
examined by controlled exposure of the isolates to polychromatic
light from a cool, white fluorescent lamp. Growth rate was
measured at different intensities of illumination and under three

different illumination regimes: continuous dark, continuous il-
lumination, and a 14-h dark/10-h light cycle. Differential growth
during light and dark periods of the imposed diurnal cycle was
also examined. All isolates were differentially inhibited. Strain
SCM1 was significantly less photosensitive (Fig. 4A) than the
other two isolates when exposed to a diurnal light cycle, showing
no apparent inhibition (relative to cultures incubated in the
dark) at low light fluxes (15 and 40 μE·m−2·s−1) and retaining
about 20% of its maximum growth rate at the highest light intensity
examined (180 μE·m−2·s−1). However, under continuous illumina-
tion, this strain was completely inhibited at 120 μE·m−2·s−1 (Fig.
4B). Although exhibiting somewhat greater light sensitivity, the
response of HCA1 was similar to SCM1, showing reduced specific
growth rates of 11% and 22% at 15 and 40 μE·m−2·s−1, re-
spectively, and complete inhibition at 180 μE·m−2·s−1 (Fig. 4A).
Strain PS0 was the most light sensitive of the three AOA isolates,
being partially inhibited at low light fluxes (19% and 39% in-
hibition at 15 and 40 μE·m−2·s−1, respectively), 80% inhibited at
60 μE·m−2·s−1, and completely inhibited at 80 μE·m−2·s−1.
The greater inhibition observed with continuous illumination

relative to an imposed dark/light cycle suggested that a recovery
of activity was possible during the dark period. Dark recovery of
strain HCA1 was shown by an increased growth rate during the
dark period (Fig. 4C). To further evaluate dark recovery of

Fig. 2. Phylogenetic relationships among amoA gene sequences of strains
HCA1, PS0, and SCM1 and described AOA representatives, as well as relevant
environmental clone sequences. The tree was constructed using the maxi-
mum-likelihood method with Kimura two-parameter correction. Confidence
values were based on 1,000 bootstrap replications. (Scale bar represents 0.05
nucleotide changes per position.)
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Fig. 3. Influence of pH (A) and salinity (B) on growth. Values represent
percentage of specific growth rates of cultures grown under different pH
and salinity values relative to those at pH and salinity optima. Error bars
represent the SD of triplicate cultures.
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completely light-inhibited cultures, strain SCM1 cultures were
first incubated under continuous illumination at 60 μE·m−2·s−1

until growth ceased (∼100 h) and then transferred to the dark.
These cultures began to recover within 24 h and completely
converted all ammonia to nitrite, but at a significantly reduced
growth rate compared with dark-incubated controls (Fig. 4D).
Thus, although the data confirmed sensitivity of AOA to light,
they also suggest that significant ammonia oxidation is possible
in the upper water column.

Assimilation of Organic Carbon. Isolation of HCA1 and PS0 re-
quired the addition of a low concentration of α-ketoglutaric acid
to the inorganic basal medium. Both strains oxidized approxi-
mately one-half of the added ammonia to nitrite following initial
transfer from α-ketoglutaric acid supplemented into organic
carbon-free media (1% inoculum), and failed to grow following
a second transfer into organic carbon-free media (Fig. 5 A and
B). The oxidation of one-half of the ammonia following the first
transfer likely reflected either use of endogenous cellular reserves
or the carryover of a low amount of α-ketoglutaric acid in the
inoculum. As previously reported, strain SCM1 was capable of
chemolithoautotrophic growth, oxidizing all added ammonia in
the absence of an organic carbon supplement. However, SCM1
growth rate and cell yield were greater in cultures supplemented
with α-ketoglutaric acid (Fig. 5C and Table S3). Because cell yield
per mole of ammonia oxidized was greater for all strains in organic
carbon supplemented media (from 93.4 to 112.6 × 1012 cells per
mol of NH4

+ for SCM1, no growth to 80.8 × 1012 cells per mol of
NH4

+ for HCA1, and no growth to 70.4 × 1012 cells per mol of
NH4

+ for PS0) (Fig. S3), these results suggested that mixotrophic
growth may be the preferred lifestyle of marine AOA.

Growth of Strain PS0 on Urea. The genetic potential for using urea
to fuel nitrification has been reported for the marine group I

Thaumarchaeota (28, 30). However, direct physiological support
has to date been lacking. We therefore examined the capacity of
each strain to grow in an ammonia-free medium supplemented
with ∼100 μM urea. As predicted from the SCM1 genome se-
quence, previously reported to lack genes annotated for urea
transport and degradation, no growth or nitrite production was
observed for SCM1 cultures following more than 3 mo of in-
cubation. Likewise, no growth of strain HCA1 was observed in the
urea medium. In contrast, strain PS0 grew by near-stoichiometric
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Fig. 5. Nitrite production (circles) and growth curves (triangles) of strains
HCA1 (A), PS0 (B), and SCM1 (C) with 100 μM α-ketoglutaric acid (gray) rel-
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conversion of urea (∼90 μM) to nitrite (∼180 μM) in 17 d (Fig. S4)
at a specific growth rate (0.18 d−1) comparable to its growth on
ammonia (0.23 d−1).

Discussion
Since the successful isolation of the first ammonia-oxidizing
archaeon (SCM1) from a seawater aquarium (23) using low am-
monia concentrations for selective enrichment, the same general
approach has been widely used to enrich additional AOA from
soil, fresh water, marine, and geothermal habitats (15–22, 46).
However, despite significant efforts to obtain isolates from en-
richment cultures, other than SCM1 onlyNitrososphaera viennensis
strain EN76 from garden soil has been reported in pure culture
(15). In contrast to chemolithoautotrophic growth of SCM1, N.
viennensis and the new marine isolates require organic carbon,
a requirement that may account for the virtual absence of pub-
lications describing additional isolates. Presumably the coexisting
bacteria provide essential nutrients, and without appropriate nu-
trient supplementation, the AOA cannot be maintained (15, 19,
21). For example, the isolation of the soil AOA N. viennensis re-
quired the addition of pyruvate (15). However, pyruvate addition
has not been sufficient for the isolation of AOA from other en-
richment cultures (21), suggesting that different ecotypes vary in
their carbon assimilation capabilities. Here, we isolated two
N. maritimus-related strains from coastal water using α-ketoglutaric
acid as an organic nutrient source, demonstrating the significance
of another organic compound to the growth of an AOA lineage
in marine environments.
The three strains (SCM1, HCA1, and PS0) described here are

relatively closely related members of a marine AOA lineage that
differ markedly in basic physiological features. Although strain
SCM1 was isolated from a tropical marine aquarium, it shares
high genomic similarity with marine metagenomic sequences and
has an apparent half-saturation constant (Ks) for ammonia oxi-
dation (133 nM) comparable to Ks values determined directly in
open ocean waters (65–112 nM) (8, 11, 23, 24, 48). The optimum
growth temperature near 30–33 °C, and a preference for salin-
ities (32–40‰) higher than the newly described coastal isolates,
also suggests that strain SCM1 was originally native to tropical
ocean waters.
All isolates vary significantly in sensitivity to light and pH.

These features relate directly to abiotic factors controlling their
environmental distribution and response to the ongoing re-
duction in ocean pH (49). The sensitivity of marine AOA to
ocean acidification has been inferred from a limited number of
short-term studies of experimentally acidified ocean water (37,
50, 51). For example, a recent study by Beman et al. (37)
reported significant inhibition of ammonia oxidation (8–38%
reduction in rates) following relatively small pH reductions of
both coastal and open ocean waters in which AOA were the
dominant ammonia-oxidizing population. This effect was asso-
ciated with the reported requirement for the use of ammonia
(NH3), not ammonium (NH4

+), as a substrate for ammonia-
oxidizing bacteria such as the marine AOB Nitrosococcus oceani
(40). The concentration of this form is significantly reduced by
small reductions in pH. However, as yet there is no evidence that
AOA have the same substrate requirement as AOB. In fact, the
description of “Candidatus Nitrosotalea devanaterra,” an aci-
dophilic terrestrial AOA growing optimally at pH values near 4,
suggests that the NH4

+ ion is more likely the substrate for this
organism (17). Our observation that marine AOA strain PS0
grows well at pH 5.9 suggests that at least some AOA pop-
ulations have the capacity to adapt to ongoing reductions in
ocean pH. If the ammonium ion is the preferred substrate, ocean
acidification may actually promote the growth of AOA, influ-
encing oceanic production of N2O now associated primarily with
their activities (9, 10).

Light has long been implicated as a major factor controlling
the activity and distribution of both ammonia oxidizers and ni-
trite oxidizers in the water column. The inhibitory effect of light
on cultured AOB has been known for decades and attributed to
photooxidative damage of the copper-containing ammonia
monooxygenase (52–54). Archaeal photosensitivity was recently
reported for marine, soil and fresh water AOA strains, including
SCM1 (21, 55). At a light intensity similar to the base of the
euphotic zone (15 μE·m−2·s−1), Merbt et al. (2012) reported the
growth of SCM1 was almost completely inhibited with no evi-
dence of dark recovery during an imposed diurnal cycle (55). In
contrast, we found only a marginal inhibitory effect of a compa-
rable diurnal light regime on strain SCM1 (2.5% at 15 μE·m−2·s−1)
and a similarly low inhibition of novel strains HCA1 and PS0 to
this light regime. Even under continuous illumination, the growth
rate of SCM1 was reduced by only 11.8% at this light flux. At
higher intensities (40 and 60 μE·m−2·s−1) these isolates were ca-
pable of rapid dark recovery from photoinhibition, suggesting that
ammonia oxidation in upper regions of the euphotic zone could
follow a diurnal cycle (56, 57). Although we have no explanation
for the disparity between this and the previous study, these data
provide physiological explanation for the high abundance and
activity of AOA near the bottom of the euphotic zone as inferred
by relating amoA gene and transcript abundance to in situ am-
monia oxidation rate measurements (6–8, 36).
The requirement of the new isolates for organic carbon

amplifies growing appreciation of the importance of mixotrophy
in marine food webs and provided direct physiological support for
previous isotopic studies suggesting both organic and inorganic
carbon sources were assimilated by marine Thaumarchaeota (4,
25, 32, 33). There are obvious energetic advantages to the use of
organic carbon to supplement or alleviate carbon fixation. In
addition, organic material might serve as an alternative source of
reductant, other than electrons derived solely from ammonia, for
the ammonia monooxygenase. Our demonstration that isolate
PS0 is capable of using urea as an alternative energy source also
provided the first (to our knowledge) direct physiological con-
firmation of an activity implicated by marine genomic datasets
(28–30). If the AOA have an affinity for urea comparable to their
remarkably low Ks for ammonia, they may also effectively com-
pete with phytoplankton for this reduced form of nitrogen,
a question that can now be addressed using this new isolate.
The physiological data presented begin to define ecotype

variation within the AOA and to disentangle environmental
variables influencing the abundance and activity of populations
now thought to play a fundamental role in the shaping of the
marine nitrogen cycle. For example, the requirement of the new
isolates for organic carbon suggests that substrates other than
ammonia could limit the distribution of some environmental
populations. Characterized AOB are unable to growth at pH
values significantly below 7 (40, 58, 59). This has fostered specu-
lation that the AOA may suffer similar inhibition at acidic pH.
However, our demonstration of significant variation in pH adap-
tation among closely related AOA suggests that ongoing ocean
acidification is more likely to change the distribution of competing
AOA lineages and, as a consequence, alter the marine nitrogen
cycle in unexpected ways. Finally, because these studies encom-
passed only a small and genetically closely circumscribed set of
AOA, relative to the much greater genetic diversity revealed by
ongoing metagenomic surveys, they point to a rich and mostly
unexplored physiological diversity of the marine AOA.

Materials and Methods
Enrichment and Isolation of Marine AOA. Low added ammonia (2 μM) was
used to selectively enrich and isolate AOA from seawater samples collected
from the Puget Sound estuary in Washington (SI Materials and Methods).
Pure cultures were obtained by filtration of the enrichment cultures through
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a syringe filter, and diluting the filtrate to extinction. For details, see SI
Materials and Methods.

Growth Experiments. All materials and methods for physiology experiments
are described in detail in SI Materials and Methods.

Transmission Electron Microscopy. Preparation of the novel AOA isolates for
examination by transmission electron microscopy is described in SI Materials
and Methods.

Sequencing and Phylogenetic Analysis. Sequences of AOA 16S rRNA and amoA
genes were obtained using an ABI 3730xl sequencer. Phylogenetic trees
were generated using MEGA5 as described in SI Materials and Methods.
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