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Collaboration among researchers is an essential component of the
modern scientific enterprise, playing a particularly important role
in multidisciplinary research. However, we continue to wrestle
with allocating credit to the coauthors of publications with mu-
ltiple authors, because the relative contribution of each author is
difficult to determine. At the same time, the scientific community
runs an informal field-dependent credit allocation process that as-
signs credit in a collective fashion to each work. Here we develop
a credit allocation algorithm that captures the coauthors’ contri-
bution to a publication as perceived by the scientific community,
reproducing the informal collective credit allocation of science. We
validate the method by identifying the authors of Nobel-winning
papers that are credited for the discovery, independent of their
positions in the author list. The method can also compare the
relative impact of researchers working in the same field, even if
they did not publish together. The ability to accurately measure
the relative credit of researchers could affect many aspects of
credit allocation in science, potentially impacting hiring, funding,
and promotion decisions.
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Reflecting the increasing complexity of modern research, in
the last decades, collaboration among researchers became

a standard path to discovery (1). Collaboration plays a particu-
larly important role in multidisciplinary research that requires
expertise from different scientific fields (2). As the number of
coauthors of each publication increases, science’s credit system is
under pressure to evolve (3–5). For single-author papers, which
were the norm decades ago, credit allocation is simple: the sole
author gets all of the credit. This rule, accepted since the birth of
science, fails for multiauthor papers (6). The lack of a robust
credit allocation system that can account for the discrepancy
between researchers’ contribution to a particular body of work
and the credit they obtain, has prompted some to state that
“multiple authorship endangers the author credit system” (7).
This situation is particularly acute in multidisciplinary research
(8, 9), when communities with different credit allocation tradi-
tions collaborate (10). Furthermore, a detailed understanding of
the rules underlying credit allocation is crucial for an accurate
assessment of each researcher’s scientific impact, affecting hir-
ing, funding, and promotion decisions.
Current approaches to allocating scientific credit fall in three

main categories. The first views each author of a multiauthor
publication as the sole author (11, 12), resulting in inflated sci-
entific impact for publications with multiple authors. This system
is biased toward researchers with multiple collaborations or large
teams, customary in experimental particle physics or genomics.
The second assumes that all coauthors contribute equally to
a publication, allocating fractional credit evenly among them (13,
14). This approach ignores the fact that authors’ contributions
are never equal and hence dilutes the credit of the intellectual
leader. The third allocates scientific credit according to the order
or the role of coauthors, interpreting a message agreed on within
the respective discipline (15–17). For example, in biology, typi-
cally the first and the last author(s) get the lion’s share of the
credit, and in some areas of physical sciences, the author list
reflects a decreasing degree of contribution. An extreme case is

offered by experimental particle physics, where the author list is
alphabetic, making it impossible to interpret the author con-
tributions without exogenous information. Finally, there is an
increasing trend to allocate credit based on the specific contri-
bution of each author (18, 19), specified in the contribution
declaration required by some journals (20, 21). However, each of
these approaches ignores the most important aspect of credit
allocation: notwithstanding the agreed on order, credit allocation
is a collective process (22–24), which is determined by the sci-
entific community rather than the coauthors or the order of the
authors in a paper. This phenomena is clearly illustrated by the
2012 Nobel prize in physics that was awarded based on discov-
eries reported in publications whose last authors were the lau-
reates (25, 26), whereas the 2007 Nobel prize in physics was
awarded to the third author of a nine-author paper (27) and the
first author of a five-author publication (28). Clearly the scientific
community operates an informal credit allocation system that
may not be obvious to those outside of the particular discipline.
The leading hypothesis of this work is that the information

about the informal credit allocation within science is encoded in
the detailed citation pattern of the respective paper and other
papers published by the same authors on the same subject. In-
deed, each citing paper expresses its perception of the scientific
impact of a paper’s coauthors by citing other contributions by
them, conveying implicit information about the perceived con-
tribution of each author. Our goal is to design an algorithm that
can capture in a discipline-independent fashion the way this in-
formal collective credit allocation mechanism develops.

Results
We start by examining the simplest situation: given a paper p0
with two authors, a1 and a2, who gets the credit? Consider the
extreme case when author a1 has published several other papers
on the topic of paper p0 that are often cited together with p0; for
author a2, the target paper is his only publication. Given that a1
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has a track record in the particular discipline and a2 is unknown
to the community, the community views p0 as a part of a1’s body
of work (Fig. 1A). The credit allocation system should recognize
this and assign most or all credit to a1. The other extreme case is
when all papers pertaining to the topic of p0 are joint pub-
lications between a1 and a2. Lacking any exogenous information,
the two authors share equal credit for the target paper (Fig. 1B),
a symmetry that should be captured by a credit allocation method.
In practice, the situation is more complicated: authors a1 and a2
may publish some papers together and several with other coau-
thors on the topic of p0. Hence, their credit share of the particular
work diverges with time, based on the impact of the body of work
they publish separately. Next we describe a method that can ac-
count for this collective credit allocation process.

Credit Allocation Algorithm. Consider a paper p0 with m coauthors
{ai}(1 ≤ i ≤m). To determine the credit share of each author, we
first identify all papers that cite p0, forming a set D ≡ {d1, d2,. . .,
dl}. Next we identify all cocited papers P ≡ {p0, p1,. . .,pn}, rep-
resenting the complete set of papers cited by papers in the set D.
The relevance of each cocited paper pj (0 ≤ j ≤ n) to the target
paper p0 is characterized by its cocitation strength sj between p0
and pj, defined as the number of times p0 and pj are cited to-
gether by the papers in D (29). For example, for p1 in Fig. 2A, we
have s1 = 1 because only one paper (d1) cites p0 and p1 together,
whereas s2 = 4 as four papers (d1, d2, d3, and d5) cite p0 and p2
together. Cocitation strength captures the intuition that papers
by an author that are perceived to be very relevant to paper p0
should increase the author’s perceived contribution to p0. Note
that the target paper p0 is also viewed as a cocited paper of itself
with cocitation strength equal to the citation count of p0. Con-
sequently, for papers with high citation count, the credit share of
coauthors is less likely to be affected by other cocited papers.
Using the author list of the cocited papers, we next calculate

a credit allocation matrix A, whose element Aij denotes the
amount of credit that author ai gets from cocited paper pj

(SI Appendix, section S2.2). To develop a discipline-independent
method for credit allocation, we use a fractional credit alloca-
tion matrix that does not depend on the order of authors in the
author list. For example, paper p1 assigns all credit to author a1
who is the sole author of p1, whereas p0 assigns equal (half)
credit to authors a1 and a2 (Fig. 1A). The total credit ci of
author ai is the weighted sum of its local credit obtained from
all cocited papers

ci =
X

j

Aijsj; [1]

or in the matrix form

c=As: [2]

The vector c provides the credit of all authors of target paper p0.
By normalizing c, we obtain the fractional credit share among
coauthors (Fig. 2E).
We apply the proposed procedure to the two extreme cases of

Fig. 1. When author a2 has only one paper on the topic of p0, the

A B

Fig. 1. Extreme cases of credit allocation. (A) Asymmetric credit: when au-
thor a2 contributes to only one paper in a body of work, the community
assigns credit to a1, who publishes multiple papers on the topic. (B) Sym-
metric credit: when authors a1 and a2 publish all their papers on the topic of
paper p0 jointly, they equally share the credit. In both cases, p0 is the target
paper with two authors a1 and a2 colored in red and green, respectively; dk

(1 ≤ k ≤ 5) are citing papers of p0; pj (0 ≤ j ≤ 4) are papers that were cocited
by the papers that cite p0; A is the credit allocation matrix; s depicts the
cocitation strength between cocited papers and target paper; and c is the
final credit share for the authors of the target paper p0.

Table 1. Credit share for five Nobel prize winning papers

Awarding year/paper Authors

Credit share

WOS APS

2012/Phys Rev Lett 77, 4887 (1996) M. Brune 0.204 0.209
E. Hagley 0.074 0.080
J. Dreyer 0.065 0.070
X. Maître 0.068 0.074
A. Maali 0.073 0.077
C. Wunderlich 0.069 0.074
J. M. Raimond 0.212 0.206
S. Haroche* 0.236 0.211

2012/Phys Rev Lett 76, 1796 (1996) D. M. Meekhof 0.160 0.149
C. Monroe 0.198 0.182
B. E. King 0.173 0.158
W. M. Itano 0.200 0.239
D. J. Wineland* 0.270 0.272

2010/Science 306, 666 (2004) K. S. Novoselov* 0.244 NA
A. K. Geim* 0.253 NA
S. V. Morozov 0.111 NA
D. Jiang 0.102 NA
Y. Zhang 0.064 NA
S. V. Dubonos 0.075 NA
I. V. Grigorieva 0.075 NA
A. A. Firsov 0.075 NA

2007/Phys Rev Lett 61, 2472 (1988) M. N. Baibich 0.094 0.093
J. M. Broto 0.090 0.090
A. Fert* 0.242 0.252
F. Nguyen Van Dau 0.093 0.093
F. Petroff 0.114 0.100
P. Etienne 0.089 0.093
G. Creuzet 0.097 0.093
A. Friederich 0.091 0.093
J. Chazelas 0.090 0.093

1997/Phys Rev Lett 55, 48 (1985) S. Chu* 0.244 0.196
L. Hollberg 0.087 0.096
J. E. Bjorkholm 0.134 0.162
A. Cable 0.138 0.160
A. Ashkin 0.397 0.386

Credit share is computed according to Eq. 1 or Eq. 2 in the awarding year
of each paper, using the WOS and the APS datasets. Coauthors are shown
according to their positions in the author list. The maximum credit share is
highlighted in bold and the laureates are marked with asterisks. For papers
not contained in the dataset, we put NA for credit share.
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fact that the community cites p0 together with other papers of
author a1 indicates that they perceive p0 a part of a larger body of
work by author a1 (Fig. 1A). Our method in this case obtains c =
(0.75, 0.25)T, hence allocating most credit to author a1. When all
subsequent work are joint, it gives c = (0.5, 0.5)T, i.e., credit is
equally shared between a1 and a2 (Fig. 1B).

Validation. To validate our method, we apply it to Nobel prize-
winning publications, representing a case where the community
(and the Nobel committee) has decided where the main credit
goes. We therefore collected all Nobel prize-winning papers in
Physics (1995–2013), Chemistry (1998–2013), Medicine (2006–
2013), and Economics (1995–2013), since the Nobel committee
started offering a detailed explanation with references for the prize.
Table 1 shows the obtained credit share for five Nobel prize-win-
ning physics papers in the year before the Nobel prizes were
awarded, hence discounting the influence of the prize (see SI Ap-
pendix, Table S5–S8 for the complete set of results). We find that in
four of the five cases, the laureates have the largest credit share, no
matter whether they are the first (2010) or the last authors (2012)
or occupy some intermediate position in the author list (2007). For
example, as the third author of the prize-winning paper with nine
coauthors (27), the 2007 Nobel laureate A. Fert gets nearly one
fourth of all credit, and the remaining credit is almost evenly dis-
tributed among the other coauthors. A particularly interesting case
is the 2010 prize-winning paper (30), where two of eight coauthors
were awarded the Nobel prize, consistent with the predicted credit
share. Indeed, the credit share of the laureates is almost equal, and
it is 2.5 times higher than the credit share of the third-ranked co-
author. Another interesting example, out of the validation sample,
is offered by the 1974 Nobel prize in Physics awarded to A. Hewish
for the discovery of pulsars (31), with S. J. Bell as the second of five
authors. Researchers in the community occasionally refer to the
1974 Nobel prize as the “No-Bell” prize because many feel that
Bell should have shared it (http://en.wikipedia.org/wiki/Antony_
Hewish). Applying our method to the prize-winning paper, we
obtain c = [0.250, 0.189, 0.196, 0.185, 0.180]T, assigning the largest
credit to the laureate, indicating that the committee’s choice was
consistent with the perceived credit within the scientific commu-
nity. Fig. 3 shows the accuracy of our method at identifying the
laureates from the author list of all of the 63 multiauthor prize-
winning papers across three disciplines. We find that the authors
with top credit share correspond to laureates in 51 papers (81%),
despite the diversity of positions the laureates had in the author list.
Note that we did not count single-author papers, for which credit is
obvious. Counting those as well, accuracy increases to 86%.

Finally, it is useful to understand potential reasons for the
method’s occasional failure. For example, for the two prize-
winning papers of the 2011 Physics Nobel, our method fails to
correctly identify the laureates, caused by the fact that one re-
searcher (Filippenko) coauthors both prize-winning papers but is
not the intellectual leader for either of them. Consequently, he
gets the top credit on both papers. The laureates get the highest
credit among the remaining coauthors; hence, if the anomaly is
removed, our method correctly identifies them. This case could
be corrected by incorporating contextual or exogenous in-
formation into the credit allocation matrix, like the order of the
authors, as we discuss below. Another fascinating anomaly is the
1997 Nobel prize in Physics (32): S. Chu was awarded the prize,
although A. Ashkin has the highest credit share according to our
method. Considered by many scientists the father of the field of
optical tweezers (33), Ashkin published several high-impact
papers (34, 35) preceding the collaboration with Chu, developing
the technology that made the Nobel prize-winning discovery
possible. The prize-winning paper is repeatedly cocited with the
preceding papers, explaining Ashkin’s higher score. As we show
below, credit to Chu is restored if we restrict the cocited pool to
papers published after the joint 1985 (Nobel-winning) paper,
removing the influence of the preceding work.

Credit Share Evolution. The proposed methodology also allows us to
determine the temporal evolution of credit share between coau-
thors. To illustrate this, we explore whether the Nobel prize affects
the credit share of Nobel laureates relative to their coauthors. Fig.
4A shows the evolution of credit share for the 1997 Nobel prize-
winning paper in Physics (32). We find that right after the publi-
cation, Ashkin gets virtually all of the credit for the discovery, and
Chu’s credit share is tiny, given his lack of previous track record in
this area (Fig. 4A). However, with time his credit share increases,
whereas Ashkin’s credit share decreases, partly because Ashkin
stopped publishing papers after 1986 and retired in 1992. The
method also helps us explore how the papers preceding the pub-
lication (i.e., previous reputation) of a prize-winning paper in-
fluence the credit allocation. Indeed, when we consider all cocited
papers, Ashkin’s credit share is higher than the credit share of the
laureate Chu, given his work preceding the 1985 paper. However,
Chu gets higher credit share than Ashkin if we only consider the
cocited papers published after 1985 (Fig. 4A, Inset). This example
indicates that, although established scientists receive more credit
than their junior colleagues from their coauthored publications,
this situation can change if the junior colleague makes im-
portant independent contribution to the field.

A B

C D E

Fig. 2. Illustrating the credit allocation process. (A) The
target paper p0 has two authors, a1 and a2, colored in
red and green, respectively. We also show the citing
papers dk (1 ≤ k ≤ 5) and the cocited papers pj (0 ≤ j ≤ 4)
that were cited by these citing papers together with p0.
(B) The p0-centric cocitation network constructed from
A, where the weights of links denote the cocitation
strength s between the cocited papers and the target
paper p0. (C) The author lists of the target paper p0 and
its cocited papers. (D) The credit allocation matrix A
obtained from the author lists of the cocited papers in C.
The matrix A provides for each cocited paper the
authors’ share. For example, because p2 has a1 as one of
its two authors but it lacks the author a2, it votes 0.5 for
author a1 and 0.0 for author a2. (E) With the matrix A
and cocitation strength s, the credit share of the two
authors of p0 is computed according to Eq. 1 or Eq. 2
with a normalization.
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The effect of Nobel prize on credit share is also remarkable for
the other 1997 Nobel prize-winning paper (36): the Nobel laureate
W. D. Phillips’s credit share jumps after the prize year (Fig. 4B).
Indeed, the prize, by canonizing credit, alters the subsequent ci-
tation patterns (37–39), reflecting a “rich get richer” phenomenon
in science (40–46). To quantify how widespread this effect is, we
systematically studied how the credit share of laureates relative to
their coauthors changes when they are awarded the Nobel prize.
Therefore, for each laureate, we calculate her average credit share
cb over 3 y before the award year and the average credit share ca
over 3 y after the award year. We quantify the increase of the
credit share using the ratio ca/cb. For most Nobel laureates, the
Nobel prize does improve their credit share relative to their
coauthors (Fig. 4D), an effect that is strongest in Physics and
weakest in Medicine. The two cases with the strongest effect in
Physics (the outlier points in Fig. 4D) are shown in Fig. 4 A and B.

Comparing Independent Authors. The developed method allows us
to compare authors that are in the same research field but may
not have published papers together. In this case, the cocitation
strength is based on the citing papers that simultaneously cite
at least one paper of each compared author, automatically
identifying their common research topic (SI Appendix, Fig. S1).
Therefore, the credit share of the compared authors reflects
their relative contribution to their common research topic, just as
the credit share quantifies the coauthors’ relative contribution to

a joint paper. An excellent example is provided by the 2013
Nobel prize in Physics (see SI Appendix, Fig. S2 for more
examples). The prize posed a widely publicized dilemma: six
physicists and three key papers are credited for the 1964 dis-
covery pertaining to the theory of Higgs boson, but the prize
could be shared by a maximum of three individuals. F. Englert
and R. Brout published the theory first (47) but failed to spell
out the Higgs boson, whose existence was predicted in a sub-
sequent paper by P. W. Higgs (48). G. S. Guralnik, C. R. Hagen,
and T. W. B. Kibble, 1 mo later proposed the same theory (49),
explaining how the building blocks of the universe get their mass.
In 2010, the six physicists were given equal recognition by the
American Physical Society (APS), sharing the Sakurai prize for
theoretical particle physics. This symmetry was broken by the
Nobel committee, awarding the prize to Higgs and Englert in
2013. To explore their credit share, we apply our method to
compare these researchers (Fig. 4C) and find that Higgs gets the
most credit, followed by Kibble, whereas Englert is third, getting
only slightly higher credit than his coauthor Brout (deceased).
Finally, Guralnik and Hagen equally share the remaining credit.
Therefore, the scientific community assigns credit for the dis-
covery recognized by the 2013 Nobel Physics prize to Higgs,
Kibble, and Englert (and the deceased Brout), in this order. The
committee, by bypassing Kibble, has clearly deviated from the
community’s perception of where the credit lies (50).

Fig. 3. Identifying Nobel laureates from the prize-winning papers in Physics, Chemistry, and Medicine. We apply our method to all multiauthor Nobel prize-
winning papers in Physics (1995–2013), Chemistry (1998–2013), and Medicine (2006–2013), covering the periods since the Nobel committee started offering
a detailed explanation with references for the prize. For each Nobel prize-winning paper, the laureates are shown in red-filled circles. The author with top credit
share (for a paper with k laureates we consider all of the top-k credit share) is shown as a black-filled circle when he/she is not a laureate. Other coauthors are
shown as empty circles. Hence the presence of black-filled circles indicates that the credit allocation offered by our algorithm is inconsistent with the decision
made by the Nobel committee. The individuals to whomwe assign the top credit correspond to laureates in 51 of the 63 prize-winning papers. To accommodate
papers with more than 23 authors, we put in the adjacent column the circles corresponding to the authors after the 23rd one, forming irregular blocks. Results
are based on the Web of Science dataset. Papers on Economics are not shown because they are either single-author papers or are not contained in our dataset.
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Robustness of the Method. We validate the robustness of our
method by applying it to two disparate datasets, the publicly
available APS dataset and the Web of Science (WOS) dataset (SI
Appendix, section S1). The APS dataset consists of papers pub-
lished by journals of APS between 1893 and 2009; hence, its
coverage is biased toward the US-based physics community (51).
The dataset does not contain papers published in interdisciplinary
journals, like Science, where the 2010 Nobel winning paper was
published. The WOS dataset, in contrast, contains all papers
indexed by Thomson Reuters between 1955 and 2012 (52). By
comparing the results obtained using these two datasets, we can
evaluate the robustness of our method. In Table 1, we show the
credit share of the papers obtained using each dataset individually.
Overall, we find that the data incompleteness of the APS dataset
never alters the relative ranking of the researchers. The same
robustness is documented in Fig. 4C, where we calculated using
both the APS dataset and the WOS dataset the dynamic credit
share of the contenders for the 2013 Nobel prize, particularly
important given that the European experimental particle physics
community shuns the APS journals. Consequently, there are huge
difference in coverage between the APS and WOS datasets. For
example, for Higgs’ prize winning paper, we have ND = 187, NP =
1,847 in the APS dataset and ND = 879, NP = 24,596 in the WOS
dataset. Despite the bias of the APS dataset and the huge dif-
ference in coverage, the relative credit of the six authors remains
unchanged (Fig. 4C).

Exogenous Information. The proposed algorithm can incorporate
exogenous information to improve its accuracy. To show this, we
explored five priors for constructing the credit allocation matrix
A, each reflecting a different hypothesis about the role of the
authors. They are as follows: (i) count prior (12), each author is
viewed as the sole author of the particular publication; (ii)
fractional prior (14), authors equally share one credit independent
of their position in the author list; (iii) harmonic prior (15), authors
share one credit with their credit share proportional to the re-
ciprocal of authors’ rank in the author list; (iv) axiomatic prior (17),
authors share one credit but the credit share of each author is de-
termined by the number of coauthors with lower rank in the author

list; and (v) Zhang’s prior (16), the first and the corresponding
authors get one credit, whereas other authors share one credit de-
pendent on their rank in the author list (see SI Appendix, section
S2.2 for details). The first two priors do not depend on the order of
authors, whereas the last three do. We summarize the results of
each prior separately for three Nobel-awarding disciplines (SI Ap-
pendix, Table S3). We find that when we incorporate corresponding
author information (if not available, we take the last author as the
corresponding author) for Medicine and Chemistry, the accuracy
increases, but it decreases for Physics. Therefore, if contextual or
exogenous information is available, our method can absorb that,
improving its predictive power. However, these other priors should
be only used in a disciplinary fashion.

Discussion
In this paper, we proposed a method to quantify the credit share
of coauthors by reproducing the collective credit allocation pro-
cess informally used by the scientific community. The method
captures several key aspects of credit allocation in science. (i)
Credit is allocated among scientists based on their perceived
contribution rather than their actual contribution. (ii) Established
scientists receive more credit than their junior collaborators from
coauthored publications (40). This balance can change, however, if
the junior colleague makes important independent contribution to
the field. (iii) Credit share changes with the evolution of the field.
Our method has several distinguishing characteristics, differ-

entiating it from current credit allocation procedures that are
based on the author list (13–17). (i) The method offers topic-
dependent credit share, as each paper’s research topic is auto-
matically defined by the body of papers that cite it. (ii) It per-
forms consistently better than existing methods across disciplines.
Indeed, previous methods that assign credit to the first or the
corresponding authors work only for disciplines that have clear
agreed-on rule on authorship and credit allocation. (iii) The
method is flexible, being able to incorporate the order of coau-
thors in the author list, allowing us to construct a credit alloca-
tion matrix that captures exogenous information (SI Appendix,
section S2.2). (iv) The method provides a natural way to directly

A B

C D

Fig. 4. Credit share evolution. (A) The credit share
of the authors of the 1997 Nobel prize-winning pa-
per (32). (Inset) Credit share obtained when we only
consider the cocited papers published after the
publication of the prize-winning paper. (B) The
credit share of the authors of the other 1997 Nobel
prize-winning paper (36). (C) Credit share of six
physicists who contributed to the theory of Higgs
boson in 1964 (47–49), obtained by our method us-
ing the Web of Science dataset as input. (Inset) The
same as in C but based on the APS dataset. (D) The
influence of the Nobel prize on laureates’ credit
share. For each laureate, we use the increase ratio
(ca/cb) to quantify the change of her credit share
after she was awarded the Nobel prize. In the box
plot, whiskers are higher than 90th percentile or
lower than 10th percentile. Results are based on the
Web of Science dataset.
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compare the relative scientific impact of researchers that did not
collaborate with each other but work in the same research field.
(v) The method could be used to refine some established
measures for scientific impact by considering the credit share of
coauthors. (vi) As a further improvement, we could consider
a page-rank style algorithm, where the citing set P is weighted
based on their citation count. Hence, citations from more in-
fluential papers would gain more weight.
The proposed credit allocation method is based on citations,

the most elementary form of visibility and credit in the scientific
community. Consequently, it does not explicitly account for other
tokens of impact, such as invited talks, keynotes, mentoring, and
books, each of which can alter the reputation of a scientist rela-
tive to its coauthors. However, our method may implicitly in-
corporate these effects: if these activities enhance an author’s
visibility compared with her/his coauthors, it could result in long-
term changes in citations and credit share that are captured by the
proposed method.
Finally, credit allocation has potential long-term impact on the

career of individuals, affecting hiring, funding, and promotion
decisions. We wish to clarify that our algorithm does not capture
the precise role of an individual in a paper or a discovery—it
only captures the community’s perception of each individual’s
contribution, as reflected by their body of work. Hence, we
would caution turning this algorithm into the sole tool for credit
allocation—letters from coauthors could offer a more nuanced or
altogether different picture. Hence, it should be used in conjunction

with the other available evaluation tools. The method may also offer
feedback to an individual of the need to seek ways to strengthen the
credit for a work. It may also have adverse effects: uncovering the
mechanism of credit allocation may increase the likelihood
that some authors can “jockey” for position, seeking to change
the outcome. However, such credit manipulation may be realistic
only for lower impact work, where collective effects do not dom-
inate the citation count. Finally, we must keep in mind that the
algorithm relies on citation patterns that take time to accumulate.
Hence, young scientists, with fewer citations, no matter how im-
portant their contribution is, will be at disadvantage. We therefore
must learn to account for age- and time-dependent factors in
credit allocation, opening up avenues for further research.
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