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The energy landscape used by nature over evolutionary timescales
to select protein sequences is essentially the same as the one that
folds these sequences into functioning proteins, sometimes in
microseconds.We show that genomic data, physical coarse-grained
free energy functions, and family-specific information theoretic
models can be combined to give consistent estimates of energy
landscape characteristics of natural proteins. One such character-
istic is the effective temperature Tsel at which these foldable se-
quences have been selected in sequence space by evolution. Tsel
quantifies the importance of folded-state energetics and structural
specificity for molecular evolution. Across all protein families stud-
ied, our estimates for Tsel are well below the experimental folding
temperatures, indicating that the energy landscapesof natural fold-
able proteins are strongly funneled toward the native state.

energy landscape theory | information theory | selection temperature |
funneled landscapes | elastic effects

The physics and natural history of proteins are inextricably
intertwined (1, 2). The cooperative manner in which proteins

find their way to a folded structure is the result of proteins
having undergone natural selection and not typical of random
polymers (3, 4). Likewise, the requirement that most proteins
must fold to function is a strong constraint on their phylogeny.
The unavoidable random mutation events that proteins have
undergone throughout their evolution have provided countless
numbers of physicochemical experiments on folding landscapes.
Thus, the evolutionary patterns of proteins found through com-
parative sequence analysis can be used to understand protein
structure and energetics. In this paper, we compare the in-
formation content in the correlated changes that have occurred in
protein sequences of common ancestry with energies from a
transferable energy function to quantify the influence of main-
taining foldability on molecular evolution.

Funneled Folding Landscapes from Evolution in Sequence
Space
The key to our analysis is the principle of minimal frustration (3,
5), which states that, for quick and robust folding, the energy
landscape of a protein must be dominated by interactions found
in the native conformation. This native conformation is, there-
fore, separated by an energy gap from other compact structures
that otherwise might act as kinetic traps (6, 7). These kinetic
traps might appear on the folding landscape during evolution if
a random mutation was to stabilize a conformation distinct from
the functional one, leading to unviability. In this way, evolution
and physical dynamics are coupled. A funneled, minimally frus-
trated landscape can be achieved if the sequence of the protein
evolves to stabilize the native state while not increasing the
landscape ruggedness.
If folding were the only physicochemical constraint on evolu-

tion, the ensemble of naturally observed sequences would cor-
respond to the set of sequences that has a solvent-averaged free
energy for the native conformation below a threshold set by the

expected ground-state energy for a random sequence. Because
sequence space is vast, the usual arguments showing the equiv-
alence of microcanonical and canonical ensembles in statistical
mechanics suggest that this evolutionary ensemble characterized
by a threshold energy would be equivalent to a canonical dis-
tribution of sequences characterized by a Boltzmann probability:
eð−ΔE=kBTselÞ. This Boltzmann-like probability contains the energy
gap between the folded configuration and the compact misfolded
configurations along with an appropriate selection temperature
(Tsel) (4, 8–10) quantifying how strong the folding constraints
have been during evolution. Tsel is the apparent temperature at
which sequences were selected by evolution for a particular
protein family or fold. It does not correspond to a critical tem-
perature in the laboratory but can, nonetheless, still be usefully
compared with other measurable temperatures, such as the glass
transition temperature and folding temperature. Of course, other
constraints on molecular evolution exist, including the mainte-
nance of the ability of a protein to bind to appropriate partners
(11, 12), catalyze appropriate reactions as for the serine proteases
with their famous catalytic triad (13, 14), undergo allosteric
changes (15), and avoid aggregation (16). All of these factors
potentially enter the quantitative statistical theory of molecular
evolutionary outcomes.
Under the quasiequilibrium selection hypothesis based on

folding energy alone, given the physical free energy function E,
the probability of any given sequence having attained a given
fold can be computed in principle. For a single structural
family, finding this probability essentially corresponds with
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simulating a Potts model with the Potts variables representing
the possible amino acid types being placed on the sites in a
representative average native structure, because 3D native
structure is largely conserved (9, 17). At the same time, various
averages over the allowed natural sequence variation can also
be found using mean field theory (9). Thus, from a sufficiently
reliable physical energy function, one should be able to predict
the distribution of amino acids and the local evolutionary se-
quence entropy at any given location in the protein. The co-
variance of the amino acids in the sequence at different loci
also would follow from this Potts model (Fig. 1).
By comparing such predictions starting from a physical energy

function with the same quantities inferred from observed phylo-
genetic sequence comparisons, the strength of the selection, as
quantified by Tsel, can be found. A statistically more robust way of
making the quantitative connection between the physical and
evolutionary landscapes is to use inverse statistical mechanics
algorithms to infer an information theoretic energy function for the
sequence distribution specifically for a single structural family. Such
an inferred energy function has been used to predict the common
backbone structure of a protein family starting from multiple
sequences (18, 19). The energy gaps between random globules and
native states from the information theoretic single-family Hamil-
tonian can then be compared with the gaps for the same native
structure that are found from the physical, transferable, free energy
function that is ordinarily used for structure prediction.

If the transferable energy function used is sufficiently close to
the actual free energy function under which the proteins have
evolved, the gap comparison allows us to quantify the strength of
the folding constraint. In some cases, we can also estimate Tsel in
a different way by computing the mutational stability changes
predicted by the information theoretic energy function and
comparing the predicted changes directly with measured values.
This alternate approach provides a consistency check on the
results from the transferable predictive energy landscape, which
can be used more widely.
Simple statistical models of protein energy landscapes have

been very helpful in understanding folding (3, 20, 21). Similar
statistical ideas can also be used to describe protein evolution
under the assumption that thermodynamic stability of the native
state is the dominant constraint (22). To make this paper self-
contained, in SI Text, we review the corresponding statistical
analyses of folding and evolution based on uncorrelated energy
landscapes. (The energies of structurally related states of pro-
teins are, in fact, correlated. The effects of adding pairwise
correlations on the energy landscapes of random heteropolymers
have been examined in ref. 23. The change in the estimate of the
glass transition temperature on adding pairwise correlations was
found to be small.) These analyses connect quantitatively the
problems of evolving in sequence space on geological timescales
and folding in configuration space on laboratory timescales,
resulting in a relation between two physicochemical quantities—

Fig. 1. Shown is the structure of the repressor protein CI (32) (Uniprot identifier: RPC1_BP434). Side chains from two additional sequences from the protein
family are superimposed on the template structure. The multiple sequence alignment of the three proteins is also shown. DCA is able to quantify the sta-
tistical couplings between coevolving residues, which tend to be large when the residues are in contact and weak but potentially significant between residues
that are spatially distant. Here, two examples of pairs of coevolving residues are shown: one example where the residues are in direct contact (pink arrows)
and one example where they are not (yellow arrows). These pairs of residues have the same color in the 3D structure diagram as they do on the alignment.
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the folding temperature Tf and the glass transition temperature
Tg—with the evolutionary effective temperature Tsel (22):

2
TfTsel

=
1
T2
g
+

1
T2
f
: [1]

The folding temperatures from the experiment along with se-
lection temperatures obtained by comparing physical and in-
formation theoretic Hamiltonians allow us to obtain Tg in
absolute units as well as the dimensionless ratio Tf/Tg. The physical
model used in this study assumes that the effective interactions
between amino acid residues are temperature-independent, an
approximation that breaks down because of solvent effects (24).
It has been suggested, therefore, that these temperatures might
be usefully interpreted as effective interaction strengths (25).
Because of the temperature-dependent nature of intraprotein
interactions, the Tg values given here should be understood as
measures of landscape ruggedness related to the trap/decoy en-
ergy rather than precise determinations of experimental glass
transition temperatures. Likewise, the dimensionless ratio of the
folding temperature Tf to the glass temperature Tg measures how
funneled the landscape is, with high values corresponding to
nearly ideal funnels. The evolutionary inferred ratios turn out to
be fairly close to the values inferred earlier based on purely
physical arguments that set up correspondences between three-
letter code lattice models and real proteins by making use of
experimental information about residual structure and dynamics
in the molten globules of helical proteins (26). The coevolution-
based analysis suggests that protein landscapes are actually
somewhat more funneled than was originally inferred. In some
cases, the ratio approaches the higher estimates for Tf/Tg arrived
at by two distinct sets of physical arguments: one set by Kaya and
Chan (27) is based on observed high cooperativity of calorimetric
folding transitions, and the other set by Clementi and Plotkin
(28) is based on matching observed folding kinetics.

Results
We studied eight different protein families (defined by Pfam)
(29). Each of these contains more than 4,500 sequences. All have
at least one experimentally determined structure. The protein
lengths range from 60 to 286 aa. Each of the families represents
a distinct tertiary structure. A list of the specific proteins con-
sidered and their respective families is provided in Table S1.

For each family of proteins, we use direct coupling analysis
(DCA) to infer a global statisticalmodel for sequences in that family.
DCA takes as input a multiple sequence alignment of sequences
belonging to a single-protein family. Using a maximum entropy
approach, DCA infers an effective energy function consisting of
single-site fields andpairwise couplings that is able to approximately
reproduce the empirically observed single-site and pairwise amino
acid frequencies from the input sequence alignment. This energy
function can also be used to estimate the probability (PDCA) that an
arbitrary sequence (notnecessarilypresent in the input alignment) is
part of the family. From this probability, a unitless energy can be
defined by HDCA = log(PDCA). For the corresponding physical en-
ergy function, we use an estimate from a successful structure pre-
diction model, E =HAWSEM; to be precise, we use the energy of the
sequence in its native structureaccording to the associativememory,
water-mediated, structure, and energy model (AWSEM) (30).
Details of how these quantities are computed are in SI Text. We use
the probabilities and energies of random sequences having the
composition of natural proteins as a reference state to get E, and
therefore, the selection temperature is obtained as a ratio of energy
gaps from the two Hamiltonian values:

Tsel =
−Hnat

AWSEM + Hmg
AWSEM

kB log
�
Pnat
DCA

�
Pmg
DCA

� =
−Hnat

AWSEM + Hmg
AWSEM

kB
�
Hnat

DCA − Hmg
DCA

� : [2]

The nat superscript indicates that the quantity is evaluated for
native sequences, whereas the mg superscript indicates that
quantities are evaluated for random (molten globule) sequences:
Hnat

DCA − Hmg
DCA = logðPnat

DCA=P
mg
DCAÞ. We then perform a linear least

squares fit to the combined set of native and random ordered pairs
(HDCA and HAWSEM) to find the slope of the line and thus, Tsel.
This formulation gives a single value of Tsel for each protein family.
The result of this analysis is shown for the PDZ family [protein
tyrosine phosphatase; Protein Data Bank (PDB) ID code 1GM1]
(31) in Fig. 2A.HAWSEM is plotted vs.HDCA for 26,099 sequences in
the PDZ family as well as an equal number of random sequences
having amino acid compositions typical of natural proteins.
The global correlation between the two landscapes, one land-

scape obtained from a transferable energy function useful for
structure prediction (AWSEM) and the other landscape inferred
from coevolutionary information for each family (DCA), is high
(R = 0.924 for the PDZ family; R≈ 0:9, on average, across all
eight protein families). The slope of the best fit line by Eq. 2
corresponds to a selection temperature of 124 K, well below the

Protein tyrosine phosphatase PTP-BL Repressor protein CIA B

Fig. 2. (A) Correlation of HAWSEM and HDCA. The points corresponding to sequences in the PDZ family are shown in blue, and the points corresponding to an
equal number of molten globule sequences are shown in red. The centers of the distributions are well-separated along both coordinates, indicating that both
models are able to distinguish native sequences from molten globule sequences. The correlation coefficient between the two models is R = 0.924, indicating
that, for these sets of sequences, the models are very well-correlated. The slope of this best fit line is −0.25, which corresponds to a selection temperature of
124 K. (B) Correlation between AWSEM and DCA Hamiltonian values for thermally occupied structures with different values of the fraction of native contacts
formed Q, indicated by the color bar, from a molecular dynamics simulation of the Repressor protein CI (PDB ID code 1R69) (32) using the AWSEM potential.
The two Hamiltonian values are highly correlated when evaluated over structures with a wide range of Q values.
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folding temperature of most proteins. For seven other protein
families, the estimated selection temperatures are also well
below physiological temperature. These values indicate that the
landscapes have evolved to be quite funneled and that specificity
of structure and not mere stability plays an important part in
selection. If Tsel were to equal the folding temperature, the
landscapes would be rugged, and we would be forced to say that
energy gap selection played no role in evolution. We also com-
pared the two Hamiltonian values as a function of the fraction of
native contacts, Q, for partially folded structures from a folding
simulation of the repressor CI protein (PDB ID code 1R69) (32)
sampled using AWSEM. Fig. 2B shows that the two landscapes
are also highly correlated for the thermal ensembles (R = 0.76).
When mutational stability data are available, Tsel can be found

without using the transferable energy function by comparing the
mutational stability predictions from DCA with experimental data
for single-site mutations (ΔΔG). If we assume that the changes in
the entropy and energy of the molten globule states are negligible
for a single-point mutation, and assuming no residual structure in
the denatured state, then scaling the energy change ΔðE−EÞ to
be equal to ΔΔGexp implies that Tsel =−ΔΔG=kBΔHDCA. In this
equation, ΔHDCA =HðmutantÞ

DCA − HðWTÞ
DCA . We can do this calculation for

the PDZ family where experimental data exist and find Tsel = 116 K
(Fig. S1). This estimated temperature agrees well with the value of
124 K obtained using the comparison with the transferable energy
function, which we use for the other families.
Using the estimates for Tsel from the coevolutionary analysis for

a family along with the experimental Tf for a member of each
family, Eq. 1 yields estimates for Tg and thus, also Tf/Tg for typical
family members. Fig. 3 summarizes the calculated Tsel and Tg
values for all of the protein families studied here. Fig. S2 shows
the dependence of the estimated value of Tsel on the distance
threshold used to determine which pairwise interactions are to be
summed in obtaining HDCA. Fig. S3 also shows the pairwise dis-
tance dependance of the mean energy of a DCA residue–residue
coupling. Fig. 4, Upper displays the Tf/Tg ratios for all protein
families calculated using Eq. 1 when a distance threshold of 16 Å
is used in calculating the DCA energy. Fig. S4 shows how the
ratio of Tf/Tg depends on this distance threshold. The resulting
Tf/Tg values are in the range of previous purely physicochemical
estimates. The previous estimates were based on generic con-
siderations for all proteins, but this approach yields Tf/Tg values
for individual protein families. Another quantity that can be used

to quantify the degree of evolutionary sequence optimization is the
ratio Tsel/Tg, which should be less than one for a funneled land-
scape. Pande et al. (21, 22) estimated Tsel/Tg by noting that the
elements of the Miyazawa–Jernigan interaction matrix, being
based on a quasichemical approximation, could be interpreted as
pairwise interaction energies for pairs of amino acid types scaled
by the selection temperature Tsel for all natural proteins consid-
ered as a single group (33). Combining this observation with the
estimated entropy of the disordered collapsed globule inferred by
Luthey-Schulten et al. (34) using the theory of secondary structure
formation in globules, energy landscape theory arguments then
give their estimated value of ∼ 0.85 for Tsel/Tg for the set of all
natural proteins (21). This estimate for Tsel/Tg leads to an estimate
of Tf/Tg = 1.6, quite close to the value obtained in the work by
Onuchic et al. (26) on purely physical grounds without using se-
quence information. Both the estimates by Onuchic et al. (26) and
Pande et al. (21, 22) for Tf/Tg turn out to be on the low end of the
values found here for individual families.
The energy gap between the folded and unfolded states and

the folding temperature Tf also allows an estimate of the entropy
of the unfolded state using the first-order transition equation ΔF
(Tf) = ΔE(Tf) − TfΔS(Tf) = 0. The resulting entropy per residue
S(Tf)/N for each family is given in Table S2. Most of these en-
tropy values fall into the range of 0.7–1.1 kB per residue, con-
sistent with but a bit larger than the entropy estimates for the
collapsed state by Luthey-Schulten et al. (34) that were used to
give the original physical estimate for Tf/Tg ∼ 1.66. We see that
these estimates of the entropy of the unfolded state using co-
evolutionary data agree quite well with the earlier numbers for
the two all α-helical proteins [repressor protein CI (PDB ID
code 1R69) (32) and Dnab Helicase (PDB ID code 1JWE) (35)]
but do tend to be somewhat higher for families with structures
containing β-secondary structure elements.

Discussion
The early attempt by Onuchic et al. (26) to quantify the fun-
neled nature of the landscape set up a correspondence between

Fig. 3. Tsel, Tg, and Tf values in Kelvin for all protein families included in this
study (denoted by the PDB ID codes of the representative structures used)
are plotted vs. protein length. The names of the proteins and a list of ref-
erences for the experimentally obtained Tf values are given in Table S1. The
value of Tsel obtained by comparing stability changes predicted using DCA
with experimental ΔΔG values directly is also given for the one family for
which data are available (PDZ). In all cases, the experimental folding tem-
peratures are above physiological temperature (∼310 K), whereas the glass
transition and selection temperatures are well below physiological temper-
ature, indicating that selection of protein sequences by evolution leads to
funneled folding landscapes for natural proteins.

Fig. 4. (Upper) Tf/Tg ratios for all protein families studied. (Lower) Tsel/Tg
ratios for all protein families studied. The families are denoted by the PDB ID
codes of the representative structures used, and the names of the proteins
are available in Table S1. Tf/Tg is used to quantify the degree of funnelness
of a folding landscape, with higher values corresponding to more ideal
funnels. The estimated Tf/Tg ratios for all natural protein families studied
here fall above the threshold for a landscape to be considered funneled,
Tf/Tg = 1, which is plotted as a green dashed horizontal line. Several of the
estimates are clustered around the value of Tf/Tg = 2.5 estimated by Clementi
and Plotkin (28). Tsel/Tg is used to quantify the degree of evolutionary opti-
mization, with lower values corresponding to more highly optimized se-
quences. Most of the Tsel/Tg ratios for individual families are below the generic
estimate of Tsel/Tg = 0.85 given by Pande et al. (21).
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the thermodynamics and dynamics of optimized two- and three-
letter lattice model proteins and natural proteins. The Tf/Tg ratios
found from coevolutionary analysis are higher than those first
estimates. This difference suggests that evolution uses a (somewhat)
more complex code than the three-letter coding that gaveTf/Tg∼1.6.
Clementi and Plotkin (28) arrived at another purely physics-based
estimate for Tf/Tg by asking how much a structure-based folding
model, with a perfect funnel landscape, could be perturbed by the
addition of nonnative interactions but nevertheless, recapitulate
experimental kinetics that are usually consistentwithnearly perfectly
funneled landscapes, which are known to bewell-predicted based on
the idealized pure funnel limit (27). By tuning the strength of the
nonnative interactions and calculating the corresponding folding
and glass transition temperatures for this worst tolerable case,
Clementi and Plotkin (28) determined that a degree of frustration
corresponding to Tf/Tg ∼ 2.5 would be a lower limit for maintaining
consistency with the laboratory observations of kinetics of real pro-
teins. Another estimate for Tf/Tg uses the fact that both theory and
simulations agree that the degree of cooperativity in equilibrium
folding depends on Tf/Tg. Noting this agreement and using experi-
mental input about the sharpness of thermal unfolding, Kaya and
Chan (27) estimated that the ratio Tf/Tg is probably greater than six
for calorimetrically two-state proteins. These estimates, based on an
optimized physical energy function and an information theoretic
model for the global sequence probability derived from multiple
sequence alignments, fall within the middle of the range of these
previous physically based estimates.
DCA is a global statistical model for the sequences of a given

protein family that allows the possibility of pairwise interactions
between all residues in the protein, not just those pairs in physical
contact in the native state. The correlation between experimental
ΔΔG values with those predicted by DCA is best when inter-
actions between residues separated by up to 16 Å in the native
state are included (see Fig. S5). This distance is beyond the range
of the mediated contacts used in AWSEM (9.5 Å). One possible
explanation of this correlation from apparently long-range inter-
actions is that DCA is not perfect in finding the true direct inter-
actions, because it is based on statistical mechanical approximations
and not an exact solution of the sequence Potts model, which is
currently computationally intractable. At the same time, we must
entertain the notion that these distant interactions are not
artifacts but are real.
Several studies note that current force field-based methods for

predicting ΔΔG on mutation using fixed backbones suffer from
mediocre performance. We found that ΔHAWSEM, like other
fixed backbone methods, correlates reasonably well but not
perfectly with a large database of experimental ΔΔG data (Fig. S6).

DCA is a fold-specific model of the energy and therefore, poised
to detect forms of energy that are particular to the symmetry-
broken native state, which much like a crystal responds to
interstitials, can respond collectively to site mutations. Elastic
effects coming from harmonic deviations of the structures of a
particular protein from the mean family structure may, thus, be
important. If so, predicting the effect of mutations on the relative
stability of the folded and unfolded states starting from any fixed
backbone structure will be inadequate. The limitations of the
fixed backbone approximation in predicting the natural co-
variation of amino acids have recently been noted (36). The
long-range interactions inferred from DCA may be relics of
these elastic effects. If so, such elastic effects may be crucial to
correct the prediction of the effects of mutation on protein sta-
bility when using even highly accurate coarse-grained potentials.
It is also possible that DCA captures mutational changes of re-
sidual structure in the denatured state, a possibility neglected by
the assumed complete mixing approximation for the unfolded
compact states. All of these effects could potentially contribute
to the high correlation between DCA and experimental ΔΔG
data; comparisons of the correlations of both DCA (R = 0.84)
and AWSEM (R = 0.73) with experimental ΔΔG data for the
PDZ family are shown in Fig. S1.
We have shown that genomic data, accurate coarse-grained

free energy functions, and family-specific information theoretic
models can be combined to give consistent estimates of energy
landscape characteristics of natural proteins. These estimates
invariably indicate that the energy landscapes of natural foldable
proteins are highly funneled. The degree of funneling found by
these methods is consistent with previous estimates based on
general physicochemical considerations. Comparing the details
of the physical and information theoretic models has already
suggested ways of improving the prediction of mutational effects
on the stability of protein sequence/structure pairs. Knowing the
degree of funneling of natural proteins will be helpful to protein
design practitioners who wish to mimic natural proteins (37).
Additional application, development, and comparison of physical
and information theoretic models of protein energy landscapes
will greatly enhance our understanding of these critical biological
macromolecules and the part that folding physics has played in
their evolutionary history.
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