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Abstract

New generation in vitro high-throughput screening (HTS) assays for the assessment of engineered

nanomaterials provide an opportunity to learn how these particles interact at the cellular level,

particularly in relation to injury pathways. These types of assays are often characterized by small

sample sizes, high measurement error and high dimensionality, as multiple cytotoxicity outcomes

are measured across an array of doses and durations of exposure. In this paper we propose a

probability model for the toxicity profiling of engineered nanomaterials. A hierarchical structure is

used to account for the multivariate nature of the data by modeling dependence between outcomes

and thereby combining information across cytotoxicity pathways. In this framework we are able to

provide a flexible surface-response model that provides inference and generalizations of various

classical risk assessment parameters. We discuss applications of this model to data on eight

nanoparticles evaluated in relation to four cytotoxicity parameters.
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2 are provided in the supplemental article, Appendix A. Spline coefficients β, γ and δ are directly sampled from their conditional
posterior distributions via direct simulation (Gibbs step). To assess estimation of the model presented in Section 2, we present a
simulation study in the supplemental article, Appendix B. The dose and time kinetics were simulated from various parametric
functions. Both canonical and noncanonical profiles that are reasonably interpretable under a toxicity framework were generated. In
addition, we assess sensitivity of the model results to our choice of prior parameters for population level interior knot parameters λϕi
and λϕi. In the supplemental article, Appendix C, we provide an additional sensitivity analysis assessing model results to our choice of
prior model for the change-point parameters. Alternative prior models assessed include a truncated normal prior and a
parameterization of the bivariate beta prior that results in a uniform prior on the simplex. The supplemental article, Appendix D,
presents results associated with inference on the 6 remaining particles not presented in Section 4.3. Finally, Appendix E discusses
model assessment and goodness-of-fit diagnostics associated with the model described in Section 2.
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1. Introduction

Nanotechnology is rapidly growing and currently used in various industries such as food,

agriculture, electronics, textiles and health care. The widespread use of engineered

nanomaterials (ENM) in over 800 consumer products increases the likelihood that these

materials will come into contact with humans and the environment [Maynard et al. (2006),

Kahru and Dubourguier (2009)]. Many biological processes take place at the nanoscale

level, and the introduction of ENMs into living organisms could lead to interference in the

molecular and cellular processes that are critical to life [Nel et al. (2009)]. This potential for

human and environmental hazard has spurred recent interest in early identification of

potentially hazardous nanomaterials. Knowledge about the potential hazard of nanomaterials

is still lacking and a lot of study is required to understand how ENM properties such as size,

shape, agglomeration state, solubility and surface properties could lead to hazard generation

at the nano-bio interface [Stern and McNeil (2008), Nel et al. (2006)].

Current research in nano-toxicology includes new generation high-throughput screening

(HTS) assays, which enable the simultaneous observation of multiple cellular injury

pathways across an array of doses and times of exposure. In this article, for example, we

analyze data on eight metal and metal oxide nanoparticles, monitored in relation to four

cellular injury responses, derived from the hierarchical oxidative stress model of Nel et al.

(2006) and Xia et al. (2006). All four outcomes are measured contemporaneously over a grid

of ten doses and seven hours of exposure (see Figure 1). The four measured responses

include mitochondrial superoxide formation, loss of mitochondrial membrane potential,

elevated intracellular calcium and membrane damage [George et al. (2009)]. For increasing

dosage and duration of exposure, we observe typical dose-response kinetics, with outcomes

possibly depending on one another.

These assays provide an opportunity to help define biological relationships and may suggest

which nanoparticles are likely to have an in vivo effect. While HTS assays cannot replace

traditional animal studies, they are less costly, less labor intensive and can be used to

explore the large number of potential nanomaterial variables that can influence human

health hazards [Meng et al. (2010), Stanley et al. (2008), Maynard et al. (2006)]. The

feasibility and utility of HTS assays have been illustrated in various fields such as functional

genomics, with the use of microarray technology, as well as in pharmacology for the rapid

screening of potential drug targets [Hoheisel (2006), White (2000)]. In toxicology, risk

assessment involves the characterization of hazard as well as the potential for exposure

while accounting for all assumptions and uncertainties. The HTS framework provides a

wealth of information about cellular injury pathways but proves a challenge for the classic

risk assessment paradigm. In fact, there is still disagreement in the HTS setting on how to

define and how appropriate are classical risk assessment parameters such as no observable

adverse effect level (NOAEL), the lowest observable adverse effect level (LOAEL) and the

dose that produces 50% of the maximum response (EC50), among others.

Parametric functions such as families of sigmoidal curves are frequently used to fit dose-

response data. Some commonly used sigmoidal models include log-logistic models, log-

normal models and Weibull models [see Ritz (2010) for a recent review of these models].
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The log-logistic functions are the most frequently used for modeling dose-response data in

toxicology. The four parameter log-logistic model can be expressed as follows:

(1)

Here h, the inflection point in the curve, provides a convenient risk assessment parameter,

since it can be interpreted as the 50% effective or inhibitory dose (EC50, IC50) [Emmens

(1940)]. Other special cases of this model include the 3 parameter log-logistic model which

leads to the famous Hill equation [Hill (1910)] and special cases of the Michaelis–Menton

kinetics. Further extensions of these models include the five parameter log-logistic function,

which provides a bit more flexibility by allowing the function to be asymmetric [Finney

(1979)], and the Brain-Cousens model, which includes an extra parameter to account for a

possible favorable response to a toxin at low concentrations [Calabrese and Baldwin

(2003)]. In general, these models assume that the dose-response function is completely

known apart from the few parameters to be estimated, usually by determining which values

of the parameters result in the best fit to the dose-response function.

Several other methods have been proposed to model nonlinear dose-response relationships

relaxing strictly parametric assumptions. Ramsay (1988) proposed the use of monotone

regression splines to model a dose-response function. In this case, piecewise polynomials or

splines can allow greater flexibility while achieving monotonicity by imposing constraints

on the estimated function. Li and Hunt (2004) proposed the use of linear B-splines with one

random interior knot to model a nonlinear dose-response curve. In this context, the random

interior knot provides inference on the dose at which the toxin begins to take effect and

thereby provides a useful parameter for risk assessment. Kong and Eubank (2006) suggested

the use of functions that combine smoothing spline techniques and the nonnegativity

properties of cubic B-splines to estimate the dose-response curve. The use of nonparametric

techniques to estimate dose-response curves often provides a more realistic representation of

the data generating process. At the same time, however, some of these techniques make it

more difficult to interpret the model in terms of classical risk assessment.

Recent literature advocates the simultaneous use of multiple outcomes to assess risk. Regan

and Catalano (1999) proposed a bivariate dose-response model that accounts for the

dependence among outcomes of developmental toxicity using generalized estimating

equations. Geys et al. (2001) proposed a similar model for risk assessment of developmental

toxicity, but approached the problem using latent variables. Yu and Catalano (2005)

suggested a model for quantitative risk assessment of bivariate continuous measures of

neurotoxicity using percentile regression. These methods are often aimed at the analysis of

one potentially toxic agent as it relates to adverse events or continuous outcomes observed

in association with exposure over a range of doses. Their direct applicability to the general

HTS setting described earlier is therefore limited.

From a statistical perspective, cellular interrogation data based on high-throughput platforms

can be characterized as multivariate dependent observations. Each nanoparticle is indeed

associated with a multiple set of cellular outcomes recorded both longitudinally, in relation
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to different exposure durations, and cross-sectionally, in relation to a dose escalation design.

This particular design structure suggests that valid statistical inference must account for

potentially complex patterns of dependence between different observations. A reasonable

dependence scheme might, for example, assume data to be dependent within outcome and

particle, as well as between outcomes for the same particle.

In conjunction with considerations related to the joint sampling distribution of these data

structures, appropriate statistical treatment must account for nonlinearities in the mean

response associated with dose and duration dynamics. While, in principle, one can choose to

define a random response surface in a completely nonparametric fashion, it is important to

maintain a certain degree of interpretability, especially in relation to standard hazard

assessment quantities of interest to substantive scientists. In summary, perhaps reductively,

the overall modeling challenge lies in the definition of a flexible and interpretable

probabilistic representation for a family of dependent dose-response random surfaces.

In this paper we propose a hierarchical dose-response model for the analysis of HTS data

from nanotoxicology. Our model builds on earlier work [Hastie and Tibshirani (1986), Li

and Hunt (2004)], expanding on them to account for the multivariate nature of the data and

to address the estimation of a series of two-dimensional dose-response surfaces. We provide

a flexible framework for modeling dose and duration response kinetics jointly, while

providing inference on several risk assessment parameters of interest. We utilize a

hierarchical structure to define dependence between outcomes and thereby borrow strength

across injury pathways, providing the basis for a comprehensive risk assessment paradigm in

HTS studies. We account for outlying observations via a T -distributed error model and

describe how to carry out inference for the model parameters and their functions on the basis

of simulated draws from their posterior distribution. To our knowledge, we are the first to

propose a principled statistical methodology for the joint analysis of this new generation of

in vitro data.

The remainder of the article is organized as follows. In Section 2 we introduce the proposed

model. In Section 3 we discuss parameter estimation and associated inferential details.

Section 4 employs the proposed model for the analysis of 8 metal oxide nanomaterials and

describes inference for various risk assessment parameters of interest. We conclude with a

critical discussion of the limitations and possible extensions of our method in Section 5.

2. Model formulation

2.1. Model description

In this section we describe a dose-response model for a general HTS study, where we

monitor a multivariate continuous outcome y, corresponding to J cytotoxicity parameters, in

association with the exposure of a number of cells to I different ENMs. More precisely, let

yijk(d, t) denote a multivariate response corresponding to ENM i (i = 1, …, I), cytotoxicity

parameter j (j = 1, …, J) and replicate k (k = 1, …, K) at dose d ∈ [0, D] and time t ∈ [0, T].

In typical applications one observes y over a discrete set of doses d̃ = (d1, …, dm1)′ and

exposure times t̃ = (t1,...., tm2)′. However, for clarity of exposition, we simplify our notation
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and without loss of generality refer to a general dose d ∈ [0, D] and time t ∈ [0, T]. We

introduce the following 4-stage hierarchical model.

Stage 1: Sampling model—The observed response of particle i, cytotoxicity parameter j

and replicate k is modeled as

(2)

where . Here mij (d, t) denotes the response surface for particle i and

outcome j. The proposed response surface describes dose and duration kinetics for all d ∈ [0,

D] and t ∈ [0, T] and is expected to exhibit a nonlinear dynamic over these domains. The

distribution of yijk is modeled in terms of the error term εijk as a scaled mixture of normal

random variables to account for outlying observations. The error variance is defined in terms

of the measurement error variance , specific to cytotoxicity parameter j, and on ENM-

specific variance inflation parameter τi. If we define the joint distribution of εijk(d, t) and τi

as P(εijk(d, t), τi) = P(εijk (d, t) | τi, σεj)P(τi|ν), choosing  and

τi|ν ~ Gamma(ν/2, ν/2), it can be shown that the marginal density of  is

distributed as a [West (1984)]. Under this framework, we can borrow strength

across all ENMs by assuming the error variance is the same, but retain robustness in the

model by allowing ENM-specific departures from normality. We allow the measurement

error σεj to vary between cytotoxicity parameters due to heterogeneity in the cytotoxicity

outcomes.

Stage 2: Response model at the ENM by cytotoxicity parameter level—The

dose-response surface mij (d, t) spans two dimensions (dose and time), and is modeled in an

additive fashion as described by Hastie and Tibshirani (1986). If we let (αij,

)′ be a parameter vector indexing the dose-response surface mij (d,

t), we can then define

(3)

Here fij (d; ϕij, βij) is a function modeling the effect of dose d on response j for ENM i.

Similarly, gij (t; ψij, γij) is the function modeling the effect of time t and hij (d, t; χij, δij) is

the function modeling the interactive effect of dose and time. More specifically, we model

the interaction of dose and time in a semi-parametric fashion as hij (dt; χij, δij). This

parameterization allows us to retain direct interpretation of the model parameters, while

avoiding over-fitting of sparse data. To ensure likelihood identifiability, we require, without

loss of generality, that fij (d = 0; ϕij, βij) = 0, gij (t = 0; ψij, γij) = 0, and hij (dt = 0; χij, δij) = 0.

The parameters αij can therefore be interpreted as the background response level for each

particle and outcome.

We model dose-response curves fij (d; ϕij, βij), duration-response curves gij (t; ψij, γij) and

dose-time response curves hij (dt; χij, δij) as linear combinations of basis functions.
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Specifically, we use linear B-splines with two random interior knots as points where the

slope changes in a piecewise linear fashion. Let (x, η) denote a 4-dimensional B-spline

basis with interior knots η= (η1, η2)′. Also, let βij = (βij1, …, βij 4)′, γij = (γij 1, …, γij 4)′ and

δij = (δij 1, …, δij 4)′ be 4-dimensional vectors of spline coefficients. The functions fij (d; ϕij,

βij), gij (t; ψij, γij) and hij (dt; χij, δij) can then be represented as follows:

(4)

Identifiability restrictions fij (d = 0; ϕij, βij) = 0, gij (t = 0; ψij, γij) = 0 and hij (dt = 0; χij, δij)

= 0 are implemented by fixing βij 1 = 0, γij 1 = 0 and δij 1 = 0, for all particles and outcomes

(see Figure 2 for an illustration).

Modeling dose and duration-response curves as piecewise linear functions allows for

considerable flexibility while maintaining direct interpretability of the model parameters.

Recall that in our formulation the interior knots are estimated as random quantities. This

allows, marginally, for a smooth dose-response trajectory that is automatically adjusted to fit

the data. The main advantage of the proposed functional representation is that, in the

absence of a dose-time interaction, one can interpret the first interior knot ϕij 1 as the dose at

which ENM i becomes toxic in relation to cytotoxicity parameter j (Maximal Safe Dose—

similar to the classical NOAEL concept). A similar interpretation can be given to ψij 1, in

relation to duration-response. Note that the foregoing interpretation is contingent on fixing

βij2 = 0, γij2 = 0 and χij2 = 0 when assuming no effect before the first change-point, and βij2 ≤

0, γij2 ≤ 0 and χij2 ≤ 0 when assuming a tonic effect before the first change point. In the

presence of a dose-time interaction, interpretation changes slightly and we instead consider

the idea of safe exposure regions, which represent doses and time exposure combinations

that do not induce cyto-toxicity. Finally, in the absence of an interaction, the parameters ϕij 2
and ψij 2 are respectively interpreted as the dose and time at which the response stabilizes, or

cells start a possible recovery process.

We can expand the model further to allow for the exclusion of interaction functions where

not needed. To do that, we include a latent indicator variable ρij, so that for each particle i

and outcome j

(5)

where ρij ~ Bern(π) and π ~ U (0, 1). We require that if ρij = 0, hij (dt; χij, δij) > 0, to ensure

identifiability. The indicator variable ρij can then be used to test explicitly for the dose-time

interactions. The exchangeable Bernoulli trials prior on ρij is designed to account for

multiplicities [Scott and Berger (2006)]. This trans-dimensional parameterization is key to

avoid overfitting, to facilitate parameter interpretation, and to allow for testing of specific

scientific hypotheses related to the biological interference of nanomaterials.
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For each ENM i and response j, we define the following prior distributions for αij, βij, γij,

and δij:

(6)

The truncated support for βij, γij and δij imposes functional constraints on f (·), g(·) and h(·),

which are consistent with the expected behavior of canonical dose and duration kinetics. At

the same time, however, it allows for the system to recover by permitting a decreasing slope

after the second change point. The covariance matrix Σβi has diagonal elements σβiℓ, ℓ = 1,

…, 4, and off diagonal elements equal to 0; similarly for Σγi.

Prior distributions for ϕij, ψij and χij are defined to satisfy the following constraints: (0 < ϕij1

< ϕij2 < D), (0 < ψij1 < ψij2 < T) and (0 < χij1 < χij2 < DT). More precisely, we assume that

the joint distribution of the interior dose and duration knots follows a generalized bivariate

Beta density function, so that

(7)

Here we assume that a random vector x = (x1, x2)′ is distributed according to a generalized

bivariate Beta distribution function (x ~ B2(a1, b1, a2, b2, m)), with support (x) = {(x1, x2):

0 < x1 < x2 < m} if and only if

(8)

The foregoing formulation can be seen as a generalization of the Dirichlet distribution over a

two-dimensional simplex. This general formulation can be simplified further, in order to

achieve a right-skewed marginal distribution for x1 and a uniform conditional distribution

for x2 given x1. This is achieved by assuming b1 > a1 > 1 and a2 = b2 = 1.

Making use of this construction, we simplify the prior distribution in (7) as follows:

(9)

From a regulatory standpoint, this formulation favors (a priori) the choice of conservative

values for the location of the first change point and a relatively diffuse prior distribution for

our second change point (see Figure 2).
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Stage 3: Response model at the ENM level—For each ENM i, we exploit conditional

conjugacy to define the following prior distributions for population level parameters:

(10)

In the absence of an interaction, the parameters βoi and γoi represent summaries of the dose

and duration-response trajectories across all outcomes and the αoi parameters represent a

summary of the baseline response across all outcomes. In the presence of an interaction, we

may construct these summaries conditionally on specific doses and durations of exposure.

Finally, considering the distribution introduced in (9), we define a prior model for

population level parameters λϕi = (λϕi1, λϕi2) and λψi = (λψi1, λψi2) as follows:

(11)

where ℓ = 1, 2. The parameters λϕi and λψi can be used to construct summaries of dose and

duration-response change points across all outcomes. Shape hyperparameters (aλϕiℓ, bλϕiℓ)

and (aλψiℓ, bλψiℓ) can be tuned to favor more or less conservative values for the change-point

locations at the particle level.

Stage 4: Hyperpriors—We complete the model by specifying prior distributions on our

hyperparameters as follows:

(12)

We model our precision parameters as gamma distributions, exploiting conditional

conjugacy. Again, prior parameters can be tuned to define more or less informative

distributions consistent with the scale of the outcomes [Gelman (2006)]. Note that in our

formulation, x ~ Gamma(a, b) denotes a Gamma distributed random quantity with shape a

and rate b, such that E(x) = a/b.

3. Estimation and inference

3.1. Posterior simulation via MCMC

Using the B-spline representation introduced in Section 2.1, we can write the expected j th

response level associated with ENM i, at dose d and exposure time t as

Let β = {βij: i = 1, …, I, j = 1, …, J} and define γ and δ in a similar fashion. These

parameters denote the full set of spline coefficients. Furthermore, consider knot parameters

ϕ = {ϕij: i = 1, …, I, j = 1, …, J}, with ψ and χ similarly defined, and background response
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parameters α = {αij: i = 1, …, I, j = 1, …, J}. Finally, let  and τ = (τ1, …,

τI)′. If we denote with Y the complete set of response values for all particles and

cytotoxicity outcomes, the likelihood function can be written as follows:

(13)

where the product is taken over all replicates k, particles i, outcomes j, doses d and times t.

We are interested in the posterior distribution

(14)

where the prior model P (β, γ, δ, ϕ, ψ, χ, α, , τ, ρ) is fully described in Section 2.1. This

quantity is, however, unavailable in closed analytic form, therefore, we base our inference

on Markov Chain Monte Carlo (MCMC) simulations.

The proposed posterior simulation algorithm combines Gibbs steps within Metropolis–

Hastings steps in a hybrid sampler, where we update parameters component-wise [Tierney

(1994)]. We directly sample components when closed-form full conditional distributions are

available using a Gibbs sampling algorithm [Geman and Geman (1984), Gelfand and Smith

(1990)]; otherwise, we use the Metropolis–Hastings (MH) approach [Metropolis et al.

(1953)]. Available full conditional distributions are given in the supplemental article,

Appendix A [Patel et al. (2012)]. As we are considering selection of interaction functions in

a trans-dimensional setting, we implement a reversible jumps algorithm to move between

models with and without the dose-time interaction function hij (dt; χij, δij) [Green (1995)].

The model indicator ρij and corresponding model parameters δij and χij are updated jointly

using reversible jump MCMC steps. After the model structure has been specified, the model

parameters are updated from their corresponding conditional posterior distributions. The

proposed sampling scheme can be summarized as follows.

1. Fixed dimensional updates—Given the current state of the latent interaction

indicators ij, response surfaces are uniquely defined as in (5). Posterior sampling is standard

here and proceeds by updating spline coefficients β, γ and δ from their conditional posterior

via direct simulation [Patel et al. (2012)]. Knot parameters ϕ, ψ and χ are updated via a MH

step. For example, when sampling the interior knot parameters ϕ we use an appropriate

proposal kernel  to efficiently construct Markov chains with the desired

stationary distribution. While accounting for the fact that ϕij1 < ϕij2, we consider uniform

proposal densities of the form

(15)

where ℓ = 1, 2. Here Sϕ denotes the appropriate support and must satisfy the constraints 0 <

ϕij 1 < ϕij 2 < D. Proposed values of ϕijℓ are accepted with the following probabilities:
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(16)

To tune proposal kernels, each ϕijℓ was sampled using an initial value of w that was re-

calibrated throughout the burn-in period to achieve an acceptance rate between 30% and

70% [Roberts and Rosenthal (2001)]. Specifically, the acceptance rate of ϕijℓ was monitored

every 200 iterations throughout the burn-in period with wϕijℓ adjusted appropriately if the

acceptance rate did not fall within the desired range. A similar Metropolis–Hastings scheme

was adapted for sampling the duration-response parameters ψ, dose-time interaction

parameters χij | ρij = 1, as well as for population level knot parameters.

2. Trans-dimensional updates—We sample the model space by randomly proposing

the birth or death of dose-time interaction functions hij (·). This is accomplished by selecting

a particle i and outcome j at random and by jointly updating ρij, δij and χij. In detail,

1. For uniformly random i ∈ (1, …, I) and j ∈ (1, …, J), propose a systematic change

. We assume for the moment that we propose moving from 

to , implying the birth of a new interaction function hij (·).

2. Propose new knots and spline coefficients  and .

3. Accept the proposed move with probability τb = min(1, Rb), where

(17)

where we use θ\ω to denote all model parameters, with the exception of ω.

In the case where the proposed move would imply a death of an interaction function

, the acceptance probability would simply be τd = 1/τb.

While the proposal densities q(δij) q(χij) in (17) can in theory be defined almost arbitrarily,

to guarantee efficient exploration of the model space, we consider truncated multivariate

normal proposals for δij and χij centered around regions of high posterior probability.

Efficient optimization within the MCMC iterations is achieved using standard profile

likelihood ideas [Severini and Staniswalis (1994)].

3.2. Posterior inference

In this section we discuss inference on ENM-specific risk assessment parameters, based on

draws from the posterior distribution described in Section 3.1. Table 1 summarizes several

quantities of interest including the maximal safe dose, maximal safe exposure time and the

maximal response. This list is not exhaustive. However, other risk assessment parameters of

interest, such as benchmark doses (BMD) or effective concentrations (ECα), are easily

obtained from our model output in a numerical fashion. In the case of a dose-time
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interaction, these quantities are defined conditionally on specific doses and durations of

exposure.

Let  and , n = 1, …, N, denote N MCMC draws

from the posterior distribution of ϕij, ψij, χij, βij, γij, αij and ρij. In the absence of an

interaction term, posterior samples  and  directly provide us with an approximation

of the posterior distribution for the maximal safe dose and maximal safe exposure time. We

can also obtain the posterior samples for the overall dose effect, ,

which is the slope of the dose-response curve between ϕij 1 and ϕij 2. Similarly, we can

obtain the posterior distribution for the overall time effect using posterior samples

. In the presence of a dose-time interaction, we can define any of

the summaries described above conditionally on a given dose and time. For example, the

maximal safe dose conditional on exposure time can be defined as min{ϕij 1, χij 1/t}, and

posterior samples can be obtained from . Given posterior draws, one can

proceed with the straightforward construction of standard posterior summaries, such as

means, maxima a posteriori, modes, quantiles and credible regions. We may also be

interested in testing for a dose-time interaction. The expected inclusion probability of the

dose-time interaction function can be estimated using posterior draws  as

. Given the prior distribution described in (5), this posterior probability is

known to adjust for multiplicities and can be used to test for a dose-time interaction. Scott

and Berger (2006), for example, recommend selecting the median model, that is, including

all interactions for which p̂ij > 0.5. Also of interest is an estimate of the dose-response

surface, mij (d, t), for particle i and outcome j. This surface is, of course, defined in an

infinite-dimensional space. However, given the basis-function representation introduced in

Section 2.1, we only need finite draws from the parameter set of interest. More precisely,

draws from the marginal posterior distribution of the dose-response surface for any dose d ∈

[0, D] and time t ∈ [0, T] are given by

(18)

For each  and , n = 1, …, N, we evaluate the dose-response function

given in (18) over a grid of values D̃ = (d1, …, dn)′ and T̃ = (t1, …, tn)′. The posterior mean

of the samples , n = 1, …, N, at each value of D̃ and T̃ can be used to summarize the fit

of the dose-response surface, as shown in Figures 3 to 4. Other quantities of interest include

the posterior distribution of the dose-response function fij (d; ϕij, βij), duration-response

function gij (t; ψij, γij) and dose-time interaction function hij (dt; χij, δij). Draws from the

marginal posterior distribution of these functions for any dose d ∈ [0, D] and time t ∈ [0, T]

are given by
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(19)

For each draw, we evaluate the dose-response functions over a grid of values d ∈ D̃ and the

duration-response functions over a grid of values t ∈ T̃. As described before, standard

pointwise posterior summaries can be obtained in a straightforward fashion. Simultaneous

confidence bands for the functional effect of interest can be constructed following the Monte

Carlo approximation suggested by Baladandayuthapani, Mallick and Carroll (2005).

Additional summaries of interest can be obtained in a numerical fashion. For example, the

posterior distribution for the maximal response value

; d ∈ [0, D], t ∈ [0, T]}, may be obtained

evaluating  over a fine grid of doses D̃ and times T̃. An approximate posterior draw

from  can be defined as . Given smoothness

constraints on mij (d, t), defined in Section 2.1, the foregoing procedure is likely to provide a

good approximation to the posterior distribution of the maximal response value, provided D̃

and T̃ define a sufficiently detailed evaluation grid. Similar procedures may be adopted to

obtain inference on other risk assessment parameters like ECαs or BMDs.

4. Applications

4.1. Synthetic data

To assess estimation of the model presented in Section 2, we present a simulation study in

the supplemental article, Appendix B [Patel et al. (2012)]. The dose and time kinetics were

simulated in an additive fashion, from various parametric functions, including both

canonical and noncanonical profiles that are still reasonably interpretable under a toxicity

framework. We also placed increasingly conservative priors on the population level

parameters λϕi and λϕi in order to assess the sensitivity of the model results to our choice of

prior parameters. In the supplemental article, Appendix C, we provide an additional

sensitivity analysis assessing model results to our choice of prior model for the change-point

parameters [Patel et al. (2012)]. We compare our prior model results to both a truncated

normal prior and a parameterization of the bivariate beta prior that results in a uniform prior

on the simplex.

Simulation results indicate that our model is robust to model misspecification and is not very

sensitive to our choice of prior. We do, however, maintain that using the bivariate beta prior

defined in (8) is likely to be more appropriate in data analytic frameworks, as the implied

stochastic behavior of the response surface, a priori, reflects more closely the usual

biological mechanisms of toxicity. More specifically, it assigns zero probability of toxicity

to zero dose and time, where toxicity is indeed not expected to occur. Furthermore, this prior

accounts for issues such as dosimetry, in which the administered doses are confounded by
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different particle bioavailability. Therefore, in some particles toxicity is not expected to

occur for doses and times greater than zero.

4.2. Case study background

We illustrate the proposed methodology by analyzing data on macrophage cells (RAW cells)

exposed to eight different metal and metal-oxide nanoparticles, monitored in relation to four

cytotoxicity parameters. All four outcomes are measured over a grid of ten doses and seven

times (hours) of exposure (see Figures 3 to 4). Cytotoxicity screening is based on the

hierarchical oxidative stress model [George et al. (2009)]. More specifically, a multi-

parametric assay that utilizes four compatible dye combinations and the subsequent change

in fluorescence read-outs was used to measure four responses relating to the highest tier of

oxidative stress (toxic oxidative stress). The four measured responses include mitochondrial

superoxide formation (MSF), loss of mitochondrial membrane potential (MMP), elevated

intracellular calcium (EIC) and cellular membrane damage (CMD). Figure 1 provides

fluorescence images of cells exposed to various nanomaterials (50 μg/ml and 3 hours),

including quantum dot, platinum and a negative control consisting of no nanomaterials. Row

1 includes images of cells treated with a dye combination including MitoSox, which

permeates the mitochondria and fluoresces red when oxidized by superoxide. Red

fluorescence measured in cells treated with MitoSox is therefore a measure of mitochondrial

superoxide formation. Similarly, in Row 2 cells are treated with a dye combination including

JC1, which stains the cytoplasm red in healthy cells, but forms a monomer in cells with

decreased membrane potential and consequently stains the cytoplasm green. Finally, in Row

3 cells are strained with a dye combination including Fluo-4 and Propidium Iodide (PI). In

cells with damaged membranes, PI is able to permeate the cell and bind to DNA where it

causes the nucleus to emit a red florescence. Fluo-4 is a dye that emits a green fluorescence

in the cytoplasm in cells with elevated intracellular calcium. Each sample was also stained

with a Hoechst dye which causes all cell nuclei to emit a blue florescence, allowing for a

count of the total number of cells. An analysis of the fluorescence readout, monitored at

varying wavelengths, results in a measure of the percentage of cells positive for each

response. Figure 1 also provides a heat map of the raw responses for each particle and

outcome, where colder colors (blues and greens) indicate a smaller percentages of cells

positive for the response and warmer colors (oranges and reds) indicate a higher percentage

of cells positive for the response. The final data was normalized using a logit transformation

to unconstrain the support so that it can take on values between −∞ and ∞. Our inferences

are based on 20,000 MCMC samples from the posterior distribution in (14), after discarding

a conservative 60,000 iterations for burn-in. MCMC sampling was performed in R version

2.10.0, and convergence diagnostics were performed using the package CODA

(Convergence Diagnostics and Output Analysis), [Plummerm et al. (2006)].

4.3. Case study analysis and results

We fit the model described in Section 2.1 to the metal-oxide data set described in the

previous section. The prior on the interior knot parameters was modeled using the simplified

density described in (9). A set of relatively noninformative Gamma(2, 1) and Gamma(3, 1)

priors were considered for the components of both λϕi and λψi, along with a vague B2(2, 3,

1, 1, DT) prior for our dose-time interaction change-point parameter χij. We also fixed βij 2 =
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0 and γij 2 = 0, assuming no effect before ϕij 1 and ψij 1, thereby allowing, in the absence of a

dose-time interaction, the interpretation of ϕij 1 as the maximal safe dose and ψij 1 as the

maximal safe exposure time. Similarly, when ρij = 1, we fixed δij 2 = 0. We placed

Gamma(0.01, 0.01) priors on the 1/σεj parameters, Gamma(1, 0.1) priors on all remaining

precision parameters and N(0, 10) priors on the αoi parameters. The parameters βoi and γoi

are modeled as truncated multivariate normals with mean 1 and a covariance matrix with

diagonal elements 10 and off-diagonal elements 0. Finally, we placed a prior distribution on

the degrees of freedom parameter, for the T -distributed error described in Section 2.1. We

specified the prior to be uniform on 1, 2, 4, 8, 16 and 32 degrees of freedom [Besag and

Higdon (1999)]. In concordance with our synthetic data experiments, a sensitivity analysis

on the case study data set proved robust to reasonable variations in the prior specification.

We provide graphical summaries of goodness of fit and posterior predictive performance in

Figure 5. The top panel shows the mean and 95% posterior intervals of the posterior

predictive mean response across all doses and times of exposure (black), along with the

empirical mean response (red), for each particle and outcome. In all cases the empirical

mean response is contained within the 95% posterior intervals of the posterior predictive

mean distribution, indicating good average posterior coverage across doses and times of

exposure. The bottom panel provides a plot of the probability integral transform histogram

for the entire model [Gneiting, Balabdaoui and Raftery (2007)]. Visual assessment of the

plot indicates that it is close to uniformity, suggesting relatively good posterior predictive

calibration. Additional summaries and diagnostic tools are detailed in the supplemental

article, Appendix E [Patel et al. (2012)].

Figures 3 and 4 illustrate data and results associated with two of the particles examined in

this HTS study. Particularly, we report inference for platinum and quantum dot

nanomaterials for each of the 4 cytotoxicity outcomes. Inference for the remaining 6

particles is reported in the supplemental article, Appendix D [Patel et al. (2012)]. In these

two figures, column 1 shows expected posterior dose-response surfaces across dose and time

for all outcomes. As the posterior expectation marginalizes over the interior knots, smooth

surfaces reflect the uncertainty about the location of these change points and provide an

illustration of how the proposed technique will adjust for smoothness in an unsupervised

fashion. Also included are functional posterior expectations associated with dose-response

curves fij (d) (column 2), which represent the effect due to dose, duration response curves gij

(t) (column 3), which represent the effect due to exposure time, and the expected dose-time

interaction function hij (t) (column 4).

Figure 6 provides a plot of the estimated median response, relative to the background, for

different doses and times of exposure. Blue colors indicate safety regions or areas of reduced

risk to the cells, while red colored regions indicate increased risk of cytotoxicity. Finally,

Figure 7 provides posterior summary estimates including mean and 95% posterior intervals

for the maximal safe dose, conditional on the duration of exposure. Note that in the absence

of a dose-time interaction, the maximal safe dose is the same across all exposure times.

Quantum dot (QD) shows a relatively high toxic response for plasma membrane damage and

mitochondrial superoxide formation. In particular, we see a more pronounced dose effect for
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membrane damage and both a time, dose and significant dose-time interaction (ρ̂ = 0.99)

effect for mitochondrial superoxide formation. This supports what has previously been

demonstrated in conventional assays that QD nanoparticles stabilized by toluene are capable

of inducing tiers 2 and 3 oxidative stress responses induced by the toluene [George et al.

(2011)]. Platinum (Pt) shows a high dose and time response for mitochondrial superoxide

formation, including a significant dose-time interaction effect (ρ̂ = 0.99), and a pronounced

time effect for elevated calcium but not for mitochondrial depolarization or membrane

damage, indicating that the particle induced sublethal effects to the cell without cytotoxicity.

The Zinc oxide nanoparticle (ZnO), reported in the supplemental article, Appendix D, shows

a relatively high toxic response for plasma membrane damage, elevated calcium and

mitochondrial depolarization [Patel et al. (2012)]. In particular, we see a more pronounced

time effect for the elevated calcium and both a time and dose-response for membrane

damage and mitochondrial depolarization. This again verifies what has previously been

demonstrated in conventional assays, since ZnO nanoparticles are capable of inducing tiers 2

and 3 oxidative stress responses through  release [George et al. (2009)]. In contrast, the

gold nanoparticle (Al), also reported in the supplemental article, Appendix D, shows very

little response for all outcomes, indicating that, compared to the other particles, it has small

risk of inducing a sublethal or lethal cytotoxic response [Patel et al. (2012)].

5. Discussion

In this article we propose a statistical framework for modeling dependent dose-response

surfaces over multivariate outcomes. The proposed methodology accounts for dose and

duration kinetics jointly using a flexible model which does not compromise interpretability.

We account for the multivariate nature of the data using the hierarchical framework and

thereby efficiently combine information and borrow strength across cellular injury patterns.

We account for the nonrobust nature of the data by allowing for particle specific variance

inflation, resulting in a T -distributed model for the error structure.

The main challenge associated with the class of models proposed in this manuscript is

finding the right balance between model complexity and model interpretability. An

alternative formulation of the dose-response surface would seek inference for a general

smooth surface mij (d, t). However, our simplified approach, based on the assumptions of

additivity and linearity, maintains a very appealing level of interpretability, allowing for the

definition of specific risk assessment parameters while maintaining an adequate level of

flexibility. A related generalization of the proposed additive framework would include a

more general class of functional interactions to account for a possible synergistic effect

between dose and duration of exposure. This would come at the cost of reduced

interpretability, but, at the same time, could be of clear scientific interest in some contexts.

In this initial modeling effort, we choose to work with a T -distributed error structure and

therefore normalize our response to unconstrain the support so that it can take on values

between −∞ and ∞. An alternative formulation could retain the original scale of the data,

but rather define a generalized multivariate model such that the outcome distribution can be

described using binomial or beta random quantities. This extension would require a

substantial increase in computational complexity, with the possible need to consider
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numerical or analytical approximations, but it is clearly worthy of further methodological

exploration.

The hierarchical formulation introduced in this article is easily adapted to the case where

multiple cell lines are used to test for cytotoxicity. A natural integration strategy would

perhaps find motivation in the meta analytic framework, with information shared between

experiments via the structuring of one extra level in the hierarchy.

Finally, the proposed model can also be expanded by the inclusion of covariates. This is

naturally defined as an extension to stage 3 of the model introduced in Section 2. The

addition of covariates is especially important for relating specific ENM properties to

toxicity, and is therefore an important area for future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Fluorescence images and heat map of raw data. On the left are fluorescence images of RAW

cells treated with various nanomaterials (quantum dot, platinum and a negative control) and

dyed with compatible dye combinations including MitoSox, JC1, PI and Fluo-4. The

subsequence fluorescence read-out, measured at varying wavelengths, provides a measure of

the number of cells positive for the response. On the left is a heat map of the raw data for

each particle and outcome. Colder colors indicate a smaller percentage of cells positive for

the response and warmer colors indicate a larger percentage of cells positive for the

response.
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Fig. 2.
Dose-response as a change-point model. (left) B-spline basis function of degree 1,

corresponding to change points (interior knots) at log doses of 1.5 and 4.5. (Middle)

Example dose-response curve. The basis function on the left corresponds to a spline function

with 2 change points. Each random change point has a corresponding distribution, resulting

in a smooth dose-response curve. (Right) Example of a marginal prior distribution on the

change points corresponding to the dose-response curve on the left. This formulation favors

(a priori) the choice of conservative values for the location of the first change point (solid

line), and a relatively diffuse prior for our second change point (dotted line).
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Fig. 3.
Fitted response curves for the quantum dot (QD) ENM. (left) Fitted response surfaces

(column 1), dose-response function, fij (d) (column 2), duration-response function, gij (t)

(column 3), dose/duration interaction function, hij (dt) (column 4) and associated 95%

posterior intervals. In (column 1), the color red represents response values corresponding to

lower time points and the color black represents response values corresponding to higher

time points.
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Fig. 4.
Fitted response curves for the gold (Au) ENM. Fitted response surfaces (column 1), dose-

response function, fij (d) (column 2), duration-response function, gij (t) (column 3), dose/

duration interaction function, hij (dt) (column 4) and associated 95% posterior intervals. In

(column 1), the color red represents response values corresponding to lower time points and

the color black represents response values corresponding to higher time points.
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Fig. 5.
Graphical model diagnostics. (Bottom) Probability Integral Transform assessing empirical

calibration of the posterior predictive distribution. (Top) Mean and 95% posterior intervals

of the posterior predictive mean response across all doses and times of exposure, for all

outcomes and particles 1 through 8 (QD, ZnO, Fe3O4, Pt, Ag, SiO2, Al2O3, Au). Also

included are the empirical mean responses across all doses and times of exposure (red).
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Fig. 6.
Safe exposure regions for the quantum dot (QD) and platinum (Pt) nanomaterials. For each

particle and outcome we can define dose and time exposure regions which do not induce

cytotoxicity. Red colored regions indicate greater cytotoxicity to the cells, whereas blue

colored regions indicate reduced risk. Contour lines quantitate the median estimated

response, relative to the background, where zero response areas can be interpreted as safe

exposure regions.
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Fig. 7.
Maximal Safe Dose for the quantum dot (QD) and platinum (Pt) nanomaterials. Posterior

summary estimates of the maximal safe dose, conditional on exposure time, including the

posterior mean and associated 95% posterior intervals. In the case of no interaction, the

maximal safe dose is the same across all times.
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Table 1

Risk assessment parameters. ENM level risk assessment parameters associated with the hierarchical model

introduced in 2.1. For each parameter we summarize its function in the model and the related interpretation as

a cytotoxicity risk factor

Parameter Model function Parameter interpretation

Dose-response slope from ϕij 1 to ϕij 2 Overall dose effect

Duration-response slope from ϕij 1 to ϕij 2 Overall exposure time effect

ϕ1ij Dose-response change point 1 Maximal safe dose

ψ1ij Duration-response change point 1 Maximal safe exposure time

Evaluated numerically Maximal response
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