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Abstract

Optimization of cryopreservation protocols for cells and tissues requires accurate models of heat

and mass transport. Model selection often depends on the configuration of the tissue. Here, a

mathematical and conceptual model of water and solute transport for whole hamster pancreatic

islets has been developed and experimentally validated incorporating fundamental biophysical

data from previous studies on individual hamster islet cells while retaining whole-islet structural

information. It describes coupled transport of water and solutes through the islet by three methods:

intracellularly, intercellularly, and in combination. In particular we use domain decomposition

techniques to couple a transmembrane flux model with an interstitial mass transfer model. The

only significant undetermined variable is the cellular surface area which is in contact with the

intercellularly transported solutes, Ais. The model was validated and Ais determined using a 3 × 3

factorial experimental design blocked for experimental day. Whole islet physical experiments

were compared with model predictions at three temperatures, three perfusing solutions, and three

islet size groups. A mean of 4.4 islets were compared at each of the 27 experimental conditions

and found to correlate with a coefficient of determination of 0.87 ± 0.06 (mean ± S.D.). Only the

treatment variable of perfusing solution was found to be significant (p < 0.05). We have devised a

model that retains much of the intrinsic geometric configuration of the system, and thus fewer

laboratory experiments are needed to determine model parameters and thus to develop new

optimized cryopreservation protocols. Additionally, extensions to ovarian follicles and other

concentric tissue structures may be made.
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1. Introduction

Cryopreservation of cells and tissues is better understood when account is made of the heat

and mass transfer that occurs during each stage of the process. This understanding of what

occurs on a cellular level may lead to increased survival through optimization of each

cryopreservation step [1, 2, 3]. Although these processes have been well characterized for

single cell suspensions [4, 5], published work on modeling these processes in multicellular

tissues is relatively scarce. This modeling is critical because the successful cryopreservation

of cells nearly universally requires the equilibration of cells and tissues with multimolal

concentrations of permeating cryoprotectant agents (CPAs) such as dimethyl sulfoxide,

glycerol, or 1,2 propanediol.

For tissues, model selection is still an issue. For example, models have been constructed that

describe water transport through a linear array of cells while neglecting transport through

extracellular pathways [6], while Fidelman et al. [7] designed a model of isotonic solute-

coupled volume flow in leaky epithelia using network thermodynamics to show how the

Kedem and Ketchalsky mass transport parameters must behave in this system. Diller et al.

[8] utilized bond graphs and network thermodynamics to show that, depending on the

transport resistance of the interstitium, the interior cell volume lags significantly behind the

exterior cells. Subsequently Schreuders et al. [9] again used pseudo bond graph and network

thermodynamics to model diffusion through a tissue and show that the effects of coupling on

the multiple species present in the model is significant. Later, de Frietas et al. expanded a

network thermodynamics model of transport in islet cells to model solute and solvent

transport in islets of Langerhans [10].

Alternatively, cell-to-cell interactions are ignored and a model based on a diffusion equation

with a phenomenological solute diffusivity [11, 12, 13, 14]. These diffusion models may be

appropriate for larger and denser tissues with a considerable number of cell layers, and many

alternate diffusion-based models have been proposed. For example, Xu et al [15] use a one

dimensional porous media model to simulate solute transport in tissues, and Abazari et al.

[16] construct a thermodynamically accurate triphasic model for articular cartilage. Another

related set models are Krogh cylinder models [17] used primarily in organ perfusion systems

[18, 19]. The Krogh cylinder model describes a cylindrical unit of tissue of fixed dimensions

perfused by a capillary with a radius which varies with capillary volume. The solution

behavior in diffusion models is well understood and usually simple to implement. However,

phenomenological diffusion constants depend on both the solute and the tissue structure, and

thus applications are often restricted to experimental conditions in which measurements

have been made.

Because islets are tissues with less than ten layers that have more or less a unifying, radially

symmetric structure, it is computationally and mathematically advantageous to retain this

geometrical information. This approach has been used in other tissue types in various ways.

For example Mollee and Bracken describe a model that encompasses cell-to-cell transport

along with transverse diffusion in the Stratum Corneum [20]. Their model uses a particular

“solute capture and release” function to model the transverse diffusion through the lipids

contained between corneocyte layers.
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Using this idea, the present work builds upon these existing models, with the primary goal to

model the mass transfer of solutes and solvents inside islets of Langerhans while retaining as

much geometric information as possible. Note that the geometry of this model has clinically

important analogues in other smaller tissues, such as ovarian follicles, a subject of current

cryobiological research [21, 22, 23]. In this manuscript we derive a new model accounting

for both diffusion through the interstitium of the spherical array of layers and cell-to-cell

osmosis. This allows solute and water transport into and out of the deeper layers of the

sphere by one of two methods: serially through each of the overlying layers and across that

portion of the cell membrane that is exposed to the intercellular transport driven by

diffusion.

The proposed model is in some respects similar to that proposed by Huang, Wylie and

Miura [24] which is an extension of an approach of Tanner [25] where transport is

compartimentalized a way that recognizes that cell-to-intersitium transport influences local

envirionments which is connected by some diffusive process to other cells. Huang et al

consider a model where there is no cell-to-cell transport, something we consider important

here. Additional recent work to couple cell and interstitial transport has been done by,

among others, Layton and Layton [26] where a model was constructed to account for the

morphology of the outer medulla of the kidney.

In our model previously published data for hamster islets of Langerhans [27, 28] supply

many of the biophysical parameters. Here we show that the only previously undetermined

variable that significantly affects the model is the cellular surface area that is in contact with

the intercellularly transported membrane permeable solutes (Ais). The model is validated and

Ais determined using a 3 × 3 factorial experimental design blocked for experimental day.

Whole islet experiments are compared with model predictions at three temperatures (8, 22,

37 °C), using three perfusing solutions (Dimethyl Sulfoxide (DMSO), Ethylene Glycol

(EG), 3×Phosphate Buffered Saline (PBS)), and three islet size groups (< 80 μm, 80 μm to

110 μm, > 110 μm radii). Using coefficient of determination (R2) as our statistical measure,

we show that our model provides an accurate description of volume excursion for whole

islets in response to osmotic challenges.

2. Mathematical Model

2.1. Assumptions

The intra- and extracellular media are assumed to be ideal, hydrated, dilute multicomponent

solutions and the membranes of the cells are simple and homogeneous. The equations which

we use to analyze non-equilibrium fluxes of water and solute are based on the work of

Kedem and Katchalsky (K/K) [31] which describe equations based on the assumptions of

ideal and dilute solutions.

We will neglect concentration polarization and the effect of unstirred layers on the

permeability of the cells. An identical assumption was made in Levin et. al. [6] where they

drew upon the work of Levin et al. [32] to demonstrate that little solute polarization occurs

within the small volume of aqueous solution separating closely packed cells. We assume
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that adjacent membranes can be modeled as two independent membranes in series, resulting

in a halving of effective hydraulic conductivity and solute permeability.

We assume that both the cell surface area in contact with other cells (Ac) and in contact with

intercellular media (Ais) are constant. The accuracy of this assumption is debatable (e.g. [33,

34]), however in general many investigators maintain constant surface area to avoid the

problem of an increase in membrane surface area when the tissue expands past its isotonic

volume [18, 19]. And we ignore intracellular diffusion effects, assuming solute entering a

cell (layer) is distributed evenly throughout the cell. This assumption may be justified by the

diffusion length given by , where D is the diffusivity, and tc is a characteristic

time. In particular, we have D ≈ 1100 μm2/s (the approximate diffusivity of DMSO or EG),

and tc = 10 s (the approximate intracellular concentration equilibration time of an individual

islet cell [27]). Thus , which is significantly longer than the

approximate islet cell radius of 6 μm, though perhaps not sufficiently long to discard for an

entire islet of diameter approximately 100 to 200 μm.

2.2. Cell membrane mass transport model

Because parameter data for individual islets have already been published, we use the same

formalism described by Kedem and Katchalsky, which gives the total volumetric mass flow

Jv as well as the permeable non-electrolyte (e.g. DMSO or EG) mass flow Js across a

membrane in terms of the phenomenological coefficients Lp, ω, and σ [31]:

(1)

where all parameters are defined in Table 1, and C̄ is the average of extracellular and

intracellular CPA concentrations (osmolality) defined by Kedem and Ketchalsky,

The intracellular concentrations of salt and CPA during anisosmotic conditions were

determined from the Boyle van’t Hoff relation applied to the osmotic responses of cells [28,

35], and active ionic transport of Na+ and K+ are assumed to have negligible effects on gross

cellular volume, a fact supported by the results of our previous work, where the volumes of

individual islet cells were tracked following exposure to high osmolality (540, 800, and

1355 mOsm/kg) saline solutions. Upon equilibration, no rectification was observed up to a

minute post exposure. Moreover, in the present experiments, upon exposure to 1200

mOsm/kg saline solutions, there are no discernable volume effects of ion transport as

volumes, once they reach their osmotic equilibrium appear to remain constant (see, e.g. Fig.

4).

Finally, it will be convenient later to note that in the dilute approximation used here, C :=

S/V, and system (1) may be rewritten as follows, with Jv and Js defined as above
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(2)

2.3. Geometry

The mass transport model (1) was applied to the geometry shown in Fig. 1 and Fig. 2. This

model is a series of concentric spheres and is built by assuming that the innermost sphere

(sphere 1) is of the dimensions and volume of a single hamster islet cell (approximately 12.2

μm in diameter and 960 μm3 in volume). Each surrounding layer is the thickness of the

diameter of one islet cell. All layers have water and solute permeabilities equal to Lp/2 and

Ps/2 except for the outermost layer, with permeabilities equal to Lp and Ps. We then set Lp

and Ea of Lp, Ps and Ea of Ps, and σ equal to values found for hamster islet membranes for

DMSO and EG [27], where the temperature dependence of the permeability parameters Lp

and Ps is given by the Arrhenius equation

(3)

where P is either Lp, Ps or the solute diffusivity D defined below, and Tref = 295.15. The

nonosmotically active portion Vb of the cells (layers) was also set to be 0.40 from previous

experiments [28]. We assume that cylindrical channels are evenly distributed throughout the

tissue.

In this model we assume that the extracellular (interstitial) volume of the islet remains fixed

at 20% of the overall islet volume throughout the experimental perfusion, a value published

by several authors [30, 36, 37]. The assumption that the ratio of intra- and extra- cellular

space is fixed is supported by the experiments conducted in Benson et al. [27] and Liu et al.

[28] which demonstrated that the Vb of individual islet cells is approximately 40% and the

apparent Vb of the whole islet is also approximately 40%. These data lead to the conclusion

that since the respective Boyle Van’t Hoff plots (normalized volume vs. 1/Osmolality) for

individual islets and whole islets are identical, the extracellular volume of the islet must

remain in direct proportion to the overall islet volume.

Here we model the extracellular space within the islet as a series of cylindrical channels

penetrating the spherical model. The surface area of each concentric layer (boundaries A1,

…, An in Fig. 2) is calculated from the cell-to-cell transport model with the cross-sectional

area of the channels removed. First, to calculate the number of channels, we have the

volume of one channel, Vchannel = πδ2R, which, in turn allows us to calculate the number p

of channels comprising 20% of the total islet volume p = 0.2Vislet/Vchannel, and thus the

constant total channel area Ais = p(2πδ). It is convenient to define the normalized Ais by

dividing by the total cellular surface area
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This ratio is fixed for all cells and all time.

Finally, we note that the total cellular surface area is based on the calculated surface area of

an individual spherical islet cell in suspension. Because this cell has a minimal surface area

to volume ratio, we expect that because cells in tissues are aspherical and their physiologic

volume is the same, the effective surface area of cells in a tissue construct should be higher.

This implies that, though based in a theoretical framework, the above quantity is

phenomenological and values should not indicate the “true” ratio of interstitial surface area

to intercellular surface area.

2.4. Interstitial mass transport

Using the assumption of independent flow, isothermal conditions, and with concentration

independent diffusivity, we may use the radially symmetric linear diffusion equation (see,

e.g. [38]), coupled with initial and boundary conditions:

(4)

Here c is the concentration of extracellular solute (mol/kg), D is the diffusion coefficient

(μm2/s), r is radius (μm), and t is time (s).

The solution of the solute diffusion equations was approximated using the method of lines

where the spatial dimension was discretised leaving a system of ordinary differential

equations. Essentially this is achieved by discretizing the spatial variable on a uniform grid,

and applying 2nd order centered difference formulas to calculate approximate spatial

derivatives, resulting in a system of linear ordinary differential equations, which were then

solved using MatLab’s built-in ode15s solver. This technique facilitates the simultaneous

solution of the combination of the linear diffusion equations from this section and the

nonlinear ordinary differential equations in the following section.

The diffusion coefficient D for a freely diffusing solute in water and that for a solute in the

tissue interstitium should be different, however the choice of an appropriate model is

unclear. In particular, one must account for not only the effects of path constraints but

solute-structure interaction. For example, a porous media model may be appropriate [15], or

more complicated relationships between chemical potential and strain may be developed

[16]. We ignore these complications and use the linear diffusion model (4) with a constant

diffusion coefficient because we wish to capture a “first order” level of detail: more explicit

models may be implemented later if applications warrant the detail.
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We account for the specific geometry of islets by employing a tortuosity factor λ that scales

the diffusivity constant. Specifically, the tortuosity factor is the actual length of the diffusion

path per unit of length of diffusion, D̄ = λ−2D, moreover this factor is a function of tissue

geometry and therefore is relatively solute independent. Maroudas et al. [29] and have

shown that for a range of solutes, diffusion through articular cartilage yields a tortuosity

factor of 1.35 to 1.44. Page et al. [30] conducted experiments on cat heart muscle which,

arguably, has a histology more similar to islets than cartilage and found a tortuosity of 1.44.

Additionally, Marudas et al. found that the temperature dependence of the diffusivity

followed the Arrhenius model (see equation (3)) with an activation energy Ea of 5.46 Kcal/

mole [29].

We therefore modified the diffusion coefficient D to account for diffusion through an islet

by using D̄. Based on the molecular weight of DMSO (78.13 daltons) and EG (62.07

daltons) we assume free diffusivity of 1100 μm2/s and a tortuosity of λ = 1.4 [29, 30]

yielding respective diffusion coefficients for EG and DMSO of D̄ = 530 μm2/s. For PBS we

assume the free diffusion coefficient to be dominated by the major component NaCl (58.4

Daltons) and the diffusion coefficient by D̄ = 510 μm2/s [39]. We assume all diffusivities

have an activation energy Ea = 5.46 Kcal/mole [29].

Because we assume uniform intracellular concentrations, the transmembrane volume flux at

Bi is governed by a mean concentration along this membrane. However we wished to

include the effects of solute and solvent mass transfer on the local channel concentration.

Though a piecewise defined Robin (Type 3) boundary condition would account for the flux

along boundary —requiring the solution of the diffusion equation in a two

dimensional channel—at this length scale the diffusion normal to the cell membrane and

across the channel is nearly instantaneous and the local concentration would be influenced

only by the radial diffusion and the normal boundary conditions defined by the K/K model.

In practice, this should be identical to the application of so called “virtual” cells (see Fig. 2).

We assume that the transmembrane flux across any boundary Bi is governed by the mean

local concentration governed by diffusion. This flux then affects the local concentration

independent of diffusion. Numerically, this is achieved by performing a domain

decomposition in r [40] in the channel with each layer constituting a new domain and

coupling these layered domains to their associated cell layers using the K/K model by

assuming that the concentration of a virtual cell associated with this domain is equal to the

average of the concentrations of the nodes adjacent to an islet layer (see discretization in

Fig. 2), and the volume of a virtual cell equal to 20% of the associated cell-layer volumes.

Finally, it is important to rule out the possibility of advective transport. In this case, the

unitless parameter to describe the influence of advective transport in a model is the ratio of

the advection to diffusion, often called the Péclet number, Pe = LV ̄D−1, where L, D and V̄

are characteristic length, diffusivity and fluid velocity, respectively. If Pe < 0.1 advective

transport is usually negligible. In our case the characteristic diffusivity is D = 1100 μm2/s2

2Note we use D and not D̄, though our estimate holds with D̄ as well.
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use, the characteristic length is L = 50 μm and the characteristic fluid velocity is on the order

of

assuming that the change in islet volume is attributable to water volume flux, which has an

experimentally determined value of V̄ ≈ 0.05 μm/s, yielding

indicating that advective transport is not likely to be a major component of the model.

We now can define the complete model. Suppose that we have the configuration in Fig. 2.

Let Ω = [0, R], and partition Ω into disjoint subdomains Ωi such that . Let ci : Ωi ×

[0, ∞) → [0, ∞) be the concentration in the channel in the ith domain and Wi, Ci : [0, ∞) →

[0, ∞) be the water volume and concentration in the ith cell layer, be defined by the system

of coupled reaction-diffusion and ordinary differential equations (note that we use capital

and lowercase variables for intra and extracellular quantities, respectively):

where ci models both permeating solute c and nonpermeating solute k, supplemented with

initial and boundary conditions (with Γi := ∂Ωi−1 ∩ ∂Ωi):

where  is the mean extracellular concentration at the ith level, and ce : [0, ∞)

→ [0, ∞) is the extra-islet concentration.

We define the reaction terms fi : ℝk → ℝ which stem from the K/K formalism. From system

(2), we may define the reaction terms and ODEs
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(5)

(6)

(7)

where Jv(c, C, k, K) and Js(c, C) are defined in display (1), and we note that in the case of

nonpermeating solute flux Js = 0, and we assume that ke(t) = 0.29 mol/L, isotonic

dissociated molality of 1 x PBS.

Finally, the above model accounts for the movement of water and solutes across cell

membranes. In the case where we model the diffusion of only the nonpermeating solutes in

PBS, there is no permeating solute (c = C = 0), and the governing equations are simplified.

In particular system (1) reduces to

(8)

and Js = 0. We also replace c and C with k and K respectively in system (4) as the diffusing

solute.

3. Materials and Methods

3.1. Reagents

Unless stated otherwise, all chemical reagents were obtained from Sigma (St. Louis, MO).

Collagenase P was purchased from Boehringer Mannheim (Indianapolis, IN). Cell culture

reagents, including Hanks’ balanced salt solution, Medium 199, fetal bovine serum (FBS)

and 0.25% trypsin-EDTA, were purchased from Gibco (Gaithersburg, MD)

3.2. Isolation of Islets From Hamsters

Hamster pancreatic islets were isolated as previously described by Gotoh et al. [41]. Briefly,

6–8 wk old golden hamsters (Harlan Sprague Dawley, Indianapolis, IN) were anesthetized

via inhalation of Forane (Isoflourane; Ohmeda Caribe inc.; Guayama PR). The common bile

duct was cannulated under a stereomicro-scope with a polyethylene catheter through which
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approximately 8 mL to 10 mL of cold (1 °C to 4 °C) M-199 medium containing 0.5 mg/mL

of collagenase P was injected slowly until whole pancreas was swollen. The pancreas was

excised and digested at 37 °C for approximately 50 min in M-199 medium containing 100

mg/mL of penicillin G and 100 mg/mL of streptomycin (no additional collagenase). The

digest was washed three times in cold M-199 medium and passed through a sterile 500 mm

stainless steel mesh. Islets were purified by centrifugation through a Ficoll density gradient

(1037 kg/m3, 1096 kg/m3 and 1108 kg/m3) at 800×g for 20 min.

3.3. Perfusion of Islets and measurement of resulting volume excursions

The design and structure of the microperfusion chamber system is similar to that described

elsewhere [42]. Briefly, the experiments were conducted by introducing 2 to 10 islets into

the chamber cavity (height: 1 mm, diameter: 2 mm, volume: 3.14 μL) using the Hamilton

syringe. With application of negative pressure from below, the solution moved out of the

chamber, but the islets remained on the transparent porous membrane at the bottom of the

cavity (polycarbonate screen membrane; Poretics Co., Livermore, CA; membrane thickness:

10 μm, pore diameter: 5 μm, pore density: 4 × 105 pores/cm2). Next, 700 μL of a perfusion

medium was loaded in the reservoir at the solution inlet and approximately 400 μL was

perfused through the chamber by aspiration via a 1 mL syringe. The reservoir (with 300 μL

of remaining solution) was then sealed via application of a glass cover slip, ensuring no

evaporative effects. The entire perfusion took place in less than eight seconds and the

original isotonic solution in the perfusion chamber cavity (3.14 μL) was quickly replaced

over 100 times by the new perfusion medium, ensuring that none of the original isotonic

solution remained in the chamber and that back diffusion of original solution into the

chamber was impossible. Cells were immobilized by the downward flow of the perfusion

medium during the perfusion process facilitating the recording of cell volume changes by a

video camera.

The perfusion chamber and cell suspension cavity were cooled/heated with a temperature

controller to reach an equilibrium. The prepared perfusion media was precooled or heated in

a temperature-controlled methanol bath (Digital Temperature Controller, Model 9601,

Polyscience Co., Niles, IL) to the same temperature as the perfusion chamber. Precooled/

heated media was then perfused into the chamber and around the cell(s). During the

experiment, the temperature variation of the perfusion medium and of the microperfusion

chamber were monitored and the range of temperature difference between the perfusion

medium and the chamber was ±0.2 °C during experiments (data not shown).

Individual video frames were imported into SigmaScan/Image (Jandel Corporation, San

Rafael, CA). Islets were then outlined and area was measured by filling this outline. All

islets used in this study were roughly spherical (unpublished data). A radius was then

computed using this assumption of a spherical shape. Images were calibrated by

measurement of spherical polyethylene beads (92.12 μm diameter, Coulter corporation, Epic

division, Hialeah, FL).

The coupled system of partial and ordinary differential equations were discretized spatially

as shown in Fig. 2, and the resulting ordinary differential equations were simultaneously

solved using MATLAB (The MathWorks, Natick, MA) function “ode15s.” The best fit for
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Ais was found using the MATLAB function “fminsearch” which uses a modified simplex

search method.

Model predictions were compared to experimental data using coefficient of determination

(R2) calculations, and ANOVA was performed using the General Linear Models (GLM)

computational procedure of the Statistical Analysis System (SAS; SAS Institute, Inc., Cary,

NC). The model was validated and Ais determined using a 3×3 factorial experimental design

blocked for experimental day. In this design the treatment structure consists of all possible

combinations of all levels of all factors under investigation [43]. For our analysis, we chose

to block (group) the experiments that were performed on the same day (from the same

isolation of islets). This grouping was included in the SAS GLM model as a day effect

which allowed model to remove (and test) the variability due to day to day variation.

Significance of main effect was tested using the appropriate mean squares (Temperature

effect tested by Temperature × Day interaction as the error term, etc.). This procedure

partitioned the variance of the three main treatment effects: temperature, islet size, and

perfusing solution as well as the two way interaction effects.

4. Results

A model was developed to describe the behavior of islets of Langerhans in the golden

hamster when they are exposed to anisosmotic conditions. The model was validated and Ais

determined using a 3 × 3 factorial experimental design which was blocked for experimental

day. Whole islet in vitro experiments were compared with model predictions at three

temperatures, using three perfusing solutions and three islet sizes.

4.1. Correlation of model with experimental data

Typical results for correlation of several of the experimental protocols are shown in Figs. 3

and 4. These figures include data from in vitro perfusion experiments using the three

perfusion media (1.5 mol/kg DMSO, 1.5 mol/kg EG, and 3×PBS) and hamster islets of

Langerhans. Superimposed on this data is the prediction of the mathematical model

described above. Table 2 contains the combined data from all of the 27 experiments

performed for this study.

A mean of 4.4 islets were compared at each of the 27 experimental conditions and found to

correlate with a coefficient of determination (R2) of 0.87 ± 0.06 (mean ± S.D.). This

excellent value for R2 demonstrates that, even with only one fitting variable, the model

predicts the experimental data with a high degree of accuracy. The remaining 13% of the

variability could possibly be explained by error in measurement.

4.2. Day Effect

The 3×3 factorial design was blocked for day and when using analysis of variance

(ANOVA) for Ais, it was found that this day effect was significant (p < .05). This indicates

that there is significant day to day variability of Ais for hamster islets. This variability may

be explained by hamster to hamster variability, or by day to day isolation variability.

Hamster to hamster variability was seen for hamster oocyte water permeability and

activation energy [44]. However, it is more likely that even slight differences in digestion of
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the islets in collagenase from day to day could affect the Ais significantly. Visually,

increased digestion renders some islets “looser” (Dr. Raymond Rajotte, personal

communication) which could hypothetically increase Ais.

4.3. Interstitial surface area (Ais)

The  from 119 islets (10 hamsters over 5 experimental days) was found to have a mean of

0.54 ± 0.34 (mean ± S.D.) across all treatments. Values greater than one may seem at first to

be counter-intuitive. However, we normalized our value of Ais to spherical internal

individual islet cells, which have a minimal surface area to volume ratio. Therefore, non-

spherical cells inside the islet would increase the overall surface area to volume ratio and

increase the total membrane surface area of the islet, thus decreasing our normalized Ais.

We also compared Ais over experimental conditions using ANOVA and found the treatment

variable of perfusing solution to be significant (p < .05). Furthermore, ANOVA with

multiple comparisons demonstrated that Ais for PBS is greater than for DMSO or EG

exposure (p < .05).

5. Discussion

In this manuscript we have proposed a model that accounts for multiple modes of solute and

solvent transport in small tissues. This model utilizes a priori known cellular biophysical

and physical chemical parameters, and makes some simple geometrical assumptions, most

notably that each cell is equally available to the interstitium. This assumption is accounted

for by the single fitting parameter, Ais, that provides tissue specific geometrical information

about this surface area availability independent of solute.

The present model combines elements of other previously proposed models. In particular

cell-to-cell transport models have been previously proposed. This model captures similar

effects to those of Levin et al. [6] as well as Diller et al. [8] in that transport is delayed in

interior layers and thus whole islet equilibration takes over 1000 s. We applied our model in

the absence of interstitial mass transport, and found similar results as Levin et al. and Diller

et al. In particular, Fig. 5 shows the results of modeling of an eight layer intracellular

transport model in the absence of interstitial diffusion (approximately 180 μm in total

diameter) where the extra-islet concentration was fixed at 1.5 mol/kg EG in 1 x PBS.

The model defined by Schreuders et al. [9] focused mainly on the derivation of

thermodynamically consistent flux equations in the case where the assumption of local

homogeneity is invalid. Their derivation of this admittedly more complex model is justified

by the argument that in the case of multiple mobile species, the independent flow

assumption is invalid. In the present study the independent flow assumption is made because

under our experimental conditions we expect minimal interaction between diffusing species,

namely DMSO or EG and the major components of PBS. Moreover, our study, in contrast

with the Schreuders study focuses on gains that can be made using the inherent geometry of

the system—there is no reason why the pseudo-bond graph approach presented by

Schreuders et al. could not be implemented in our model, allowing a more
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thermodynamically appropriate approach if we wish to model multiple component diffusion

where we might expect solute-solute interactions.

Moreover, the network thermodynamic models described first by Schreuders et al. [9] and

used to model whole pancreatic islets by de Freitas et al. [10, 45] are considerably simplified

in the sense that they use compartmentalized flux models to reduce the spatial dependence to

a system of coupled ordinary differential equations where spatial scales are ignored. This

approach has the benefit of being considerably easier to solve numerically, but loses

generality in the application of diffusion models, such as the simple porous media model

used here. In fact, our model may be generalized quite easily to more appropriate porous

media models, models where the spatial dependence of the diffusivity is realistic (e.g. in

ovarian tissue where the epithelium tissue is different than the cortex tissue which is

morphologically different from the medulla). Moreover, our approach is considerably more

in line with that of present hybrid individual cell based modeling [46].

Alternatively, diffusion based models have been proposed for tissue mass transport. These

models assume that the local contribution of cell-cell and cell-interstitium transport can be

approximated by a phenomenological diffusivity parameter in a contiuum model such as the

diffusion equation or its porous media analogues. For example, Han et al [14] use the same

radially symmetric linear diffusion equation to model mass transport in rat ovaries.

However, Levin [6] used diffusion length arguments to show that if cells do not interact and

are treated as a “bunch of grapes” for small tissues, equilibration should be solely dependent

on the mass transport of single cells in suspension. To wit, if the islet could truly be modeled

as a “bunch of grapes,” with each cell completely exposed to interstitial diffusion, the

behavior would be dependent on the diffusion characteristics of a sphere. Since the sphere

would be equilibrated in a relatively small time (regardless of the diffusion coefficient and

tortuosity factor), whole islets should equilibrate on the same time scale as individual islet

cell. Further, if an islet was truly a “bunch of grapes” its behavior would be reasonably

independent of the size of the islet, for the same reasons outlined above.

Benson et al. [27] showed that an individual cell perfused with 1.5 mol/kg DMSO at 22 °C

would equilibrate in less than 150 seconds. Therefore under a pure diffusion model using

CPA in water self-diffusion parameters, the whole islet would follow a similar time course

as an individual islet cell. In fact, physical experiments below show that when an islet of

approximately 150 μm diameter is exposed to 1.5 mol/kg DMSO the equilibration takes

about 600 seconds (see Fig. 3). Furthermore, the size of the islet does affect the equilibration

time. Therefore, the behavior of the hamster islet must be a combination of the two

extremes. It must have some intercellular (interstitial) transport, but not all cells are

completely exposed to this intercellular solute.

If, however, one keeps the non-interating model but discards the known self-diffusion

parameter in lieu of a phenomenological diffusion coefficient (as in Han et al. [14]), the

challenge here is that the wide range of application conditions needed in cryopreservation

protocols, including up to 10 mol/kg CPA concentrations and a nearly 200 °C temperature

change in a tissue type that varies greatly in diameter suggests that it is unlikely that a model

with a non-geometrically based fitting parameter would be valid in the necessarily wide
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range of applications. This was the motivation for our approach: that existing physical data

for cells and tissues in these widely varying conditions could be adapted to a hybrid model

of transport with minimal phenomenological fitting parameters.

When we modeled permeating and nonpermeating solute transport simultaneously, we found

that there were very limited nonpermeating concentration gradients generated by the cell-to-

interstitium water transport (data not shown). With our assumption that water lost to the

interstitium is not stored, these effects are likely mitigated by the inward diffusion of solutes

from the exterior of the islet. Combined with the temporal delay and limited relative water

flux values (see Figure 7), we believe that this limited nonpermeating solute gradient is

reasonable.

One significant assumption in our model is that the ratio of interstitial volume to cellular

volume remains fixed throughout. The overlap between the Boyle van’t Hoff relationships

of isolated individual islet cells and their whole islet counterparts [27, 28] along with

published work in other tissues [30, 36, 37], suggests that for tissues in osmotic equilibrium

this assumption holds. The question remains whether the fixed volume ratio assumption

holds in the non-equilibrium case and the potential impact of this assumption. In short, does

the intracellular water lost to the interstitium get “stored”, and how big is this effect? To

fully answer this question, we would need to examine the elasticity the intracellular structure

as a function of packing, placement, and pressure which is difficult to validate

experimentally and well beyond the scope of this manuscript.

To attempt to address this assumption from within our theory, we first explore this

possibility in a rough sense in Figure 6, where we note that increasing or decreasing the

percentage of interstitial space by 50% results in fairly minor changes in total islet response,

including nearly identical minimal radii. In fact, Figure 6 demonstrates that the change in

interstitial space corresponds to changes in the number of pathways available for the

diffusive transport that is considerably faster than the cell-to-cell transport alternative. This

figure should represent the maximal error as it assumes a fixed error in this ratio.

The transient error is limited by two factors. First, the time to quasi-equilibrium (where the

chemical potential of water is in equilibrium and thus the flux of water is is an order of

magnitude smaller) in individual islets cells exposed directly to 1.5 mol/kg DMSO or EG is

approximately 20 seconds [47]. This is the largest time scale for quasi-equilibrium possible

in our model as only the exterior layer will directly experience such a large osmotic

gradient. Second, the outer layer will lose approximately 50% of its water volume to the

exterior of the islet, and the remainder to the interstitium (depending on conformation). In

interior layers, the extra-cellular gradient is considerably smaller, with resulting shorter

quasi-equlibrium times. This can be seen clearly in Figure 7 where the normalized volume

response and relative water volume flux  at each layer is given.

Another significant assumption in our model is that the contribution of fluid velocity on the

solute transport is negligible. During the construction of the model, we use simplifying

assumptions to argue that the Péclet number was sufficiently small to argue that advection is

negligible (see [48] for a discussion of Péclet numbers in porous media models). Using the
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mean islet radius (r = 94 μm) and Ais = 0.54, we show the calculated of the Péclet number

during the active first 30 seconds of exposure to 1.5 mol/kg EG at 22 °C in Figure 8. Here

the fluid velocity was calculated by summing dWi/dt for each interior layer (i = 1,…, 7 here)

plus 0.5dWn/dt for the exterior layer (n = 8 here), as approximately 50% of dWn/dt will be

lost to the extracellular media), divided by 0.2Aislet to account for transport only out of

“interstitial channels”. Note that If we instead more conservatively assume dWn/dt

contributes entirely to the channel water velocity, the maximal Péclet number is still 0.08.

In this manuscript we also experimentally validated the proposed model in hamster islets of

Langerhans. Our results showed that, despite several simplifying assumptions, the model

was in good agreement with experiments. In particular, there was no significant effect of

permeating CPA on the fitted parameter Ais, but the use of a concentrated salt solution did

significantly affect Ais. In the context of our model, this may suggest that the islets, when

exposed to 3×PBS, have more surface area exposed to the interstitial diffusional transport

than when they are exposed to DMSO or EG. A possible hypothesis is that there are areas of

the islet which water is able to diffuse out of (in the case of hypertonic PBS perfusion) but

larger molecules such as DMSO and EG are excluded from. This hypothesis is supported by

the work of Barr et al. [49] who showed that the apparent extracellular spaces of smooth

muscle decreased with increasing molecular size. Further, Bunch et al. [50] found that only

60% of total water to be available to DMSO in barnacle muscle. A second explanation may

be that the two CPAs affect the histology of the islet in such a way as to “tighten” it and

make it less susceptible to diffusional effects. Further exploration of this area may be

warranted, and a straightforward follow up experiment would be to fit for Ais in the presence

of other nonpermeating solutes of varying molecular diameter, ionic and non-ionic. An

additional potential explanation is that our model assumes mutual diffusivity of all ionic

components of PBS, where there may be a 50% difference in diffusivity of Na vs Cl ions

[39]. Finally, we have ignored potential large effects of the electrical conductivity of the

islet in high concentrations of PBS that may influence the movement of ionic solutes

differentially and affect the model independely of the geometrical considerations mentioned

above.

However, the lack of significant differences in Ais in the CPA groups (EG and DMSO from

all islet sizes and temperatures) points to the conclusion that Ais is a parameter defined by

the system geometry and, potentially, the type of diffusing solute. In short, from the results

of these experiments, we expect that Ais will be the same for other similar non-ionic, CPA-

type, solutes such as propylene glycol and glycerol. Because our model was intended for use

in the prediction of the movement of these types of solutes, the present model and its

resulting parameter Ais should be an extremely useful tool for the prediction of

cryobiological protocols. This conclusion would indicate that our model has captured more

information than a strictly phenomenological diffusion based model. Because of this,

predictions based on knowledge of this parameter and knowledge of the diffusivities for

other CPAs may be made without experimental measurements.

A specific advantage of our approach is that we have developed a model almost entirely

independent of phenomenological parameters, facilitating a wide range of applications. We

wish to use this model in the prediction of optimal cryopreservation protocols, which
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encompasses several interrelated steps for which an understanding of the cellular state is

critical. One important aspect of modeling in cryopreservation is the temperature

dependence of processes. It is expected that fluxes generally follow an Arrhenius law, but at

Celsius temperatures below zero, mass-transport is challenging to measure accurately.

Because the subzero temperature dependence of any phenomenological parameter such as a

lumped “diffusion” term must be measured for each new combination of solutes and

geometries, a phenomenological approach either must sacrifice accuracy or require multiple

difficult biophysical measurements. On the other hand, our approach only depends on

parameters with established temperature dependence such as the diffusivity of solutes in

water. The geometry—and thus tortuosity factor, Ais, etc—is likely to be temperature

independent. The only temperature dependent parameters required, then, are the hydraulic

conductivity and solute permeability (Lp and Ps, respectively), for which the temperature

dependence is well established [51].

It is well accepted that cells and tissues must be pre-equilibrated with a multimolal

concentration of CPA before cooling to facilitate post-thaw survival [52, 53, 54]. This

equlibration process has been shown to be deleterious from two perspectives. First, as shown

in Fig. 3, exposure to high concentrations of extracellular (or extratissue) permeating CPA

drives the rapid exosmosis of intracellular water, followed by the gradual recovery of this

water as the slower permeating solutes cross the cell membrane. This large volume flux has

been associated with cell damage in multiple cell types from multiple species [55, 56, 57,

58, 59, 60]. On the other hand, it has been shown that cells and tissues are sensitive to high

concentrations of CPAs, necessitating rapid equlibration protocols [61, 62, 63]. There have

been many studies with single cell suspensions to predict heuristically [64, 65, 66, 67, 68] or

mathematically optimal [69, 70] protocols to mitigate these effects. The present model

allows for the extension of these optimal control problems to small tissues. In particular the

numerical approach of Benson et al. [71] should allow for the easy extension of single cell

optimized CPA addition and removal protocols to the present model.

Second, combined with equations published for solute/solvent dynamics at low temperatures

[18, 8, 19, 72] both the concentration of CPA within each layer at the time of freezing, and

the concentration of water within the cells at the time of ice nucleation may be predicted.

These values have also been shown to be of great importance to the overall outcome of the

cryopreservation procedure [73, 4, 5]. There also has been recent discussion on the ice

propagation in concentrically oriented tissues, where solute and solvent transport have been

neglected [74, 75]. It would be of considerable interest to apply the intracellular ice and

propagation theory discussed in these papers in combination with the model described and

validated in this manuscript. A step towards this in pancreatic islets was made by de Freitas

and Diller [76] but, though they used a network thermodynamic in their previous work [10,

45], they did not use this as a transport model in the prediction of intracellular ice formation

at individual levels.

Because the present model geometry is radially symmetric with independent layers, this

model could be applied to similar small tissue systems. A critically and clinically relevant

tissue with this geometry is the ovarian follicle, which may be roughly described as a large

center sphere (the oocyte) surrounded by layers of granulosa cells [77]. There has been
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much recent attention paid to cryopreservation of ovarian tissue with the hoped outcome of

preservation of mature (beyond primordial stage) follicles [21, 78]. An understanding of the

mass transport in ovarian follicles may provide insight into optimal cryopreservation

protocols, even when these follicles are embedded within ovarian tissue.

6. Conclusions

A model has been constructed that accurately predicts volume excursion in response to

osmotic and CPA challenges for whole islets while maintaining geometric information about

the behavior of the entire islet. This model incorporates data describing fundamental

biophysical characteristics from previous studies on individual hamster islet cells and

describes transport through the islet by three methods: intracellularly, intercellularly, and a

combination of these. Development of optimal cryopreservation protocols using this

information remains to be accomplished.
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Research Highlights

• A solute-solvent mass transport PDE-ODE model for concentric layer tissues is

derived.

• Known biophysical parameters for individual cells are coupled to a porous

media model.

• Hamster islet of Langerhans responses to three solutes and temperatures are

measured

• The model is fit to the data with only one free parameter: interstitial surface

area.

• Nonpermeating solutes yield the only significant effect on interstitial surface

area.
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Figure 1.
Geometric model of the whole islet of Langerhans made up of concentric shells of

individual islet cells. Numbers indicate layer number where in each layer we assume radial

symmetry. Grey boxes indicate the intersitium where concentration is modeled by a system

of reaction diffusion equations dependent on the local concentration gradients across cell

membranes at that layer.
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Figure 2.
Conceptual model of the combination of diffusion and cell-to-cell transport. Double lines

indicate mass transport governed by the Kedem and Katchalsky (K/K) model, whereas the

dashed line indicates mass transport governed by the diffusion equation in a sphere with

tortuosity factor λ. At membrane interfaces Ai, i = 1, …, n − 1, we model transport as two

membranes in series, resulting in a halved effective cell-to-cell permeability. At membrane

interfaces Bi, i = 1, …, n, the exterior local concentration governing mass transport at the ith

cell depth is given by the mean concentration in the “virtual cell.” Spatial discretization is

also shown.
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Figure 3.
Representative plots of radius vs. time for two whole hamster islets of different sizes

perfused with 1.5mol/kg DMSO at 22 °C. The solid line is model predictions under the same

experimental conditions. The best fit channel radius (corresponding to Ais) for the left plot

was 2.92 μm and correlation coefficient (R2) was .91. The Ais for the right plot is 1.84 μm

with correlation coefficient 0.93. Note the effect of size on equilibration time.
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Figure 4.
Plots of islets with various radii perfused with 3× PBS at 37, 22, and 8 °C. The solid line is

model predictions under the same experimental conditions. The best fits for channel radius

(corresponding to Ais) were 1.79, 2.08, 1.21 μm and correlation coefficients (R2) were 0.99,

0.99, 0.97, respectively.
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Figure 5.
Comparison of the results of an eight layer model of approximately 180 μm diameter

without interstitial diffusion (left column) and with interstitial diffusion (i.e. the full model;

right column), subjected to perfusion with 1.5 mol/kg EG. Layers are indicated by the color

spectrum with purple on the outside and red on the inside of the islet. In the left column, the

model assumes that solute and water transport take place exclusively across layer

membranes. In the right column is the full model. Inset in the right column is a shorter time-

scale to illustrate the layer differences in the full model. The volumes indicated (top row) are

normalized to each initial layer volume. Importantly, note that the great majority of the total

volume is taken up by the outer layers and is not illustrated here.
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Figure 6.
Numerical simulation of whole islet radius after exposure to 1.5 mol/kg EG in 1 x PBS at 22

°C as a function of time and percentage of interstitial volume, ranging from 30% to 10% in

5% increments, indicated by the arrow. The inset shows the time and minimal volume the

same data. The initial radius was the mean radius from Table 2 (r = 94 μm) and Ais was set

to the mean interstitial area (Ais= 0.54).
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Figure 7.
Numerical simulation of normalized individual islet volumes, intracellular solute

concentration, and normalized water flux (w(0)−1dw/dt) at each of eight layers (light to dark

indicates exterior to interior layers) after exposure to 1.532 mol/kg EG 1 x PBS at 22 °C.

These data demonstrate the predicted intraislet delay in response, the reduced total volume

response, and the time to quasiequilibrium as a function of cell depth. The initial radius was

the mean radius from Table 2 (r = 94 μm) and Ais was set to the mean interstitial area (Ais=

0.54).
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Figure 8.
Numerical simulation of Péclet number as a function of time after exposure to 1.5 mol/kg

EG in 1 x PBS at 22 °C, assuming an initial radius set to the mean radius from Table 2 (r =

94 μm) and Ais was set to the mean interstitial area (Ais= 0.54). Péclet numbers Pe = LVD−1

were calculated using L = 50, D = 1100, and

.
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Table 1

Parameter list, their units and values if known. All CPA specific and cell and system parameters are

determined from previous studies. In particular, all cell specific parameter values are from Benson et al. [27]

and Liu et al. [28] and the solute diffusivity values, their activation energies, and the tortuosity value are from

Maroudas et al. [29] and Page et al.[30]. Note that the fitting parameters are all functionally related (see

Section 2.3), and  is the sole fitting parameter of the model.

CPA specific Parameter Parameter Name Value (EG) Value (DMSO) Units

Lp Hydraulic Conductivity at 22 °C 0.00375 0.00375 μm s−1 atm−1

Ps Solute Permeability 0.105 0.132 μm s−1

Activation energy of water permeability 11.69 12.43 kCal/mol

Activation energy of Solute Mobility 20.35 18.34 kCal/mol

σ Reflection coefficient 0.75 0.55 unitless

ω Solute mobility (temperature dependent calculated value) — Ps = ωR̄T

Cell and system Parameter Parameter Name Value Units

V Cell volume (individual islet cell) 970 μm3

Vb Osmotically inactive fraction of the cell 0.40 unitless

A Surface area of cell (assumed constant) 408 μm2

λ Tortuosity 1.44 unitless

D Diffusivity of CPA in water at 22 °C 1100 μm/s2

D Diffusivity of NaCl in water at 22 °C 1075 μm/s2

D ̄ Diffusivity of solute in tissue D̄= Dλ−2 μm/s2

Activation energy of diffusivity 5.46 kCal/mol

R Gas constant 0.0821 L atm K−1 mol−1

Fitting Parameters Parameter Name Units

δ Effective channel radius μm

Ac Surface area of cell in contact with other cells μm2

Ais Surface area of cell in contact with intracellular media μm2

Normalized surface area of cell in contact with intracellular media μm2

State Variables Variable Name Units

T Temperature K

S Intracellular moles of permeating solute mol

C Intracellular CPA Concentration mol/kg

K Intracellular salt concentration mol/kg

c Extracellular CPA Concentration mol/kg

k Extracellular salt concentration mol/kg

C̄ Mean CPA concentration mol/kg
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State Variables Variable Name Units

Js Solute mole flux mol/μm2/s

Jv Volume flux 6 μm/s

t Time s

R Radius of whole islet μm

r Radius from center of whole islet μm

Math Biosci. Author manuscript; available in PMC 2015 August 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Benson et al. Page 33

T
ab

le
 2

D
at

a 
fr

om
 th

e 
3×

3 
fa

ct
or

ia
l e

xp
er

im
en

t i
s 

sh
ow

n 
w

he
re

 w
ho

le
 is

le
ts

 w
er

e 
co

m
pa

re
d 

w
ith

 m
od

el
 p

re
di

ct
io

ns
 a

t t
hr

ee
 te

m
pr

ea
tu

re
s 

(7
 °

C
, 2

2 
°C

, 3
7 

°C
)

us
in

g 
th

re
e 

pe
rf

us
in

g 
so

lu
tio

ns
 (

D
M

SO
, E

G
, a

nd
 3

 ×
 P

B
S)

 a
nd

 th
re

e 
is

le
t s

iz
e 

gr
ou

ps
 (

<
80

 μ
m

, 8
0 

μm
 to

 1
10

 μ
m

, >
11

0 
μm

 r
ad

ii)
.

C
P

A
T

em
p.

 (
°C

)
ra

di
us

 (
μ

m
)

# 
of

 is
le

ts

in
it

ia
l r

ad
iu

s 
(μ

m
)

N
or

m
al

iz
ed

 A
is

co
ef

f.
 o

f 
de

t.

m
ea

n
S.

D
.

m
ea

n
S.

D
.

m
ea

n
S.

D
.

D
M

SO
37

<
 8

0
3

69
.9

8
7.

56
0.

34
0.

07
0.

77
0.

10

D
M

SO
37

80
 –

 1
10

4
95

.9
4

9.
85

0.
28

0.
13

0.
78

0.
10

D
M

SO
37

>
 1

10
3

12
0.

07
6.

49
0.

39
0.

14
0.

81
0.

16

E
G

37
<

 8
0

3
75

.5
8

14
.3

6
0.

34
0.

02
0.

88
0.

04

E
G

37
80

 –
 1

10
4

91
.7

4
3.

28
0.

20
0.

04
0.

90
0.

02

E
G

37
>

 1
10

3
12

1.
53

23
.7

2
0.

24
0.

11
0.

62
0.

27

PB
S

37
<

 8
0

3
70

.1
2

7.
81

0.
41

0.
31

0.
96

0.
03

PB
S

37
80

 –
 1

10
3

10
0.

79
8.

19
0.

50
0.

16
0.

99
0.

00

PB
S

37
>

 1
10

2
12

2.
80

9.
48

0.
48

0.
09

0.
96

0.
03

D
M

SO
22

<
 8

0
2

76
.6

4
6.

82
0.

22
0.

13
0.

76
0.

15

D
M

SO
22

80
 –

 1
10

3
92

.7
1

11
.0

3
0.

30
0.

12
0.

89
0.

03

D
M

SO
22

>
 1

10
3

12
3.

27
17

.9
7

0.
22

0.
14

0.
89

0.
12

E
G

22
<

 8
0

4
66

.5
4

2.
37

0.
59

0.
19

0.
82

0.
02

E
G

22
80

 –
 1

10
3

86
.5

8
10

.6
2

0.
42

0.
08

0.
85

0.
00

E
G

22
>

 1
10

2
11

1.
85

0.
78

0.
42

0.
22

0.
72

0.
04

PB
S

22
<

 8
0

8
56

.2
1

15
.3

1
1.

12
0.

87
0.

92
0.

05

PB
S

22
80

 –
 1

10
8

88
.7

8
10

.5
8

1.
01

0.
25

0.
96

0.
02

PB
S

22
>

 1
10

5
12

0.
80

10
.2

9
0.

43
0.

25
0.

97
0.

02

D
M

SO
8

<
 8

0
6

53
.4

8
14

.4
4

0.
48

0.
10

0.
86

0.
07

D
M

SO
8

80
 –

 1
10

5
93

.1
6

7.
16

0.
41

0.
01

0.
87

0.
07

D
M

SO
8

>
 1

10
4

12
5.

03
23

.6
7

0.
42

0.
05

0.
93

0.
04

E
G

8
<

 8
0

4
65

.1
3

14
.0

2
0.

45
0.

11
0.

80
0.

08

E
G

8
80

 –
 1

10
5

91
.2

1
8.

66
0.

42
0.

03
0.

88
0.

05

E
G

8
>

 1
10

4
11

7.
38

12
.4

0
0.

39
0.

01
0.

79
0.

07

PB
S

8
<

 8
0

10
59

.3
0

8.
36

1.
44

0.
56

0.
96

0.
02

Math Biosci. Author manuscript; available in PMC 2015 August 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Benson et al. Page 34

C
P

A
T

em
p.

 (
°C

)
ra

di
us

 (
μ

m
)

# 
of

 is
le

ts

in
it

ia
l r

ad
iu

s 
(μ

m
)

N
or

m
al

iz
ed

 A
is

co
ef

f.
 o

f 
de

t.

m
ea

n
S.

D
.

m
ea

n
S.

D
.

m
ea

n
S.

D
.

PB
S

8
80

 –
 1

10
9

88
.7

7
10

.6
1

1.
40

0.
37

0.
98

0.
01

PB
S

8
>

 1
10

6
12

1.
77

16
.1

0
0.

93
0.

29
0.

99
0.

01

M
ea

n
4.

41
92

.8
6

10
.8

1
0.

54
0.

18
0.

87
0.

06

St
. D

ev
2.

15
0.

34
0.

09

Math Biosci. Author manuscript; available in PMC 2015 August 01.


