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Abstract

Porcine reproductive and respiratory syndrome (PRRS) causes significant economic losses to the

swine industry worldwide. Although inactivated and live vaccines are commercially available for

the control of PRRS, both types of vaccine have not always proven successful in terms of

generating a protective immune response, particularly in the case of inactivated vaccines. In this

study, we tested whether an inactivated vaccine could induce a humoral immune response to

PRRS during a homologous challenge. Amino acid substitutions were introduced into

glycoprotein (GP) 5 of the FL12 strain of the PRRS virus (PRRSV) using site-directed

mutagenesis with a pFL12 infectious clone. The substitutions led to double deglycosylation in the

putative glycosylation moieties on GP5. The mutant virus was subsequently inactivated with

binary ethylenimine. The efficacy of the inactivated mutant virus was compared with that of the

inactivated wild-type PRRSV. Only the inactivated mutant PRRSV induced serum neutralizing

antibodies at six weeks post-vaccination. The group that was administered the inactivated mutant

virus twice exhibited a significantly increased neutralizing antibody titer after a challenge with the

virulent homologous strain and exhibited more rapid clearing of viremia compared to other

groups, including the groups that were administered either the inactivated mutant or wild-type

virus only once and the group that was administered the inactivated wild-type virus twice.

Histopathological examination of lung tissue sections revealed that the group that was

administered the inactivated mutant virus twice exhibited significantly thinner alveolar septa,

whereas the thickness of the alveolar septa of the other groups were markedly increased due to

lymphocyte infiltration. These results indicated that the deglycosylation of GP5 enhanced the

immunogenicity of the inactivated mutant PRRSV and that twice administrations of the

inactivated mutant virus conferred better protection against the homologous challenge. These
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findings suggest that the inactivated PRRSV that expresses a hypo-glycosylated GP5 is a potential

inactivated vaccine candidate and a valuable tool for controlling PRRS for the swine industry.
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1. Introduction

Porcine reproductive and respiratory syndrome (PRRS) is one of the most important

infectious diseases in pigs and is responsible for substantial economic losses in the swine

industry worldwide. The PRRS virus (PRRSV) causes severe reproductive failure in

pregnant sows and is associated with porcine respiratory disease complex (PRDC) in

combination with other viral and bacterial infections in young piglets [1–3]. To help control

outbreaks of PRRS, strategies, such as management, biosecurity and vaccination, have been

applied with various levels of success [4–6]. The control PRRS is complicated due to its

pattern of persistent, subclinical infections with occasional epidemic outbreaks, the great

heterogeneity of the virus and the poor antibody response that is insufficient to completely

block viral re-infection [7–10]. Although the current vaccines need to be improved, and new

vaccine technologies are required, vaccination is the most cost-effective and reliable strategy

that is currently available.

There are two types of commercially available PRRS vaccines. The first is a modified-live

virus (MLV) vaccine, and the second is an inactivated vaccine. The PRRS MLV vaccine is

well-recognized for its protective efficacy against PRRSV infection in the field, but this

vaccine has a limited efficacy against challenges with heterologous viruses. Additionally,

the PRRS MLV vaccine has an intrinsic risk for reversion to a virulent strain [4]. The PRRS

inactivated vaccine is much safer than the PRRS MLV vaccine. However, this advantage of

the inactivated vaccine is diminished by its insufficient immunogenicity. The commercially

available PRRS inactivated vaccine does not induce a sufficient immune response and does

not adequately protect pigs from viremia when challenged with PRRSVs [11–13]. Although

previous studies have shown that PRRS inactivated vaccines are able to inhibit viral

shedding and induce neutralizing antibodies, these results vary depending on the virus strain

and the type of tissue culture used to produce the vaccines [11,14]. Numerous efforts have

been made to develop an ideal PRRS inactivated vaccine that would offer broad protection

and high immunogenicity [15,16], but these efforts have been unsuccessful.

Previous studies have determined that the neutralizing epitopes are located in the structural

proteins, including glycoprotein (GP) 3, GP4, GP5 and the non-glycosylated membrane

protein (M) [17–19]. Among these, the neutralizing epitopes in GP5 induce the primary

neutralizing antibodies [20–23]. GP5 is encoded by open reading frame (ORF) 5 of the

PRRSV viral genome and is the major envelope glycoprotein of PRRSV. GP5 has been

suggested to be involved in the viral entry and assembly of PRRSV [24]. A small

ectodomain located on the N-terminus of GP5 plays an important role in the attachment of

PRRSV to the macrophage-specific receptor [24,25]. Two epitopes located in this

ectodomain have previously been identified and characterized, based on their neutralizing
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capabilities, as a decoy epitope and a major neutralizing epitope [22]. The delayed

production of neutralizing antibodies to GP5 is a characteristic of the immune response to

PRRSV and is caused by the rapid induction of non-neutralizing antibodies against the

decoy epitope [24,26]. PRRSV-specific non-neutralizing antibodies have been detected at

one week post-inoculation (PI), while neutralizing antibodies have been observed to appear

from three weeks PI [27–29].

The GP5 of PRRSV has two to five potential N-linked glycosylation sites located in the

ectodomain, and the presence of glycans around the major neutralizing epitopes has been

suggested to reduce the immunogenicity of PRRSV [30]. It has been reported that glycan

shielding on PRRSV GPs interferes with the neutralizing antibody response [31–34].

Previous studies have also demonstrated that weak neutralizing antibody responses are

obtained in the presence of glycans on the GPs of other viruses, such as lactate

dehydrogenase-elevating virus, hepatitis B virus, human immunodeficiency virus and

influenza virus [35–38].

In previous studies, multiple mutants of PRRSV containing various combinations of

deglycosylations on GP5 have been produced using reverse genetics [31,33,39,40]. Among

these mutants, the mutant virus containing a double deglycosylation of N34 and N51 of GP5

shows decreased viral replication but induces a higher level of neutralizing antibodies in in

vivo experiments compared to its parental strain of PRRSV [31]. In this study, we attempted

to develop an inactivated PRRSV vaccine using this mutant strain of PRRSV, which

contains a double deglycosylation of GP5 and evaluated the efficacy of this vaccine using a

challenge infection with a homologous strain of PRRSV.

2. Materials and methods

2.1. cDNA clone, cells and viruses

A full-length PRRSV infectious cDNA clone (pFL12) generated from the North American

type II PRRSV isolate was used to construct a mutant plasmid carrying mutations in the

putative N-glycosylation sites by site-directed mutagenesis as previously described [41]. To

produce wild-type (wt) and mutant viruses, the pFL12 and mutant plasmids were linearized

by digestion with AclI and transcribed in vitro using the mMESSAGE mMACHINE Ultra

T7 kit (Ambion, Austin, TX). The produced RNAs were electroporated into the MARC-145

cell lines, cultured in low-glucose Dulbecco's Modified Eagle's Medium (DMEM) and

supplemented with 10% fetal bovine serum (FBS) [42] All of the rescued wt and mutant

viruses were subjected to RT-PCR amplification using appropriate primers, and the PCR

fragments were subjected to DNA sequencing to confirm the presence of the desired

mutations and the absence of unwanted mutations. The N-glycosylation profiles of the GP5

for the wt and deglycosylated mutant viruses were confirmed by western blotting. The

viruses were treated for 16 h at 37 °C with the 10 U peptide N-glycosidase F (PNGaseF)

according to the manufacturer's instructions (NEB, Beverly, MA). Subsequently, the

proteins were separated by 12% SDS-polyacrylamide gel electrophoresis and transferred

onto a nitrocellulose membrane (GE Healthcare, Milwaukee, WI). The membrane was

blocked with 5% skim milk in phosphate-buffered saline-Tween 20 and incubated with

porcine serum containing a high level of PRRSV-specific primary antibody and horseradish
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peroxidase-conjugated goat anti-porcine IgG (Southern Biotech, Birmingham, AL)

secondary antibody. The blots were imaged using Amersham ECL Prime Western Blotting

Detection Reagent (GE Healthcare).

2.2. Production of inactivated PRRSV vaccines

Both wt FL12 and the mutant virus FL12/GP5DM containing double-amino acid

substitutions at the 34 and 51 potential N-glycosylation residues in GP5 [31] were used to

produce the inactivated vaccines used in this study.

Both the wt and mutant viruses were concentrated at 108 TCID50/ml and inactivated with

binary ethylenimine (BEI) as described previously [43]. Briefly, BEI was prepared as a 0.1

M stock solution by stirring 0.1 M 2-bromoethylamine hydrobromide (Sigma-Aldrich, St.

Louis, MO) in 0.175 M NaOH at 37 °C for 1 h. The BEI stock solution was added to the

virus suspension, and the mixture was incubated at 37 °C for 24 h. The remaining BEI was

subsequently neutralized with 0.1 mM sodium thiosulfate (Sigma-Aldrich) for 2 h. To

confirm the inactivation of the virus, MARC-145 cells were inoculated with BEI-treated

virus suspension and cultured at 37°C for five days. A total of 1 ml of inactivated viral

antigen containing 108 TCID50/ml of the BEI-inactivated PRRSV was mixed with an equal

volume of Montanide™ IMS1313 VG adjuvant (SEPPIC, Paris, France). The aqueous

adjuvant was suitable for inactivated and live vaccines in pigs [44,45].

2.3. Evaluation of the efficacy of the inactivated PRRSV vaccine

The experimental design involving the inactivated PRRSV vaccination and the challenge is

summarized in Table 1. Fifteen three-week old piglets were purchased from a PRRS-free

farm and confirmed to be serologically PRRSV-negative. The piglets were randomly

allocated into five groups (G1 to G5). The piglets in G1 and G2 were intramuscularly

administered inactivated wt virus vaccine, and the piglets in G3 and G4 were

intramuscularly administered inactivated mutant virus vaccine. The G5 piglets were injected

with DMEM alone as a control. Three weeks after the primary vaccination, the piglets in G2

and G4 were boost-vaccinated using the same vaccines they had received earlier. Serum

samples were collected at 14, 28, 42, 49 and 56 days post-vaccination and stored in −20 °C.

Five weeks after the booster vaccination, all of the groups were intramuscularly challenged

with 105 TCID50/ml of wt virus. Serum samples were collected at 2, 3, 4, 7, 8, 9 and 13 days

after the challenge. The collected sera were examined for viremia via immunofluorescence

assay in MARC-145 cells. Twenty-one days after the challenge, the pigs were humanely

euthanized according to the guidelines of the Institutional Animal Care and Use Committee

of Konkuk University.

2.4. Serum neutralizing assay

The serum neutralizing (SN) assay was conducted in 96-well plates that contained confluent

MARC-145 cells that had been seeded 48 h before the experiment. Equal volumes of two-

fold serially diluted serum samples were mixed with 50 μl of 100 TCID50 of the wt virus

and incubated at 37 °C for 1 h. The mixture was applied to a monolayer of MARC-145 cells

and incubated at 37 °C for two days. The cells were fixed and stained with nucleocapsid (N)

protein-specific SDOW17, which was followed by incubation with anti-mouse Alexa Fluor
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488 conjugate (Life Technologies, US). The SN antibody titers are expressed as the

reciprocal of the highest dilution that exhibited a 90% or greater reduction in the number of

fluorescent foci present in the control wells.

2.5. Histopathological examination

The cranial lobes of the lungs were collected from all euthanized animals in postmortem

procedures and fixed in 10% neutral buffered formalin. The fixed tissues were processed for

histopathological examination. The severities of the histopathological lesions were

compared by measuring the thicknesses of the alveolar septa. Fifty hematoxylin and eosin-

stained sections were randomly selected from each pig, and each section was viewed at 200-

fold magnification. The thicknesses of the alveolar septa were analyzed with ImageJ

software. The septal thicknesses of at least 50 alveoli per each section were measured by

drawing straight lines across the entire widths of the septa. At least three sections from each

pig were used, and the average septal thickness was then calculated for each group.

2.6. Statistical analyses

The SN antibody levels, viremia and microscopic lung lesions were analyzed for significant

differences between groups using Mann–Whitney U tests and Student t-tests that were

performed with SPSS 19 (SPSS, Chicago, IL). A P value less than 0.05 was considered

statistically significant.

3. Results

3.1. Development of the deglycosylated mutant virus and inactivated vaccines

After genetically engineering the infectious clone pFL12, mutations at the amino acidsites

34 and 51 in GP5 were confirmed by sequencing. The wt virus and the mutant containing

thedouble deglycosylation on GP5 were successfully rescued from the transfected

MARC-145 cells (Fig. S1A). Western blotting revealed that the migration of the GP5 from

the wt virus indicated a mass of 25 kDa, whereas the migration of the GP5 from the mutant

virus indicated a smaller size (20.5 kDa) that nearly overlapped with that of the M envelope

protein. The treatment of the viruses with PNGaseF reduced the sizes of the GP5s to 17 kDa

in both viruses (Fig. S1B). After treatment with BEI, both the wt and mutant viruses did not

induce any detectable cytopathological effects in the MARC-145 cell monolayers over five

days; these results were confirmed by observation under the microscope and by

immunofluorescence staining with the N-specific SDOW17 antibody (data not shown).

3.2. Immune responses of the inactivated vaccines

To determine whether the inactivated PRRSV vaccine containing the mutant virus elicited a

humoral immune response, the piglets were inoculated with the vaccine, and the vaccine's

immunogenicity was assessed. Interestingly, SN antibodies were observed at six weeks post-

vaccination only in the groups that were inoculated with an inactivated mutant virus (i.e., G3

and G4) (Fig. 1). However, the SN antibodies did not persist for long and were not

detectable at eight weeks post-vaccination (Fig. 1). The SN antibody titer of the group that

was vaccinated twice with the inactivated mutant virus (G4) was much higher and was

maintained for a longer period compared to that of the group that received only the primary
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vaccination (G3). SN antibodies were not observed in either the group that was vaccinated

with the inactivated wt virus (G1 and G2) or the control group (G5).

3.3. Efficacy of the inactivated vaccines

Five weeks after the boost vaccination, all groups were challenged with the wt virus, and

viremia and SN antibody titers were evaluated. The SN antibodies of the group that was

vaccinated twice with the inactivated mutant virus (G4) was re-evaluated at four days post-

challenge, reached a titer of 1:16 at eight days post-challenge and maintained that level until

the end of experiment (Fig. 1). SN antibodies were also detected 10 days post-challenge in

the group that was vaccinated twice with the inactivated wt virus (G2), and these antibodies

reached a titer of 1:8 at 13 days post-challenge. PRRSV-specific SN antibodies were not

detected in the serum samples from the G1, G3 and G5 piglets at any point in the

experimental challenge period.

Viremia was evident in the four challenged groups (G1–G3, G5) at two dayspost-challenge,

and the G4 piglets exhibited a delayed-onset viremia at three days post-challenge (Fig. 2).

Although the viremia gradually increased and peaked at five days post-challenge in all of the

challenged groups, the magnitude and duration of the viremia in G4 was significantly lower

and shorter than those of other groups. As shown in Fig. 2, the viremia of G4 rapidly

decreased and was undetectable at eight days post-challenge. However, the viremia in the

other groups lasted longer and decreased more gradually until 13 days post-challenge.

The efficacy of the vaccine was investigated using challenge inoculations with a

homologous strain. The piglets that were inoculated with the wt virus exhibited moderate

sneezing and lachrymal discharge. The body weights and rectal temperatures of the piglets

were not significantly different across groups (data not shown). During necropsy, moderate

pneumonic lesions, including severe edema in the lungs and enlargement of the

tracheobronchial lymph nodes, were observed in nearly all of the challenged piglets with the

exception of the G4 piglets (data not shown). Histopathological examination revealed that

all of the piglets in the four groups (G1–G3, G5) exhibited moderate interstitial pneumonia,

significant increases in the thickness of the alveolar septa and lymphocyte infiltrations; in

contrast, the G4 piglets exhibited mild pneumonia, average alveolar septa of 15 μm and

minimal infiltration (Fig. 3).

4. Discussion

In this study, a mutant virus strain of PRRSV, FL12/GP5DM that possesses deglycosylated

GP5 was created and used to produce an inactivated vaccine. The viruses used to develop

inactivated vaccines were produced using reverse genetics as described in a previous study

[31]. The rescued mutant virus exhibited slightly delayed growth properties compared to the

wt virus (data not shown). Consistent with our results, many mutant viruses have been found

to exhibit reduced viral titers compared with the wt viruses in previous studies [31,46,47]. In

in vivo experiments, the inactivated PRRSV vaccine based on the mutant virus induced a

higher SN antibody titer and resulted in faster clearing of viremia compared to the

inactivated PRRSV vaccine that was based on the wt virus. Moreover, histopathological

examinations revealed that the symptoms of interstitial pneumonia were remarkably reduced

Lee et al. Page 6

Vaccine. Author manuscript; available in PMC 2014 September 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



in the group that was vaccinated with the inactivated mutant virus. While microscopic

observation revealed obvious lymphocyte infiltration and interstitial pneumonia in all other

groups, the markedly thin alveolar septa and lack of or minimal infiltration in G4 clearly

indicated that the inactivated vaccine prepared with the mutant virus effectively protected

the piglets from a homologous challenge infection.

A possible explanation for this effect of the hypo-glycosylated PRRSV has been provided in

previous studies; this explanation postulates that the deglycosylation of GP3 and/or GP5

enhances the immunogenicity of a live virus despite decreasing the replication of the mutant

viruses to some extent [31,33,34,39,40]. These results revealed that the removal of glycans

from either GP3 or GP5 might expose hidden neutralizing epitope(s) and can improve SN

antibody responses. The present study demonstrated that the deglycosylation of GP5 also

successfully improved the immunogenicity of an inactivated virus that was incapable of

viral replication and endogenous viral protein synthesis to a level similar to that of a live

virus. In previous studies, enhanced developments of SN antibodies have not always been

associated with blocking viremia [48,49]. However, Osorio et al. [50] previously

demonstrated that the SN antibody response is relatively correlated with protective

immunity in PRRSV infection, particularly regarding the clearance of viremia; our results

are in agreement with their findings [50].

Inactivated PRRSV vaccines are well-known to induce insufficient protective immune

responses against both homologous and heterologous PRRSV challenges [12,51]. In this

study, an inactivated mutant virus vaccine elicited a considerable increase in the level of SN

antibodies following vaccination, whereas the inactivated wt virus vaccine did not induce

SN antibodies prior to the challenge (Fig. 1). As the extent of our knowledge, this is the first

report to show that a single intramuscular administration of inactivated PRRSV vaccine can

induce detectable humoral immune responses. Although both G3 and G4 exhibited SN

antibody induction following vaccination, only G4 received a boost vaccination, which re-

induced high levels of SN antibodies following the challenge. After the challenge with the

wt virus, a PRRSV-specific SN antibody response was evident in the G4 piglets. The SN

antibody titer had quickly increased again by four days post-challenge and was maintained

at a titer of 1:16 until the end of the experiment. These results indicate that a boost

vaccination of the inactivated PRRSV vaccine is necessary to induce a sufficient humoral

immune response. In a previous study that utilized a commercially inactivated vaccine, a

clear anamnestic humoral immune response was observed following a heterologous

challenge with wt virus, but this response was much slower and weaker than that observed

in G4 [13]. Compared to the unvaccinated pigs, the G4 piglets exhibited a significantly

delayed onset of viremia and subsequently rapidly cleared the viremia; these results are

consistent with those of previous studies [12,52]. The inactivated vaccine containing the

FL12/GP5DM strain was able to induce an SN antibody response after a single

intramuscular administration and significantly reduced lung pathology, whereas the

inactivated vaccine used in a previous study failed to induce an efficacious humoral immune

response [13]. Although our observations are, on the one hand, in agreement with findings

of the authors of this previous study that an inactivated vaccine can induce a humoral

immune response after a challenge, on the other hand, these authors postulated that the post-

challenge anamnestic response comprised of PRRSV-specific SN antibodies was not
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sufficient to provide humoral immunity based on the viremia and viral loads these authors

detected in the tissues during the post-challenge period. However, a direct comparison

between these two findings is not relevant because we used a tissue culture method to detect

viable viruses, and the authors of the other study used quantitative PCR to detect the

presence of any viral RNA. Furthermore, we did not observe anamnestic responses in the

groups that were inoculated once (G1 and G3), which contrasts with the previous findings;

however, we did observe this response in the groups that were inoculated twice. It is also not

appropriate to conclude that the co-existence of SN antibodies and viral RNA constitutes

evidence of ineffective protection unless other parameters of protective efficacy, such as

clinical outcome, lung pathology and cell-mediated immunity, are considered. Nonetheless,

our findings indicated that the inactivated vaccine is capable of inducing a sustained SN

antibody response following the vaccination and enhancing the memory response after the

challenge when the inactivated vaccine is suitably formulated with a benign

immunostimulating adjuvant and applied according to proper vaccination regimen. These

results suggest that the inactivated vaccine we produced with a mutant virus that possesses a

hypo-glycosylated GP5 may be a promising alternative PRRSV vaccine that is capable of

inducing humoral immune responses that are comparable to those induced by MLV in the

field; this alternative vaccine may be particularly useful in areas and countries in which the

use of the live virus vaccine is not feasible.

It has been speculated that the efficacy of an inactivated vaccine is potentiallydetermined by

the inactivation agent and/or the adjuvant [52–54]. In this study, the BEI-inactivated vaccine

successfully induced the SN antibody response and partially inhibited viremia. These results

are consistent with the results of the previous study that used a BEI-inactivated vaccine [52].

In this previous study, BEI was used as an inactivating reagent instead of formaldehyde,

which is generally the most widely used reagent in such cases. The inactivating reagent and

method may affect the efficacies of inactivated vaccines and should be strongly considered

during the development of inactivated vaccines. BEI was used to inactivate the virus due to

its specific effects on the viral genome that do not damage the viral epitopes [55]. In a

previous study, BEI was found to have a minimal slight effect on the epitopes, whereas

formaldehyde substantially alters the conformations of the epitopes [56]. BEI is the most

promising of the methods of inactivating PRRSV, which include the following: gamma

irradiation, formaldehyde, UV modification, and pH modification. BEI has successfully

been used to inactivate PRRSV in previous studies [52,57,58]. In these previous studies,

inactivated PRRSV vaccine induced effective immune responses after single intranasal

administrations [53,54]. However, the intranasal vaccine delivery route requires an

additional vaccine spray machine and has to be performed by well-trained staff. Currently,

vaccines that can be administered via the intramuscular route and are composed of an oil

adjuvant and inactivated with BEI are the most popular type of inactivated vaccine with the

pig industry [52].

In summary, the double amino acid substitutions at the N-glycosylated sites near the major

neutralizing epitope in GP5 remarkably increased the immunogenicity of PRRSV,

particularly in terms of the SN antibody response, and rapidly reduced the viral loads in the

sera. The mutant virus FL12/GP5DM was able to act as an inactivated vaccine candidate
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against PRRSV. Although a single administration of the inactivated PRRSV vaccine based

on the mutant virus induced a humoral immune response, a boost administration is

recommended to ensure efficacy. A variety of additional adjuvants that may improve the

immune response to KV vaccines should be considered in further studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. PRRSV-specific SN antibody titers following vaccination and challenge
Piglets were injected once with wt virus (G1), twice with wt virus (G2), once with mutant

virus (G3), twice with mutant virus (G4), or sterile media (G5). The levels of serum

neutralizingantibodies against PRRSV were measured using the wt virus and MARC-145.

Asterisks indicate significant differences (P < 0.05) compared to the control group (G5).
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Fig. 2. Viremia in the sera following challenge
The piglets were challenged following vaccination, and viremia was measured at different

times. The piglets were injected once with wt virus (G1), twice with wt virus (G2), once

with mutant virus (G3), twice with mutant virus (G4), or sterile media (G5). Asterisks

indicate significant differences (P < 0.05) compared to the control group (G5).
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Fig. 3. Histopathological examination
The graph depicts the thicknesses of the alveolar septa (A), and the photomicrographs (B)

show hematoxylin and eosin-stained sections of the cranial lobes of the lungs following the

in vivo experiments. The piglets were injected once with wt virus (G1, a), twice with wt

virus (G2, b), once with mutant virus (G3, c), twice with mutant virus (G4, d), or sterile

media (G5, e). Asterisks indicate significant differences (P < 0.05) between the indicated

pairs of groups. The arrows indicate the localized regions of severe interstitial pneumonia

and thickened alveolar septa. Magnification: ×200.
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Table 1

In vivo experimental design.

Groups Number of piglets Vaccination (inactivated virus vaccines) Challenge virus (FL12)

1st 2nd

G1 3 + (FL12) – +

G2 3 + (FL12) + (FL12) +

G3 3 + (FL12/GP5DM) – +

G4 3 + (FL12/GP5DM) + (FL12/GP5DM) +

G5 3 – – +
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