
A Class-Information-Based Penalized Matrix
Decomposition for Identifying Plants Core Genes
Responding to Abiotic Stresses
Jin-Xing Liu1,4*, Jian Liu2, Ying-Lian Gao3, Jian-Xun Mi5,6, Chun-Xia Ma1, Dong Wang1

1 School of Information Science and Engineering, Qufu Normal University, Rizhao, Shandong, China, 2 School of Communication, Qufu Normal University, Rizhao,

Shandong, China, 3 Library of Qufu Normal University, Qufu Normal University, Rizhao, Shandong, China, 4 Bio-Computing Research Center, Shenzhen Graduate School,

Harbin Institute of Technology, Shenzhen, Guangdong, China, 5 College of Computer Science and Technology, Chongqing University of Posts and Telecommunications,

Chongqing, China, 6 Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China

Abstract

In terms of making genes expression data more interpretable and comprehensible, there exists a significant superiority on
sparse methods. Many sparse methods, such as penalized matrix decomposition (PMD) and sparse principal component
analysis (SPCA), have been applied to extract plants core genes. Supervised algorithms, especially the support vector
machine-recursive feature elimination (SVM-RFE) method, always have good performance in gene selection. In this paper,
we draw into class information via the total scatter matrix and put forward a class-information-based penalized matrix
decomposition (CIPMD) method to improve the gene identification performance of PMD-based method. Firstly, the total
scatter matrix is obtained based on different samples of the gene expression data. Secondly, a new data matrix is
constructed by decomposing the total scatter matrix. Thirdly, the new data matrix is decomposed by PMD to obtain the
sparse eigensamples. Finally, the core genes are identified according to the nonzero entries in eigensamples. The results on
simulation data show that CIPMD method can reach higher identification accuracies than the conventional gene
identification methods. Moreover, the results on real gene expression data demonstrate that CIPMD method can identify
more core genes closely related to the abiotic stresses than the other methods.
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Introduction

The changing environmental conditions have a significant

impact on the survival and growth of plants. A series of various

abiotic stresses can bring about the overproduction of reactive

oxygen species in plants, which may damage carbohydrates,

proteins, lipids and DNA resulting in oxidative stress [1]. In order

to cope with these abiotic stresses, including cold, drought, heat,

osmotic press, salt, UV-B light stresses, etc., plants have their own

defense mechanisms to adapt the complex and changeful

environment [2,3]. In other words, a particular set of interacting

plants genes which are always called core genes exist in responding

to each abiotic stress. Hence, how to extract these core genes is

becoming a very meaningful issue in plant science.

With the development of science and technology, the emer-

gence of gene microarray technology [4,5] makes it possible for

researchers to monitor gene expression levels on a genomic scale

[6,7]. This not only brings us more opportunities but also more

challenges to study the gene expression data. Although the DNA

microarray technology allows researchers to measure the expres-

sion levels of thousands (even more than 10,000) of genes in an

experiment simultaneously, the gene expression data also have the

problem: the characteristic genes which biologists are interested in

occupy a very small part of the whole genes. It is difficult for us to

catch the small but important part of the whole genes due to the

complexity and multidimensionality of the gene expression data.

Therefore, it becomes an urgent issue how to identify the

characteristic genes from gene expression data in an effective way.

Among a variety of methods, feature selection is demonstrated

to be a simple and effective method. To obtain the features of gene

expression data, feature selection methods firstly calculate a score

for each feature, then choose the features which gain high scores

[8]. These methods can achieve a satisfactory performance and

have a significant superiority on explaining the gene expression

data more intuitive. But there exists a shortcoming that feature

selection methods neglect the dependencies among features since

they only calculate the score for each feature respectively. The

appearance of feature extraction methods can overcome the

shortcoming in an effective way [9]. As a tool to reduce the

dimension, feature extraction methods take all the gene expression

information simultaneously into consideration to extract the genes

instead of feature selection methods. Until now, singular value
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decomposition (SVD) and principal component analysis (PCA) are

commonly used methods of feature extraction. For example

Kumar et al. applied SVD on Tuberculosis and Hypertension

datasets to mine association in health care data [10]. Aradhya et

al. used SVD for biclustering gene expression data [11]. PCA was

used to cluster gene expression data by Yeung et al. [12]. PCA was

used to select genes for microarray data analysis by Wang et al.

[13]. Ma et al. applied PCA for identifying differential gene

pathways [14].

Although SVD and PCA have already been used to analyze the

gene expression data successfully, they still have some defects. For

instance, SVD’s left singular vectors and right singular vectors are

always dense. In the same way, this drawback exists in the

principal components (PCs) of PCA. Thus, it is difficult to explain

these singular vectors and PCs objectively. Researchers have

proposed a variety of mathematical methods to reduce the

complexity of the data and make them more intelligible and

interpretable. For example Liu et al. proposed robust PCA for

discovering differentially expressed genes [15]. Wang et al. used

non-negative matrix factorization (NMF) on cancer clustering

[16]. Among these methods, sparse methods have distinct

advantages and catch the attention of more and more people.

Until now, a large number of sparse methods were proposed. For

instance, Wang et al. raised robust sparse PCA (SPCA) by using

weighted elastic net [17]. A sparse PCA via low-rank approxima-

tions was proposed by Papailiopoulos et al. [18]. Witten et al.

proposed a penalized matrix decomposition [19], which was used

for differential expression analysis [20,21]. In addition, many

sparse methods have already been chosen to deal with the gene

expression data. Liu et al. used the first principal component (PC)

of SPCA for extracting plants core genes [22]. Yin et al. identified

differential gene pathways with SPCA [23]. Zheng et al.

discovered molecular pattern [24] based on PMD.

The sparse methods mentioned above were proverbially applied

on gene expression data analysis and have made many remarkable

achievements. But these methods are usually unsupervised while

the category label of each sample in gene expression data has been

already known. That is, the class information is neglected by these

sparse methods when processing gene expression data. For

example PMD was used to extract plants core genes by Liu et

al. [20]. However, the category labels of samples are quite

important for gene identification that many excellent gene

selection algorithms were achieved by using the class information.

For instance Guyon et al. proposed the Support Vector Machine-

Recursive Feature Elimination (SVM-RFE) method to select genes

for cancer classification [25]. SVM-RFE is a classic gene selection

algorithm that it eliminate genes one by one by using Recursive

Feature Elimination (RFE) and achieve a very good performance.

Many extensions on SVM-RFE algorithm were proposed by

scholars. Tang et al. developed a new two-stage SVM-RFE

algorithm to gene selection for microarray expression data analysis

[26]. Ding et al. improved the computational performance of

SVM-RFE by eliminating chunks of features at a time with little

effect on the quality of reduced feature set [27]. Since SVM-RFE

was designed to handle the binary feature selection problems, it is

not suitable for multiclass feature selection problems. In order to

solve this issue, Zhou et al. proposed a family of four extensions to

SVM-RFE to solve these problems [28]. Duan et al. computed the

feature ranking score from a statistical analysis of weight vectors of

multiple linear SVMs trained on subsamples of the original

training data at each step [29].

Therefore, we bring in the class information by the total scatter

matrix and put forward a novel method to improve the

performance of PMD-based gene extraction method for identify-

ing plants core genes responding to abiotic stresses. We called it a

Class-Information-based Penalized Matrix Decomposition

(CIPMD). The scheme of CIPMD is as follows. Firstly, the total

scatter matrix is obtained based on samples of the gene expression

data. Secondly, we decompose the total scatter matrix by using

SVD, and construct a new data matrix via multiplying the left

singular vectors by the singular values. Thirdly, the new data

matrix is decomposed to get the sparse eigensamples by PMD.

Finally, the core genes are identified according to the nonzero

entries in eigensamples.

Our main contributions of this paper are as follows. On one

hand, it is the first time that it puts forward the CIPMD method

via integrating the class information into penalized matrix

decomposition. On the other hand, to identify plants core genes

responding to abiotic stresses, it provides plenty of experiments on

simulation and real gene expression data.

The remainder of the paper is organized as follows. Section 2

describes the methodology of CIPMD. Section 3 presents the

numerical experiments and discusses the results. The conclusion is

shown in Section 4.

Methodology

In this section, the class-information-based penalized matrix

decomposition (CIPMD) method is introduced. Then, it is used to

identify the core genes responding to the abiotic stresses.

2.1 The definition of CIPMD
In this subsection, we take the class information of samples into

account and propose the CIPMD method to gain a better

performance than PMD. At first, we bring in the class information

via the total scatter matrix St. Then, a new data matrix is

constructed by decomposing St. Finally, the new data matrix is

decomposed by PMD. The following is our specific idea.

2.1.1 The definition of scatter matrices. There exist many

samples which contain different class labels in gene expression

data. We take advantage of the class labels of samples via the total

scatter matrix. For all the samples of all classes, we define three

measures from the mathematical point of view. The first measure

is named as a between-class scatter matrix (Sb) that is written as

follows:

Sb~
Xc

j~1

Nj mj{m
� �

mj{m
� �T

, ð1Þ

where

c: the number of classes;

Nj : the number of samples in class j;

mj : the average value of class j;

m: the average value of all classes.

The second measure is named as a within-class scatter matrix

(Sw) that is defined by

Sw~
Xc

j~1

XNj

i~1

x
j
i{mj

� �
x

j
i{mj

� �T

, ð2Þ

where x
j
i represents the i-th sample of class j.

The third measure is named as the total scatter matrix (St)

which is defined based on Sb and Sw. In order to minimize the

within-class distance and maximize the between-class distance, the

formula of St is given as follows:

Class-Information-Based Sparse Method for Identifying Core Genes
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St~Sb{gSw, ð3Þ

where g§0 represents an adjustable parameter and gives a

compromise between Sb and Sw.

The between-class and the within-class distances can be

calculated by the trace of corresponding scatter matrices. In

detail, the formulas are as follows:

trace Sbð Þ~trace
Xc

j~1

Nj mj{m
� �

mj{m
� �T

" #

~lb1zlb2z � � �zlbk,

ð4Þ

trace Swð Þ~trace
Xc

j~1

XNj

i~1

x
j
i{mj

� �
x

j
i{mj

� �T

2
4

3
5

~lw1zlw2z � � �zlwk:

ð5Þ

In the two formulas above, the separation of the samples

between classes can be measured by the trace Sbð Þ while the

closeness of the samples within classes can be measured by the

trace Swð Þ. The parameter g in eq. (3) is defined by [30]

g~
trace Sbð Þ
trace Swð Þ : ð6Þ

Figure 1. The graphical depiction of CIPMD. In this figure, the matrix F is decomposed into two bases matrices U, V and a diagonal matrix D.
doi:10.1371/journal.pone.0106097.g001

Figure 2. Accuracies of the CIPMD on simulation data set with different values of m.
doi:10.1371/journal.pone.0106097.g002
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2.1.2 Constructing the new data matrix F. Due to the

total scatter matrix St should be processed by PMD in a

convenient way, so St is preprocessed by matrix decomposition

methods.

Firstly, the total scatter matrix St is decomposed by SVD, which

can be written as follows:

St~WDHT , ð7Þ

where W and H are orthogonal matrices, D~diag d1,d2, � � � ,dnð Þ
is the diagonal matrix which contains singular values, n is the rank

of the total scatter matrix St.

Secondly, a new data matrix F is constructed by

F~WDm, ð8Þ

where m is the power of D. The suitable value of m can be

determined in Subsection 3.1.2 by using the simulation data.

Finally, the new data matrix F is decomposed by PMD.

In this way, the total scatter matrix St which contains large

amounts of complex data is converted to the new data matrix F
which is simple and easy to be processed.

2.1.3 Penalized matrix decomposition (PMD). In this

subsection, we briefly introduce the PMD method proposed by

Witten et al. [19]. Gene expression data always consist of p genes

in n samples, in general, pwwn. According to subsection 2.1.1

and subsection 2.1.2, the new data matrix F is obtained by

calculating the original gene expression data. Therefore, we

denote the gene expression data by the matrix F with size p|n.

Without loss of generality, we let the row mean of F be zero. The

matrix F can be decomposed by SVD as follows:

F~UDVT , ð9Þ

where U is a p|r orthogonal matrix, V is an n|r orthogonal

matrix and D is a diagonal matrix. PMD can generalize this

decomposition by imposing constraints on U and/or V. PMD can

be represented as the following optimization problem:

Figure 3. Accuracies of the four methods on simulation data with different paramaters in the case of two-class.
doi:10.1371/journal.pone.0106097.g003
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min
d,u,v

1

2
F{UDVT
�� ��2

F
~

1

2
Fk k2

F {
Xr

k~1

uT
k Fvkdkz

1

2

Xr

k~1

d2
k

s:t: uk k2
2~1, vk k2

2~1, P1 uð Þƒa1, P2 vð Þƒa2, d§0,

ð10Þ

where

uk: the column k of U;

vk: the column k of V;

dk: the k-th diagonal element of D;

.k kF : the Frobenius norm;

P1 and P2: convex penalty functions that can adopt a various of

forms [19].

When r~1, u and v satisfying eq.(10) can also satisfy the

optimization problem as follows [19]:

max
u,v

uT Fv

s:t: uk k2
2ƒ1, vk k2

2ƒ1, P1 uð Þƒa1, P2 vð Þƒa2,

ð11Þ

and the d satisfying eq.(10) is d/uT Fv. The objection function

uT Fv in eq.(11) is bilinear on u and v, that is to say, when u fixed, it

is linear in v, and vice versa. By choosing the appropriate a1 and

a2, the solution to eq.(11) which is named as rank-one PMD

satisfies eq.(10) [19].

Figure 4. Accuracies of these methods on simulation data with different paramaters in the case of multi-class.
doi:10.1371/journal.pone.0106097.g004

Table 1. The number of each stress types in the raw data.

Stress Type control cold drought heat osmotic salt UV-B

Number 8 6 7 8 6 6 7

doi:10.1371/journal.pone.0106097.t001
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The iterative algorithm for rank-one PMD is summarized as

follows:

Step1. Initialize v to have unit L2-norm.

Step2. Iterate until convergence:

(a) u/ arg maxuuT Fv,s:t: uk k2
2ƒ1,P1(u)ƒa1:

(b) v/ arg maxvuT Fv,s:t: vk k2
2ƒ1,P2(v)ƒa2:

Step3. d/uT Fv:
In order to obtain the rank-r PMD, each time we use the

residuals obtained by subtracting duvT from F to maximize the

eq.(11) repeatedly, i.e., Fkz1/Fk{dkukvT
k . The specific algo-

rithm of rank-r PMD can be found in [19]. In this research, we

only impose the penalty on u, i.e. P1 uð Þƒa1, and do not consider

v since core genes are identified according to u. PMD can produce

sparse vectors u by choosing a suitable parameters a1.

2.2 Identifying core genes by CIPMD
The gene expression data are stocked as the matrix F with size

p|n, in which each row of F represents the transcriptional

responses of a gene in all n samples and each column of F
represents the expression level of a sample in all p genes.

According to subsection 2.1.3, the matrix F is decomposed into

three matrices U, V and D by PMD. The graphical depiction of

CIPMD is shown in Figure 1. Following the convention in [31],

we define vkf g (columns of V) as eigenpatterns, ukf g (columns of

U) as eigensamples and rif g (rows of U) as eigengenes. As Figure 1

shows, the space of sample expression profiles sj (a column of F) is

spanned by U and the space of gene transcriptional responses ri (a

row of F) is spanned by V.

Our goal is to identify the core genes from the gene expression

data. Generally speaking, due to the complexity of F, it is difficult

to identify the core genes from F directly. So we must take

measures to reduce the dimensionality of the gene expression data.

As mentioned above, the space of sample expression profiles sj is

spanned by U and uk is a column of U, so we can select a subset of

uk to represent F. Then the eigengenes are identified from the

eigensamples which have the features of gene expression data.

These eigengenes are regarded as core genes responding to the

abiotic stresses. The detail of how to identify the core genes from

the sample expression profiles is shown in the following.

Firstly, the number of variables used to denote the sample

expression profiles can be reduced by CIPMD. According to

eq.(9), sj can be formulated as
Pr

k~1

ukdkvjk, j~1,2, . . . ,n, where vjk

is the j-th element in vk. It shows that sj is a linear combination of

uk. In Figure 1, s
0

j is the j-th column of VT , which includes the

positional information of the j-th sample. By using s
0

j , the

expression profiles of samples can be acquired by r variables.

However, the number of variables in sample expression profiles sj

is p which is much larger than r. Therefore, the number of

variables used to denote the sample expression profiles can

generally be reduced by CIPMD.

Figure 5. Response to stimulus (GO:0050896) in shoot samples.
doi:10.1371/journal.pone.0106097.g005
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Secondly, since the eigensamples uk are used to reconstruct F,

the sample expression profiles sj which contain the important

information can be represented by the eigensamples uk.

Thirdly, the sparse uk can be obtained by choosing the penalty

function appropriately. According to the subsection 2.1.3, we can

take penalty function P1 uð Þƒa1. By choosing a suitable param-

eters a1, the sparse uk can be obtained.

Finally, the core genes responding to abiotic stresses are

identified via the sparse uk. The features of samples in gene

expression data can be represented by the nonzero entries in the

sparse uk. Therefore, the nonzero entries can be denoted as the

core genes responding to abiotic stresses.

The whole scheme to identify the core genes can be summarized

in the following:

Firstly, the total scatter matrix St is obtained bases on the gene

expression data X.

Secondly, St is decomposed into left singular vectors W, right

singular vectors H and a diagonal matrix D by using SVD, and a

new data matrix F is constructed by multiplying W by D.

Thirdly, PMD decomposes the data matrix F to obtain the

sparse eigensamples uk.

Fourthly, the genes corresponding to nonzero entries in uk are

identified as the core ones.

Finally, the core genes are checked by using Gene Ontology

(GO) tool.

Results and Discussion

In this section, we evaluate the CIPMD method by applying it

to identify the core genes responding to abiotic stresses. Subsection

3.1 and 3.2 provide the results on simulation and real gene

expression data sets, respectively. For comparison, the sparse

principal component analysis (SPCA) [32], penalized matrix

decomposition (PMD) [19] and support vector machine-recursive

feature elimination (SVM-RFE) [25] methods are used to identify

the features on simulation and real gene expression data sets. The

LIBSVM that Chang et al. proposed [33] is used to implement

SVM-RFE algorithm.

3.1 Results on simulation data
In this subsection, the simulation data are firstly introduced.

Then, the parameters of SPCA, PMD and CIPMD are chosen

appropriately. Since SVM-RFE method eliminate genes one by

one by using Recursive Feature Elimination (RFE) and have no

control-sparsity parameters, so we do not consider it in this

subsection. Finally, the results on simulation data are shown.
3.1.1 Data source. The simulation data are generated with

p~20000 genes (roughly equal to the number of genes in real gene

expression data) and n~16 samples. In the two-class case, we

assign 8 samples and p~20000genes for each class. In the multi-

class case, the 16 samples are divided equally into 4 classes.

The simulation data are in Rp with p~20000 and generated as

X*(0,
P

4). Let ~vv1*~vv4 be four 20000-dimensional vectors, such

that ~vv1k~1, k~1, � � � ,125, and ~vv1k~0, k~126, � � � , 20000;

Figure 6. Response to stimulus (GO:0050896) in root samples.
doi:10.1371/journal.pone.0106097.g006
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~vv2k~1, k~126, � � � ,250, and ~vv2k~0, k=126, � � � ,250; ~vv3k~

1, k~251, � � � ,375, and ~vv3k~0, k=251, � � � ,375; ~vv4k~1, k~

376, � � � ,500, and ~vv4k~0, k=376, � � � ,500. Let E be a 20000-

dimensional noise matrix, and E*N(0,1). Then we add E into ~vv
with different Signal-to-Noise Ratios (SNR). The preceding four

eigenvectors of
P

4 are normalized to be vk~~vvk= ~vvkk k, k~

1,2,3,4. And in order to make the first four eigenvectors dominate,

we let the eigenvalues be c1~400, c2~300, c3~200, c4~100 and

ck~1 for k~5, � � � ,20000. In this way, the simulation idea in [34]

is applied to generate the simulation data.

3.1.2 Parameters selection.. In this subsection, the param-

eter m in eq.(8) is determined by the simulation experiment. Then

the control-sparsity parameters of the three methods are selected

appropriately.

(i) The determination of parameter m: For CIPMD, we

need to determine the appropriate parameter m in eq.(8) to

make our method optimal. We randomly generate the

simulation data by iterating 100 times to test the performance

of CIPMD with different values of m. Figure 2 displays the

performance of CIPMD with m varying from 0.5 to 5. From

this figure it can be seen that all the values of m can get very

high identification accuracies. The best result is achieved

when m~1, so we take m~1 for CIPMD in the following

experiments.

(ii) The selection of control-sparsity parameters: Except

for SVM-RFE, all the other three methods are sparse, whose

control-sparsity parameters have a great influence on

identification accuracy. The SPCA proposed by Journee et

al. has an excellent performance both in computational speed

and quality [32]. The parameter c in SPCA is used to adjust

the sparsity of PCs. According to the algorithm of CIPMD,

the l1-norm of u is taken as the penalty function, i.e.

uk k1ƒa1. Since 1ƒa1ƒ
ffiffiffi
p
p

, let a1~a � ffiffiffi
p
p

, where

1
� ffiffiffi

p
p

ƒaƒ1. So we can obtain a sparse u by choosing an

appropriate a1. For simplicity, only one factor is used, that is,

let k~1.

For fair comparison, 500 genes are identified by using these

methods with their own appropriate parameters. And the Signal-

to-Noise Ratio (SNR) is set to be 0.1 when the simulation data are

generated.

3.1.3 Simulation results. We randomly generate the simu-

lation data by iterating 100 times to evaluate the performances of

the four methods. The specific numerical values of identification

accuracies of the four methods with different parameters are

shown in supplementary file (Table S1). For the two-class case, the

graphical depiction of the identification accuracies of these

methods with different parameters is shown in Figure 3. From

this figure, it can be seen that except for SVM-RFE, all the other

three methods are sensitive to the control-sparsity parameters. The

identification accuracies of SPCA are monotonically decreasing

with the control-sparsity parameter when its value is greater than

0.15. On the contrary, the identification accuracies of PMD and

Figure 7. Response to stress (GO:0006950) in shoot samples.
doi:10.1371/journal.pone.0106097.g007
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CIPMD are monotonically increasing with the parameters when

their values are smaller than 0.25. The identification accuracies of

PMD and CIPMD are stabilized when the parameters are greater

than 0.25. Moreover, all the four methods can obtain very high

identification accuracies. Finally, our CIPMD has the highest

accuracies among the four methods.

For the multi-class case, the graphical depiction of the

identification accuracies of these methods with different param-

eters is shown in Figure 4. Since SVM-RFE was designed to deal

with the binary gene selection problem, accordingly, it is not

included in this part. From this figure, we can see that the

identification accuracies of all the three methods can reach higher

values. Similar to the two-class case, the identification accuracies

of SPCA are monotonically decreasing with the increasing of

control-sparsity parameter. When the parameters are greater than

0.2, the identification accuracies of CIPMD can reach the highest

point and becomes stable. While the parameters are greater than

0.25, PMD reaches a plateau in terms of identification accuracy.

Among the three methods, only the identification accuracies of

CIPMD can reach more than 90%. Furthermore, except for the

parameter is 0.1, CIPMD outperforms the other methods on

identification accuracies with all parameters.

3.2 Results on gene expression data
The real gene expression data are introduced in subsection

3.2.1. Then, the gene ontology (GO) analysis is adopted to

evaluate the performances of the four methods.

3.2.1 Data source. The raw gene expression data include

two classes: shoots and roots in each stress. The Affymetix CEL

files are downloaded from NASCArrays [http://affy.arabidopsis.

info/] [35], reference numbers are: control, NASCArrays-137;

cold stress, NASCArrays-138; osmotic stress, NASCArrays-139;

salt stress, NASCArrays-140; drought stress, NASCArrays-141;

UV-B light stress, NASCArrays-144; and heat stress, NASCAr-

Figure 8. Response to stress (GO:0006950) in root samples.
doi:10.1371/journal.pone.0106097.g008

Table 6. The numbers of response to water deprivation (GO:0009415) in root samples.

Stress Type SPCA PMD CIPMD SVM-RFE

SF PV SF PV SF PV SF PV

Drought 44 8.8% 1.73E-19 51 10.2% 6.21E-26 69 13.8% 7.8E-45 45 9.0% 2.53E-20

doi:10.1371/journal.pone.0106097.t006
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rays-146. The number of samples in each stress type is listed in

Table 1. There are 22810 genes in each sample. The arrays are

adjusted by using the GC-RMA software by Wu et al. [36] to

avoid the background of optional noise and normalized by using

quantile normalization. The GC-RMA results are gathered in a

matrix to be processed by SPCA, PMD, SVM-RFE and CIPMD.

Our method brings in the class information of samples based on

the total scatter matrix. Therefore, in our experiments, two stress

types of gene expression data are processed simultaneously.
3.2.2 Gene Ontology (GO) analysis. Gene Ontology (GO)

Term Enrichment tools can be used to describe genes in the input

or query set and to help discover what functions the genes may

have in common [37]. As a web-based tool, GOTermFinder can

find the significant GO terms among a list of genes. Therefore, it

offers some significant informations for the biological explanation

of high-throughput experiments. The core genes responding to

abiotic stresses identified by SPCA, PMD, SVM-RFE and

CIPMD are checked by GOTermFinder which is publicly

available at http://go.princeton.edu/cgi-bin/GOTermFinder

[38]. Its threshold parameters are set as following: maximum P-

value = 0.01 and minimum number of gene products = 2. Here,

only the main results of GO Term Enrichment are shown.

(i) Terms responding to stimulus: The numbers of genes

responding to stimulus (GO:0050896), which is the ancestor

of all the abiotic stresses, are identified by the four methods in

shoot and root samples are listed in Table 2 and Table 3,

respectively. The superior results are marked in bold type.

From the two tables we can see that all these methods can

Table 7. References about core genes responding to water deprivation in root samples.

Gene name Response to References

At2g33380 Drought, cold Heyndrickx et al. (2012) [40]

At4g34390 Drought Heyndrickx et al. (2012) [40]

At5g62470 Drought Seo et al. (2009) [41]

At3g14050 Drought Heyndrickx et al. (2012) [40]

At3g11820 Drought, cold Heyndrickx et al. (2012) [40]

At3g19970 Drought Heyndrickx et al. (2012) [40]

At5g54490 Drought Heyndrickx et al. (2012) [40]

At5g27420 Drought Heyndrickx et al. (2012) [40]

At4g24960 Drought, cold Chen et al. (2002) [42]

At2g30550 Drought Heyndrickx et al. (2012) [40]

At3g30775 Drought Sharma et al. (2011) [43]

At3g63060 Drought, salt, osmotic Koops et al. (2011) [44]

At3g09940 Drought Vadassery et al. (2009) [45]

At4g21440 Drought Heyndrickx et al. (2012) [40]

At1g73480 Drought, cold Heyndrickx et al. (2012) [40]

At5g67340 Drought, cold Heyndrickx et al. (2012) [40]

At4g17500 Drought Heyndrickx et al. (2012) [40]

At2g17840 Drought, cold Kiyosue et al. (1994) [46]

At3g52400 Drought, cold Fujita et al. (2004) [47]

At4g05100 Drought Heyndrickx et al. (2012) [40]

At5g24590 Drought Heyndrickx et al. (2012) [40]

At5g67300 Drought Huang et al. (2008) [48]

At5g40390 Drought Maruyama et al. (2009) [49]

At3g19580 Drought Sakamoto et al. (2000) [50]

At5g45340 Drought Umezawa et al. (2006) [51]

At1g22190 Drought, cold, osmotic Rea et al. (2011) [52]

At3g57530 Drought, cold Heyndrickx et al. (2012) [40]

doi:10.1371/journal.pone.0106097.t007

Table 8. The numbers of response to heat (GO:0009408) in shoot samples.

Stress Type SPCA PMD CIPMD SVM-RFE

SF PV SF PV SF PV SF PV

Heat 41 8.2% 1.13E-22 77 15.4% 2.37E-66 97 19.4% 9.47E-96 None None

doi:10.1371/journal.pone.0106097.t008
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identify genes with very high sample frequency and very low

P-value.

As Table 2 listed, in shoot samples, only in UV-B light stress

data set, CIPMD method is dominated by PMD. For other stresses

data sets, CIPMD outperforms the SPCA, PMD and SVM-RFE.

As Table 3 listed, in root samples, CIPMD performs better than

the other three methods in all the stresses data sets except the salt

stress. In salt stress data set, PMD method is superior to our

method.

The sample frequencies of the six different stresses response to

stimulus in shoot and root samples are shown in Figure 4 and

Figure 5, respectively.

From Figure 5, it can be seen that PMD has a higher data point

on UV-B light stress data set than SPCA, SVM-RFE and CIPMD.

However, CIPMD method is superior to PMD, SPCA and SVM-

RFE in the remaining five stresses data sets of shoot samples.

Figure 6 shows that only in salt stress data set, CIPMD has a lower

data point than PMD. CIPMD method outperforms the other

three methods in a large degree (especially in heat stress data set) in

other five stresses data sets of root samples. From the two figures

we can also find that SVM-RFE and CIPMD give more stable

results in six different stresses data sets than PMD and SPCA

methods whose results fluctuate up and down in greatly

amplitudes.

PMD outperforms the proposed method in some case of the

experiment, e.g. the UV-B light stress data set in shoot samples

and the salt stress data set in root samples, the most likely reason is

that the different distributions of data lead to the different

performances between methods. This problem also exists in

elsewhere, for example Zheng et al. proposed a gene selection

method based on Robust Principal Component Analysis (RPCA)

to select plants characteristic genes, in their experiments, the

number of genes responding to abiotic stimulus (GO:0009628) is

selected by three methods in root samples, the performance of

RPCA is equal to PMD only in UV-B stress data set, in other data

sets, RPCA method is superior to the others [39].

(ii) Terms responding to stress: Table 4 and Table 5 list

the gene numbers and P-value of response to stress

(GO:0006950) in shoot and root samples, respectively. The

superior results are marked in bold type.

As Table 4 listed, in shoot samples, CIPMD is superior to the

other three methods in all the data sets except UV-B light stress.

PMD suppresses our method only in the UV-B light stress data set.

As Table 5 listed, in root samples, CIPMD is dominated by PMD

only in salt-stress data set. CIPMD outperforms our competitive

methods in other five stresses data sets.

The sample frequencies of response to stress in shoot and root

samples are shown in Figure 7 and Figure 8, respectively.

Table 9. References about core genes responding to heat in shoot samples.

Gene name Response to References

At2g43630 Heat Heyndrickx et al. (2012) [40]

At1g14360 Heat Heyndrickx et al. (2012) [40]

At5g28540 Heat Koizumi et al. (1996) [53]

At2g20940 Heat Heyndrickx et al. (2012) [40]

At4g29520 Heat Heyndrickx et al. (2012) [40]

At4g29330 Heat Heyndrickx et al. (2012) [40]

At5g22060 Heat Heyndrickx et al. (2012) [40]

At1g04980 Heat Heyndrickx et al. (2012) [40]

At4g00940 Heat Heyndrickx et al. (2012) [40]

At3g10800 Heat Gao et al. (2008) [54]

At4g16660 Heat Heyndrickx et al. (2012) [40]

At1g07410 Heat Heyndrickx et al. (2012) [40]

At5g56030 Heat Takahashi et al (1992) [55]

At2g02810 Heat Heyndrickx et al. (2012) [40]

doi:10.1371/journal.pone.0106097.t009

Table 10. Reference about core genes involved in heat acclimation in shoot samples.

Gene name Response to References

At5g38895 Heat Heyndrickx et al. (2012) [40]

At1g77000 Heat Lim et al (2006) [56]

At4g02550 Heat Heyndrickx et al. (2012) [40]

At3g50970 Heat, drought Heyndrickx et al. (2012) [40]

At1g13080 Heat Lim et al (2006) [56]

At4g11220 Heat Heyndrickx et al. (2012) [40]

doi:10.1371/journal.pone.0106097.t010
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Figure 7 shows that CIPMD method owns a lower data point in

UV-B light stress data set than PMD. But in the rest five stresses

data sets of shoot samples, our CIPMD is superior to the other

methods. From Figure 8, it can be proved that PMD has a data

point performing better than CIPMD only in salt stress data set.

CIPMD method surpasses PMD and SPCA in a large extent

(especially in heat stress data set) in other data sets of root samples.

CIPMD outperforms SVM-RFE in all the data sets with six

different stresses. Besides, both in shoot and root samples, CIPMD

and SVM-RFE present more stable results than PMD and SPCA

in six different stresses data sets.

(iii) Core genes responding to the stresses: The data of the

drought stress in root samples and heat stress in shoot

samples are analyzed to evaluate the core genes identified by

our method closely related to the stresses.

For drought stress in root samples, Table 6 gives the sample

frequency and P-value of response to water deprivation (GO:

0009415). The background sample frequency of response to water

deprivation (GO: 0009415) in root samples is 1.4% (421/30324).

As Table 6 listed, the superior results of the three methods are

shown in bold type. Obviously, CIPMD can identify more genes

than the other three methods.

Moreover, we compare the genes identified by CIPMD with the

ones identified by PMD, SPCA and SVM-RFE to verify the core

genes extracted by our method closely related to abiotic stresses.

Table 7 lists different genes identified by CIPMD and ignored by

other three methods in the first column. The column of Response
to represents what stresses the genes response to, and the column

of Reference denotes the searching results that the authors have

already confirmed in their literatures. As Table 7 listed, all the 27

genes selected by CIPMD and neglected by PMD, SPCA and

SVM-RFE can be searched in literatures. And all these core genes

are indeed closely related to drought stress. Furthermore, some of

the genes are also related to cold, osmotic and salt stresses.

For heat stress in shoot samples, Table 8 lists the sample

frequency and P-value of response to heat (GO: 0009480). The

background sample frequency of response to heat (GO: 0009480)

in shoot samples is 1.0% (298/30324). In Table 8, the superior

results of the four methods are marked in bold type. Wherein

SVM-RFE cannot identify effective genes response to heat. It can

be seen clearly that CIPMD method can identify more genes than

the other methods.

In detail, we compare the genes identified by CIPMD with the

ones identified by using PMD, SPCA and SVM-RFE. There are

20 different core genes identified by our method and neglected by

PMD, SPCA and SVM-RFE. Among these 20 genes, 14 genes

responding to heat have been confirmed in literatures. We show

the verified results of the 14 genes in Table 9. The remaining

genes of the 20 genes are involved in heat acclimation (GO:

0010286) which is the children of response to heat (GO: 0009408).

The affirmed results in literatures of the 6 genes are listed in

Table 10. From the verifications, it is obvious that all the 20 genes

identified by CIPMD and ignored by PMD, SPCA and SVM-

RFE are closely related with heat stress.

Conclusion

In this study, we proposed a novel Class-Information-based

Penalized Matrix Decomposition method for identifying core

genes. Our method can achieve a better identification capacity by

bringing in the class information of samples based on the total

scatter matrix. By integrating matrix decomposition and the PMD

method, our method is appropriate to analyze the gene expression

data. A large number of experiments on simulation and real gene

expression data demonstrate that our CIPMD method outper-

forms both PMD, SPCA and SVM-RFE. Thus, our approach is

effective to identify plants core genes responding to abiotic stresses.

In the future, we will focus on the biological interpretation of the

core genes.
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