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Abstract

Defective apoptosis is a fundamental hallmark feature of CLL biology and is a major target of

cancer therapy development. High levels of Bcl-2 family anti-apoptotic proteins are considered

primarily responsible for inhibiting apoptosis in CLL cells. While several approaches were

considered to selectively inhibit Bcl-2 family anti-apoptotic proteins, the discovery that gossypol

binds and antagonizes anti-apoptotic effect of Bcl-2 family proteins was a major breakthrough in

identifying specific Bcl-2 antagonists. The concept of mimicking BH3 domain emphasized the

importance of Bcl-2 family-targeted therapy that can modulate the function of anti-apoptotic

proteins. Although parent compound gossypol did not sustain in the clinic, its structural

modifications led to the development of additional analogues that demonstrated improved efficacy

and reduced toxicity in preclinical and clinical investigations. Proof of concept of this hypothesis

was demonstrated by structure based BH3 mimetic ABT-737 that has shown greater cytotoxicity

towards CLL cells both in pre-clinical models and clinical trials. Its oral compound ABT-263 has

demonstrated the substantial susceptibility of chronic lymphocytic leukemia cells through Bcl-2

inhibition. Collectively, results of a Phase I Study of Navitoclax (ABT-263) in patients with

relapsed or refractory disease warrants Bcl-2 as a valid therapeutic target in CLL. Importantly,

molecules that mimic pro-apoptotic BH3 domains represent a direct approach to overcoming the

protective effects of anti-apoptotic proteins such as Mcl-1, Bcl-2 and Bcl-XL.
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Introduction

For several decades, plant products have been an excellent source of anti-cancer agents.

They have been in use as a single agent or in combination with other chemotherapeutic

drugs for the treatment of cancers, including liquid and solid tumors (as reviewed in [1]).

Vinca alkaloids such as vinblastine and vincristine obtained from plant Madagascar
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periwinkle, Catharanthus roseus (formerly known as Vinca rosea, Apocynaceae) were the

first natural products advanced into clinical use for the treatment of cancer [1]. The isolation

of paclitaxel (Taxol) from the bark of the Pacific Yew tree, Taxusbrevifolia Nutt belonging

to the family Taxaceae, is another evidence of the success in natural product drug discovery

[2, 3]. Camptothecin, isolated from the Chinese ornamental tree Camptotheca acuminate

Decne (Nyssaceae) known in China as tree of joy, was advanced to clinical trials by NCI,

but was dropped because of severe bladder toxicity. Etoposide and teniposide are two semi-

synthetic derivatives of epipodophyllotoxin, an isomer of podophyllotoxin isolated from the

roots of Podophyllum species, Podophyllum peltatum Linnaeus and Podophyllumemodi

Wallich (Berberidaceae) [4] and are used in the treatment of lymphomas and other cancers

[5]. Homoharringtonine obtained from the Chinese tree Cephalotaxus harringtonia var.

drupacea (Sieb and Zucc.) (Cephalotaxaceae), is another plant-derived product in clinical

use [6]. A racemic mixture of harringtonine and homoharringtonine has been used

successfully for the treatment of acute myelogenous leukemia (AML) and chronic

myelogenous leukemia (CML) [7]. Flavopiridol is a synthetic flavone, derived from the

plant alkaloid rohitukine, which was isolated from Dysoxylum binectariferum Hook. f.

(Meliaceae)[8] and tested in phase I and II clinical trials against a broad range of tumors [9].

Synthetic agent roscovitine which is derived from natural product olomucine, originally

isolated from Raphanus sativus L. (Brassicaceae), is in Phase II clinical trials in Europe

[10]. Combretastatin A-4 isolated from the bark of the South African tree Combretum

caffrum (Eckl. &Zeyh.) Kuntze (Combretaceae) [11], is active against solid and

hematological malignancies. Together, natural products have proven useful by themselves as

anti-cancer agents or have been a great source of synthetic or semisynthetic derivatives for

preclinical investigations and/or clinical trials.

Cotton plant and gossypol

Gossypol is a polyphenolic aldehyde derived from the cotton plant (Gossypium hirsutum L.

Family Malvaceae, Fig. 1). It was originally discovered by Longmore and was later

structurally elucidated by Adams and Edwards [12, 13]. Chemically it is 2-2′

bis(formyl-1,6,7-trihydroxy-5-isopropyl-3-methyl)-naphathalene. Gossypol inherently

displayed a broad spectrum of physiochemical and biological properties such as insecticidal

activity, anti-oxidant property, anti-fertility property and anti-cancer activity [14–16]. It also

exhibited cytotoxic effect against various carcinoma cell lines both in vitro and in vivo

settings [17–20]. Extensive investigations on gossypol had revealed its diversified

mechanisms of action, which include inhibitory role on enzyme LDH [21], protein kinase C

activity [22], DNA synthesis inhibition [23], regulation on cell cycle proteins Rb and cyclin

D1 [24], cellular proliferation [25], ROS independent mitochondrial pathway of apoptosis

[26], execution of extrinsic cell death pathway through up-regulation of Fas/Fas ligand [27],

Bax or Bax/Bak independent activation of apoptosis [28], suppression of NF-κB activity

[29] and induction of autophagy [30, 31]. In early clinical trials, racemic gossypol

administration to patients with various cancers demonstrated that gossypol was well

tolerated with minimal clinical efficacy [32–34].
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Gossypol as a BH3 mimetic

Over-expression of anti-apoptotic B-cell lymphocyte/leukemia-2 (Bcl-2) family proteins is

common in many human cancers and is a major target of cancer therapy development [35].

Besides all the investigations on gossypol, the discovery that gossypol binds and antagonizes

anti-apoptotic effect of Bcl-2 family proteins and induces apoptosis in cancer cells was a

major breakthrough in modulating the function of Bcl-2 [36]. On the basis of in vitro

displacement assays with the fluorescein-labeled BH3 peptide, Kitada et al demonstrated

that gossypol directly interacts with Bcl-XL and is able to displace BH3 peptides with an

IC50 of 0.5 μM [36] (Fig. 2). Given that Bcl-XL is highly expressed in several hematological

malignancies, gossypol was able to overcome the apoptotic resistance mediated by Bcl-XL

in CML [37] as well as in CLL. In vitro study on primary CLL lymphocytes demonstrated

that gossypol at micromolar levels induced caspase independent, AIF-mediated apoptosis in

all samples tested irrespective of the disease stage or prognostic markers (Fig. 3A)[38].

Further investigations illustrated that gossypol is the only compound that inhibited major

anti-apoptotic proteins such as Bcl-2, Bcl-XL, Mcl-1, Bcl-B with IC50 values of 0.28, 3.03,

1.75, 0.36 respectively, as well as Bcl-W (1.4 μM) whose prime function is to sustain

developing sperm cells [39–43].

Despite the broad spectrum of functionalities, toxic properties associated with hypokalemia

and its effect on Bcl-W leading to male infertility limited gossypol’s application in clinical

use. Though gossypol is unlikely candidate for clinic, it represented a lead compound for

generation of a new class of antineoplastic agents [44]. Several efforts were undertaken to

detoxify the compound by altering its structure to produce analogues with improved efficacy

and/or reduced toxicity. Structural modification of gossypol guided by a model of

multidimensional nuclear magnetic resonance based structural analysis led to the

development of additional analogues of gossypol with improved efficacy. The rest of this

review is devoted to discuss various gossypol derivatives and their efficacy in preclinical

and clinical investigations.

AT-101

Gossypol naturally exists as a mixture of two enantiomers (+) and (−) that exhibit different

biological activity. It was notable that (−)-gossypol also called AT-101, developed by

Ascenta Pharmaceuticals, was approximately twice as active as racemic gossypol with

added oral bio-availability. Similar to gossypol, AT-101 contains two reactive aldehyde

groups and also binds to the BH3 motif of all major anti-apoptotic proteins, with better

affinity (e.g., 0.32, 0.48, and 0.18 μM for Bcl-2, Bcl-XL, and Mcl-1, respectively) [45].

Studies evaluating the therapeutic response of AT-101 with respect to the effect of

protective stromal cells demonstrated that AT-101 can completely overcome stroma

mediated protectivity in CLL primary cells (Fig. 3B) [46].

There was a differential mechanism for survival advantage provided by two distinct

microenvironments; enhanced cell survival was mediated by Mcl-1 protein induction in

bone marrow microenvironment, while nurse like cells (a representative lymph node

microenvironment) protected CLL cells via augmentation of Bfl-1 protein [46–49].
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Targeting Bcl-2 family proteins with AT-101 markedly enhanced the therapeutic effects of

several chemotherapeutic agents such as cyclophosphamide and rituximab both in vitro and

in vivo models of B-cell lymphomas [50]. A recent report states that AT-101 not only

triggers Bax activation but also induces mitochondrial SMAC release to enhance Bax-

mediated cellular apoptosis [51]. In clinical study of AT-101 with topotecan in relapsed and

refractory small-cell lung cancer [52] was not active but showed promise in the double blind

placebo controlled randomized phase II study of AT-101 plus docetaxel in non-small cell

lung carcinoma patients [53].

Apogossypol

Given that gossypol and AT-101 have toxicity problems likely due to two reactive aldehyde

groups at 8, 8′-positions on the naphthalene rings, a semi-synthetic derivative apogossypol,

was synthesized lacking two aldehyde groups, with enhanced activity and reduced toxicity

[41, 54, 55]. Apogossypol and gossypol are shown to exhibit similar oral and intravenous

pharmacokinetic profiles as well as in vitro stability, although apogossypol demonstrated a

slower clearance rate, larger AUC (area under curve), and better microsomal stability [55,

56] suggesting favorable pharmacokinetics for this analogue.

Because gossypol enantiomers displayed differential pro-apoptotic activities, atropisomers

of apogossypol were synthesized, evaluated and compared with racemic apogossypol for

cellular activity [54]. 5, 5′ substituted ketone and amide apogossypol derivatives such as

BI-79D10, compound 8r and BI-97C1 (sabutoclax) were synthesized. Each compound was

subsequently tested for its ability to inhibit Bcl-XL in an in vitro fluorescence polarization

competition assay as well as for its pro-apoptotic activity in human cancer cell lines. The

potent compound BI-79D10 was shown to bind to Bcl-XL, Bcl-2, and Mcl-1 with IC50

values of 190, 360, and 520 nmol/L, respectively. It inhibited cell growth in the human lung

cancer cell line with an EC50 value of 680 nmol/Land induced apoptosis in human

lymphoma cell line. This compound had improved plasma and microsomal stability relative

to apogossypol and showed little cytotoxicity against Bax/Bak-/- mouse embryonic

fibroblast cells [57]. Compound 8r inhibited the binding of BH3 peptides to Bcl-XL, Bcl-2,

Mcl-1, and Bfl-1 with IC50 values of 0.76, 0.32, 0.28, and 0.73 μM, respectively. This

compound also potently inhibited cell growth of human lung cancer and human B-cell

lymphoma cell lines in vitro and displayed efficacy in transgenic mice in which Bcl-2 is

overexpressed in splenic B-cells. Similar to BI-79D10, 84 is also stable and appears to be a

promising drug lead [58].

A new analogue, BI-97C1, an optically pure and most potent diastereoisomer of compound

8r, inhibited the binding of BH3 peptides to Bcl-XL, Bcl-2, Mcl-1, and Bfl-1 with IC50

values of 0.31, 0.32, 0.20, and 0.62 μM, respectively. The compound potently inhibited cell

growth of human prostate cancer, lung cancer, and lymphoma cell lines with EC50 values of

0.13, 0.56, and 0.049 μM, respectively. This analog displayed in vivo efficacy in transgenic

mice models and also demonstrated superior single-agent antitumor efficacy in a prostate

cancer xenograft model. In prostate cancer cells, BI-97C1 (sabutoclax) sensitized MDA7/

IL-24 mediated toxicity as well as exerted significantly improved therapeutic response in

colorectal cancer patients in combination with AD5/3-MDA7 [59, 60]. Together,
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apogossypol and its analogues have demonstrated efficacy in preclinical studies, but they

have not yet made to clinical trials.

Gossypolone and apogossypolone

Gossypolone, a major metabolite of AT-101, was synthesized without hydroxyl group upon

oxidation reaction. It displayed similar cytotoxic effects as AT-101, with greater water

solubility, lower toxicity with anti-proliferative activity against human cancer cell lines [61,

62]. Apogossypolone also known as ApoG2 is an analogue of gossypolone with three- to

six-fold more potency than the parent compound (-)-gossypol. It was synthesized by the

removal of hydroxyl and two reactive aldehyde groups to improve stability and reduce

toxicity [63]. ApoG2 demonstrated a higher binding affinity to its targets (Ki, 35, 660, and

25 nM for Bcl-2, Bcl-XL, and Mcl-1, respectively) [64] suggesting to have high inhibitory

constants for Mcl-1 and Bcl-2, but not for Bcl-XL and induced apoptosis in number of

cancer cell lines by blocking binding of Bim and Bcl-2. Preclinical studies of

apogossypolone in follicular lymphoma exhibited growth inhibitory effects in vitro and in

vivo in SCID xenograft models through activation of intrinsic and extrinsic caspases and

release of AIF [65, 66]. In CLL, Bax/Bak was required for apogossypolone induced cell

death[67]. Head to head comparison of apogossypolone with gossypol revealed that ApoG2

was more stable and better tolerated by mice than was racemic gossypol, with no toxicity on

peripheral blood lymphocytes [68]. ApoG2 has also been shown to potently disturb the

proliferation of nasopharyngeal carcinoma cells by suppressing the c-Myc signaling

pathway [69]. In vivo, it induced regression in several tumor xenograft models and its

maximum tolerated dose (MTD) was comparatively higher than the MTD of AT-101. Given

that 5,5′ substituted apogossypol derivatives displayed improved in vitro and in vivo

activities compared to apogossypol, derivatives of 5,5′-substituted apogossypolone were

synthesized by replacing their isopropyl groups with alkyl, ketone and amide groups, which

resulted in compounds with improved biological activities [70].

Concept - to - clinic

The mechanistic approach of identifying novel agents to induce pan-inhibition of anti-

apoptotic proteins opened a new avenue of successfully treating diseases that inherit high

levels of Bcl-2 family proteins. Although natural product gossypol and its derivatives were

not effective by themselves in the clinic, the concept of employing BH3 mimetics to

modulate the function of Bcl-2 has been quite successful. Two novel Bcl-2 inhibitors

obatoclax and ABT-737 have represented the proof-of- principle of this approach in clinic.

Obatoclax

Obatoclax (GX015-070; Geminx) is a hydrophobic molecule that was specifically designed

to inhibit all relevant anti-apoptotic members of the Bcl-2 family (IC50 of Bcl-2, Bcl-XL,

Mcl-1, was 1.11, 4.69, 2.9 μM respectively)[39]. Preclinical studies with single agent

obatoclax demonstrated that GX015-070 antagonizes Mcl-1 and overcomes Mcl-1-mediated

resistance to apoptosis [71]. Further studies revealed that obatoclax demonstrate a promising

role in apoptosis induction in a variety of hematological malignancies such as multiple

myeloma [72], AML [73], CLL [74, 75], MCL [76] and solid tumors like breast [77] and
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pancreatic cancers [78]. The mechanism of action of obatoclax was not limited to apoptosis

as it was effective in inducing autophagy in several cancer cells [79, 80]. Since it is a pan

Bcl-2 family inhibitor it has the advantage to be rationally combined with other targeted

anti-cancer agents such as ABT-737 [73], HDAC inhibitors [79], sorafinib [81], TRAIL [82]

and proteasome inhibitor, bortezomib.

Obatoclax is first in its class of BH3 mimetics to enter clinical trials. Multiple phase I and

phase II trials evaluating safety profile and MTD in patients with refractory leukemia and

myelodysplasia demonstrated tolerability of obatoclax by IV infusion [83]. Phase I study of

single agent obatoclax in 26 heavily pretreated CLL patients at doses ranging from 3.5–14

mg/m2 showed modest clinical activity through Bax mediated mechanism of apoptosis [84].

A phase II study of obatoclax in combination with topotecan in patients with relapsed SCLC

demonstrated that this combination was not better in response rate than topotecan alone [85].

Clinical investigations in relapsed or refractory classical Hodgkin’s lymphoma demonstrated

that obatoclax has limited clinical activity [86]. Together these results imply that a need for

less toxic and better targeted Bcl-2 antagonists in the clinic is pressing.

ABT-737

ABT-737 is a cell permeant small molecule synthesized to bind to the hydrophobic BH3

binding groove of anti-apoptotic proteins with higher affinity (Ki ≤ 1 nM) to Bcl-XL, Bcl-2

and Bcl-W, but not to proteins Bcl-B, Mcl-1 and Bfl-1 (Ki= 0.46 ± 0.11 μM, >1 μM and >1

μM, respectively). With plasma protein binding, this compound had lower affinity to Bcl-2

and Bcl-XL (100 nM and 35 nM respectively) [87, 88]. Of all the putative BH3 mimetics in

the field, ABT-737 was the only agent that was shown to specifically target Bcl-2 proteins

by directly activating the cell death machinery via Bax/Bak activation [89]. ABT-737

reactivated program cell death in vitro and in vivo (xenograft models) both in solid tumors

as well as hematological malignancies such as MCL [90], CML [91], AML [92], CLL [93,

94], MM [95, 96] and ALL [97, 98]; all of them express high levels of Bcl-2 family anti-

apoptotic proteins. Overall, this compound predominantly induces apoptosis via intrinsic

pathway by disrupting Bcl-2/Bax association [92] or dissociating Bim from Bcl-2 [99], thus

typically representing the function of a BH3 only protein either by activating pro-apoptotic

Bcl-2 proteins (Bak/Bax) or by inhibiting anti-apoptotic protein functions (Bcl-2/Bcl-XL).

However, as described below, ABT-737 has some limitations. Unlike other pan Bcl-2

inhibitors, ABT-737 does not bind to other members of Bcl-2 family, such as Mcl-1 or Bfl-1

[100]. Seed analysis of off-target siRNAs revealed an essential role of Mcl-1 in resistance to

ABT-737 [101]. Several mechanistic studies showed that targeting proteins that critically

stabilizes Mcl-1 via inhibiting ubiqitination enhanced the sensitivity of ABT-737 [102, 103].

Accordingly, multiple strategies were employed to neutralize Mcl-1 and potentiate ABT-737

to cells for apoptosis such as combinations with obtaoclax, a pan Bcl-2 inhibitor, sorafinib,

bortezomib [104], HDAC inhibitor [105] and numerous-other chemotherapeutic agents

[106]. Combination with homoharringtonine, a protein translation inhibitor that reduces

Mcl-1 protein [107], or co-administration of roscovitine [108], a CDK inhibitor that

decreases Mcl-1 transcript and protein levels-demonstrated synergy with ABT-737.
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Extensive studies on CLL primary cells showed nM efficacy of ABT-737 (EC50 of 4.5 ± 2.2

nM) in displacing Bim from Bcl-2 to induce cell death suggesting Bcl-2 complexed to Bim

is the critical target for ABT-737 in CLL [93]. Even though it was speculated that BH3

mimetics should function without p53, CLL primary cells with p53 deletion or dysfunction

showed decreased sensitivity to ABT-737, while combination with nutlin showed synergy

implying the significance of p53 in ABT-induced apoptosis [109]. Furthermore, ABT-737

also was shown to overcome the lymph node-mediated (CD40-stimulated) CLL cell survival

via balancing the NOXA/Mcl1 axis [110]. Studies using gene-targeted mouse strains

demonstrated that while ABT-737 avidly bind to Bcl-2, Bcl-XL and Bcl-W in vitro, it was

found that only Bcl-2 is its critical target in vivo suggesting that tumors exclusively over-

expressing Bcl-2 are most likely to benefit [111].

ABT-263

A major limitation of ABT-737 is that it is not orally bioavailable. ABT-263 (Navitoclax)

was synthesized with oral properties and first tested in xenograft model and was reported to

disrupt Bcl-2/Bcl-XL interactions with pro-death proteins (e.g., Bim), leading to the

initiation of apoptosis within 2 hours post treatment [112]. Human cancer cells and a panel

of SCLC xenograft models were tested for dose and schedule evaluation and combined with

standard cytotoxic agents for induction of apoptosis [113, 114]. Phase I study of ABT-263 in

patients with SCLC and other solid tumors demonstrated that navitoclax is safe and well

tolerated, with dose-dependent thrombocytopenia as the major adverse effect [115]. Patients

with relapsed or refractory lymphoid malignancies (n=55) were enrolled in a phase 1 dose-

escalation study of safety, pharmacokinetics, pharmacodynamics, and anti-tumor activity of

ABT-263, demonstrating that Navitoclax has a novel mechanism of peripheral

thrombocytopenia and T-cell lymphopenia, attributable to high-affinity inhibition of Bcl-XL

and Bcl-2, respectively[116]. A phase II study of single agentABT-263 to evaluate safety

and toxicity, response rate, progression free and overall survival revealed that the baseline

levels of biomarkers correlated with clinical benefit in SCLC patients [117]. Recent report

obtained from clinical trials conducted in patients with relapsed or refractory CLL revealed

that lymphocytosis was reduced by more than 50%. Importantly, clinical activity was indeed

observed in patients with fludarabine-refractory disease, bulky adenopathy, and (17p) del

subset of CLL. Consistent to preclinical data, low Mcl1 expression and high Bim: Mcl1or

Bcl-2 ratios correlated with clinical response [118]. The data so far obtained from all clinical

studies with ABT-263 have demonstrated favorable anti-leukemic activity in many cancers

except it induces a rapid but reversible thrombocytopenia.

ABT-199

Navitoclax is a potent Bcl-XL inhibitor, circulating platelet survival is dependent on Bcl-XL,

inhibiting Bcl-XL also destroyed platelets leading to thrombocytopenia, a dose limiting side

effect. So the goal was to develop an agent that inhibits mostly Bcl-2, a critical survival

factor for cancer cells, while sparing Bcl-XL that is important for survival of circulating

platelets. ABT-199 is a reverse engineered version of ABT-263 designed to have high

affinity for Bcl-2, but low affinity for Bcl-XL. Given that Bcl-2 is a validated drug target for

CLL, this provided a solid scientific rationale for using it in clinical trials for CLL. A Phase
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1, open-label, multicenter study evaluating the safety and pharmacokinetics profile of

ABT-199 in relapsed or refractory chronic lymphocytic leukemia (CLL) and non-Hodgkin’s

lymphoma (NHL) is ongoing[119].

Conclusion and Future Approaches

For several years the hallmark of cancer treatment has been the use of traditional

chemotherapy. These cytotoxic agents target rapidly dividing cells including certain normal

cells thus lacking specificity and/or selectively. Although conventional chemotherapy

remains the treatment of choice for many malignancies, targeted therapies are now a

component of treatment for many types of cancers. In the past decade, of the new anticancer

drugs approved by FDA, 15 have been targeted therapies, compared with only five

traditional chemotherapeutic agents[120].

Given that CLL is replicationally quiescent disease and its prognosis exclusively depends

upon the expression of Bcl-2 family anti-apoptotic proteins, agents that neutralize the anti-

apoptotic properties of molecular targets could be a more defined choice of treatment for

this disease. There have been several agents synthesized and tested for inhibition of Bcl-2

family anti-apoptotic proteins. Maritoclax was specifically designed to inhibit the protein

Mcl-1, the major anti-apoptotic target of CLL [121]. ABT-199 was synthesized to have

more inhibitory effect on Bcl-2 in comparison to Bcl-XL. Bad-like BH3 mimetic ABT-263

or ABT-737 that lack ability to bind to Mcl1 is confirmed to be a true BH3 mimetic that

induce Bax/Bak dependent apoptosis. Several putative BH3 mimetics such as GX15-070,

TW37, gossypol and analogues were tested and disclosed as pan Bcl-2 family anti-apoptotic

protein inhibitors (Table 1). Since Bcl-2 protein also interacts with autophagic protein such

as BECLIN1, pharmacological BH3 mimetics competitively disrupt the inhibitory

interaction between Beclin-1 and Bcl-2 or Bcl-XL, thereby stimulating autophagy. Thus,

BH3 mimetics have the ability to trigger both apoptotic and autophagic response

machineries. Additionally, combining BH3 mimetic with chemotherapeutic agents

sensitized cancer cells better than single agent alone. These statements provide strong

evidence upon the notion that targeted therapeutics; particularly Bcl-2 antagonists have

optimistic future in the clinic. It could add more strength to the therapeutic index if the agent

is a derivative of natural product, which in turn spares normal cells. Promoting further

investigations on combination with B-cell receptor kinase inhibitors that exhibit promising

activity in preclinical and clinical trials (CAL-101, R406, BTK inhibitions) should infer

additional insights on the mechanism of actions of these agents.
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Figure 1.
Cotton plant photographs; obtained from online website.
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Figure 2.
Surface representation of Bcl-xL with the docked structure of Gossypol obtained by FlexX.

The surface is depicted according to cavity depth (blue, surface exposed; yellow, buried)

representation. Reprinted (adapted) with permission from (J. Med. Chem., 2003, 46 (20), pp

4259–4264). Copyright (2003) American Chemical Society.

Balakrishnan and Gandhi Page 17

Invest New Drugs. Author manuscript; available in PMC 2014 September 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
A. Percentage of cell death in CLL primary cells from 9 individual patients treated with

gossypol for the indicated time. This research was originally published in Blood.

Balakrishnan et al. Gossypol, a BH3 mimetic, induces apoptosis in chronic lymphocytic

leukemia cells, Blood, 2008; 112(5):1971–80.© The American Society of Hematology. B.

AT-101 circumvents the stromal mediated CLL cell survival. CLL lymphocytes from

patients (n = 12) were cultured either in suspension medium (C) in suspension medium with

20 μM AT-101 (C + AT), or with stromal cells in the absence (C + S) or presence of AT-101

(C + S + AT) and the apoptosis was measured after 24 hours (72 hours for samples from

patients 31 and 32) by annexin-binding assay. This research was originally published in

Blood. Balakrishnan et al. AT-101 induces apoptosis in CLL B cells and overcomes stromal

cell-mediated Mcl-1 induction and drug resistance. Blood, 2009;113(1):149–53.© The

American Society of Hematology.
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Table 1

overview of Bcl-2 family antagonists

BH3 mimetic TARGETS PRECLINICAL CLINICAL

Gossypol[20] Bcl-2, XL, Mcl-1, Bcl-w, Bcl-b, BFL1 Yes Yes

AT-101[52] Bcl-2, XL, Mcl-1, Bcl-w, Bcl-b, BFL1 Yes Yes

Apogossypol Bcl-2, XL, Mcl-1, Bclw, Bclb Yes No

BI-79D10[57] Bcl-2, XL, Mcl-1 Yes No

Compound r[58] Bcl-2, XL, Mcl-1, BFL-1 Yes = No

BI-97C1[120] Sabutoclax Bcl-2, XL, Mcl-1, BFL-1 Yes No

Gossypolone[61] Bcl-2, XL, Mcl-1, Bcl-w, Bcl-b Yes No

Apogossypolone (ApoG2)[65] Bcl-2, XL, Mcl-1 Yes No

Obatoclax[83] Bcl-2, XL, Mcl-1, Bcl-w, Bcl-b, BFL-1 Yes Yes

ABT-737[92] Bcl-2, XL, Bcl-W Yes No

ABT-263[121] Navitoclax Bcl-2, XL, Bcl-W Yes Yes

ABT-199 Bcl-2 Yes Yes

Maritoclax[119] Mcl-1 Yes No

Bims2A [122] Mcl-1 No No

Mcl-1 SAHB[123] Mcl-1 No No

TW 37[45] Bcl-2, XL, Mcl-1 Yes No
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