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Abstract

Ionizing radiation induces modification of the tumor microenvironment such as tumor surrounding region, which is relevant
to treatment outcome after radiotherapy. In this study, the effects of pre-irradiated tumor beds on the growth of
subsequently implanted tumors were investigated as well as underlying mechanism. The experimental model was set up by
irradiating the right thighs of C3H/HeN mice with 5 Gy, followed by the implantation of HCa-I and MIH-2. Both implanted
tumors in the pre-irradiated bed showed accelerated-growth compared to the control. Tumor-infiltrated lymphocyte (TIL)
levels were increased, as well as pro-tumor factors such as IL-6 and transforming growth factor-beta1 (TGF-b1) in the pre-
irradiated group. In particular, the role of pro-tumor cytokine interleukin-17A (IL-17A) was investigated as a possible target
mechanism because IL-6 and TGF-b are key factors in Th17 cells differentiation from naı̈ve T cells. IL-17A expression was
increased not only in tumors, but also in CD4+ T cells isolated from the tumor draining lymph nodes. The effect of IL-17A on
tumor growth was confirmed by treating tumors with IL-17A antibody, which abolished the acceleration of tumor growth.
These results indicate that the upregulation of IL-17A seems to be a key factor for enhancing tumor growth in pre-irradiated
tumor beds.
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Introduction

In cancer radiotherapy (RT), high dose irradiated regions are

always surrounded by areas of graded exposure doses ranging

from medium- to low-doses [1]. Since tumor cells can be

distributed at the microscopic level in a relatively wide area,

circulating tumor cells might be present in surrounding areas that

have received lower doses of irradiation. When tumor recurrence

occurs in these low-dose irradiated areas, the recurrent tumor

exhibits a more aggressive behavior than the primary counterpart

[2]. However, this phenomenon has not been proved in a clinical

setting yet, although the possibility that it could have a clinical

implication has not been excluded. Therefore, surrounding areas

receiving low-doses of irradiation, such as normal tissue in the

vicinity of tumor or pre-irradiated areas, require special attention

to achieve effective cancer control.

Many recent studies have shown radiation effects at lower-than-

ablative doses in normal tissues. Irradiating normal tissue with

low-doses could lead to the accumulation of DNA damage [3].

Chou et al. showed that irradiating endothelial cells with 4 Gy

induced IL-6 expression, which acts through Mcl-1 expression to

protect endothelial cells from irradiation-induced cell death [4]. It

has been reported that irradiation-induced differential changes in

the profiles of cytokines, including IL-6, IL-1a, keratinocyte-

derived chemokine (KC), granulocyte colony-stimulating factor

(G-CSF), and IL-17 in lung tissue irradiated with 12 Gy [5].

Several inflammatory cytokines are considered to be key factors

that lead to tumor recurrence and metastasis in RT, and many

recent studies have reported a role of IL-17 in tumor progression

[6,7].

IL-17, a proinflammatory cytokine that plays a critical role in

the inflammatory response, autoimmune diseases, and cancer

immunity, acts as a potent regulator of tumor growth as well as an

important mediator in inflammatory reactions through the

recruitment of monocytes and neutrophils [8,9]. However, the

role of IL-17 in tumor growth and metastasis is still unclear.

The role of pre-irradiated tumor beds on the growth of

subsequently implanted tumors has been investigated extensively.

Saeki et al. showed that pre-irradiated tumor beds that received

injury induced by a single high-dose to the host vasculature and

connective tissue showed impaired neovascularization in the

implanted tumor [10]. However, high ablative-doses are seldom

given to a substantial area of normal tissue. In current practice in

stereotactic radiosurgery, where very high-dose irradiation is

administered in one fraction, only a very small volume of normal

tissue is included in the radiation field. Therefore, the effect of

irradiating tumor beds with medium- to low-doses on the growth

of subsequently implanted tumors require clinical attention and

mechanism study. In the present study, we investigated the effect

of medium- to low-dose pre-irradiation of tumor beds on the

growth of subsequently implanted tumors. In particular, the role of

the pro-inflammatory cytokine IL-17A was investigated in vitro
and in vivo as a possible factor in the target mechanism.
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Materials and Methods

Reagents
Anti-bodies of TGF-b and ROR-c were purchased from Santa

Cruz Biotechnology (CA). IL-6 and IL-17A anti-bodies were

purchased from abcam (MA). p-stat-3 was purchased from Bio

World (MN). IL-6 ELISA kit and CD4 anti-body were obtained

from BD Bioscience (CA). TGF-b ELISA kit were purchased from

BioLegend (CA). mIL-17A antibody was purchased to IL-17A

neutralization from R&D system (MN). A reverse transcription

system for cDNA synthesis and the primer sets of TGF-b and IL-6

were purchased from Qiagen (Hilden, Germany).

Animal experimental design and X-ray irradiation
Five male C3H/HeN mice, 6 to 7 weeks old (Central Lab,

Japan), were used per each experimental group for this study.

Mice were immobilized in specially designed mice jig and the right

thighs of the mice were irradiated with 5 Gy in a single fraction

using an X-Rad 320 irradiator (Precision X-ray, North Branford,

CT). Mice were treated 69 cm from the radiation source (SSD)

with a dose rate of 150 cGy/min with 300 kVp X-rays, using

12.5 mA and a X-ray beam filter consisting of 2.0 mm Al. On day

1 and 3 after irradiation, HCa-I [11,12] and MIH-2 [13,14]

murine hepatocarcinoma cells (16106 cells) in 100 ml phosphate-

buffered saline (PBS) were injected intramuscularly into irradiated

the site. Tumor volume was calculated as volume = p/6 X ab2,

where a is the long axis and b is the short axis of two orthogonal

diameters. The maximum allowable size of tumors in mice is

20 mm in diameter according to the IACUC (Institutional Animal

Care and Use Committee) guidelines of the Yonsei University

Health System. After experiments, the experimental mice were

sacrificed before reaching the maximum allowable size using

carbon dioxide (CO2).

Tumor infiltrating lymphocytes (TILs) isolation and Flow
cytometry analysis

For the isolation of TILs, tumor were chopped by clipper then

incubated in 1 mg/ml collagenase type IV (Worthington, Lake

wood, NJ) solution containing 0.01 mg/ml DNase I (sigma, CA) at

37uC for 20 min. TILs were isolated by Percoll gradient (sigma,

CA) after washing the dissociated tissues by chilled complete

RPMI medium. Isolated TILs were resuspended in PBS and

stained with the indicated reagents. Cells were then washed twice,

fixed in 2% paraformaldehyde solution, and immediately analyzed

using a FACS Canto flow cytometer (Becton Dickinson, CA).

Analysis of gene expression
Total RNA was isolated from tumor cells using TRIzol reagent

(Invitrogen Corp., Carlsbad, CA). PCR was performed using the

Step One Plus (Applied Biosystems, CA) and a QuantiTect SYBR

Green PCR Kit (Applied Biosystems, Warrington, UK). The

amplification program consisted of 1 cycle of 95uC with a 10 min

hold (hot start), followed by 35 cycles of 95uC with a 20 sec hold,

60uC with a 20 sec hold, and 72uC with a 20 sec hold. After

normalization with GAPDH, the median target level of implanted

tumor only and non-irradiated bed were used as calibrators.

Immunohistochemical and immunofluorescence staining
Tumor samples were fixed in 10% formalin and were

embedded in paraffin, which was cut into 5-mm-thick sections.

For immunohistochemical staining, deparaffinized sections were

blocked with 10% normal horse serum for 1 h and then incubated

with primary antibodies against TGF-b, CD-31 and IL-17A

(1:100). The samples were incubated with biotinylated secondary

antibody (DAKO code K0675; DAKO Corp., Carpinteria, CA)

and peroxidase-labeled streptavidin (DAKO code K0675). Stain-

ing was developed using the 3-3 diaminobenzidine (DAB) substrate

chromogen system (DAKO Corp.).

To immunofluorescence staining, deparaffinized sections were

blocked with 10% normal horse serum for 1 h and then incubated

with primary antibodies against TGF-b and IL-6. And then, the

samples were incubated with Alexa 594-conjugated donkey anti-

rabbit IgG (Invitrogen).

Co-immunofluorescence staining was also performed to assess

co-localization of CD4 and Ror-c. The sections were incubated

overnight with a mixture of anti-CD4 and anti-Ror-c in 4uC
followed by washes with PBS and incubation with a mixture of

Alexa 488-conjugated donkey anti-goat IgG and Alexa 594-

conjugated goat anti-rat IgG (Invitrogen). The reactions were

examined using an immunofluorescence microscope.

Cytokine detection
IL-6 and IL-17A protein were measured in culture supernatants

by enzyme immunometric assays (ELISA). ELISAs were per-

formed using specific mAb pairs for the detection of both IL-6 and

IL-17A. For sandwich ELISAs, purified antimouse IL-6 and IL-

17A antibodies were adsorbed to capture cytokines on 96-well

immunoassay plates. The culture supernatant at the appropriate

dilution was incubated following the addition of biotinylated

antimouse IL-6/IL-17A mAbs. Streptavidin-HRP (BD Pharmin-

gen) was used for detection, followed by the addition of the TMB

substrate reagent set (BD Pharmingen, San Diego, CA).

Th17 cell differentiation from naı̈ve CD4+ T cells
Naive CD4+ T cells were isolated from spleen of C3H/HeN

mice by negative selection using mouse CD4+ T cell isolation kit

(Miltenyi Biotec). Purified-naı̈ve CD4+ T cells were stimulated in
vitro with anti-CD3 (1 mg/ml) anti-CD28 (1 mg/ml) antibodies in

5 Gy irradiated- or no irradiated media. For Th17 polarizing in
vitro, Th17 polarizing factors except TGF-b (anti-IFNc (2 mlg/

ml), anti-IL-4 (2 mlg/ml), rmIL-6 (10 ng/ml) were added to

culture media. These were cultured for 4 days.

IL-17 neutralization in vivo
Approximately 16106 HCa-I and MIH-2 were injected

intramuscularly in the pre-irradiated site day 3 after the

implantation site had been irradiated with 5 Gy. 100 mg a-IL-

17A antibody was treated with intraperitoneally (i.p.) at day 3 and

day 10 after inoculation of tumor cells and with intratumoral (i.t.)
twice a week for 2 weeks after tumor formation reached 8 mm.

IgG2a antibody was administered to control mice using the same

method.

Ethics statement
All procedure of animal research was provided in accordance

with the Laboratory Animals Welfare Act, the Guide for the Care

and Use of Laboratory Animals and the Guidelines and Policies

for Rodent experiment provided by the IACUC in Yonsei

University Health System (Permit Number: 2011-0114). All

animal surgery was performed after euthanasia using CO2, and

all efforts were made to minimize suffering.

Statistical analysis
Data are expressed as means 6 SEM. Comparisons among

multiple groups were performed by factorial analysis of variance

(ANOVA) followed by Scheffe’s test or statistical comparisons
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Figure 1. Tumor Growth and tumor related factors of implanted tumor in non-irradiated or pre-irradiated tumor beds with 5 Gy. (A)
Growth rate of HCa-1 in various dose irradiated tumor beds. 16106 murine hepatocarcinoma cells (HCa-1) were injected intramuscularly in the right
thigh of the mice on day 1 after the implantation site had been irradiated. (n = 5 mice per group) *p,0.05, pre 5 Gy/D1 vs control (ANOVA) (B) Growth
rate of HCa-I and (C) MIH-2 tumors (n = 5 mice per group), (D) expression of CD31 and (E) p-stat3 in implanted tumor. Approximately 16106 murine
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between groups were made by unpaired two-sided t-tests.

Differences of p,0.05 (*) and p,0.01 (**) were considered

significant.

Results

The growth of implanted tumors into low-dose pre-
irradiated the tumor bed was accelerated compared with
non-irradiated the tumor bed

When patients with HCC are treated in single fraction of 20 Gy,

the surrounding regions of the tumor are exposure to graded doses

(Sup Fig. 1). Tumor cells are distributed at the microscopic level in

the surrounding area that has received lower doses of irradiation.

The tumor growth can be affected by low-dose pre-irradiation.

Therefore, to investigate the effect of pre-irradiation on the growth

of subsequently implanted tumors after pre-irradiating the tumor

bed, experimental models were developed by irradiating the right

thighs of C3H/HeN mice with various doses followed by

implantation of syngeneic tumor cells of murine hepatocarcinoma

(HCa-I). As shown in Fig 1, tumor growth was accelerated in areas

that received below 5 Gy, while the growth of the implanted tumor

into the high-dose irradiated tumor bed (more than 7 Gy) was slow

(Fig 1A). Therefore, we investigated the effect of the low-dose pre-

irradiating tumor bed and the change of tumor microenvironment

by pre-irradiation using 5 Gy and syngeneic murine hepatocar-

cinomas (HCa-I and MIH-2) in this study. HCa-I is a rapidly

growing tumor that is resistant to radiation, while MIH-2 is a slow-

growing tumor that is sensitive to radiation in relative comparison

to HCa-I. The growth of both tumors was faster in the pre-

irradiated bed than that in the non-irradiated bed (Figure 1, B and

C). In addition, expression of pro-tumor factors, such as platelet

endothelial cell adhesion molecule (PECAM-1, CD 31) and p-

stat3, increased in both tumors in the pre-irradiated beds

(Figure 1D and E).

Pre-irradiation on tumor bed increased TGF-b in
implanted tumors and the tumor bed

TGF-b has multiple tumor-promoting effects and it can be

induced by irradiation [15]; therefore, its expression was measured

in the implanted tumors. TGF-b expression and its mRNA levels

were higher at the tumor edges as well as in both the tumors

implanted in the pre-irradiated beds than those in the control were

(Figure 2A, B and Figure S2). TGF-b expression and mRNA level

in the irradiated skin and muscles of the mice on day 3 of

irradiating their thighs with 5 Gy was investigated because skin

and muscles acted as tumor beds. It was highly expressed in

vascular endothelial cells as well as in fibroblasts of dermis

(Figures 2C and D). Thus, irradiation can induce TGF-b
production in a tumor and its microenvironment, which includes

the stroma and vascular endothelial cells.

Pre-irradiation on tumor bed increased TIL and IL-6 levels
in implanted tumors

IL-6 is believed to have a pro-tumor effect as well as an

inflammatory effect [16]. It is secreted by immune cells and some

non-immune cells such as smooth muscle cells and fibroblasts [17].

Therefore, we investigated TIL and IL-6 production in this study.

TIL increased in both tumors implanted into the pre-irradiated

beds compared to the control (Figure 3A and B). Similarly, IL-6

expression also increased (Figure 3C). Immunofluorescence stain-

ing was performed to check IL-6 levels of pre-irradiated tumor

beds (Figure D). A 5 Gy-irradiation led to increased IL-6 levels in

the tumor bed and infiltration of immune cells (Figures 3D, E, F,

and G).

Pre-irradiation on tumor bed increased IL-6 levels in the
tumor-draining lymph node

We next set out to assess whether pre-irradiation of tumor beds

can influence IL-6 levels in tumor-draining lymph nodes, as the

lymph nodes, among lymphoid tissues, show the greatest

involvement in mediating inflammatory responses. As shown in

Figure 4, IL-6 levels were slightly increased in the tumor-draining

lymph nodes of the pre-irradiated group, compared to control.

These results potentially suggest that the enhancement of tumor

growth in pre-irradiated tumor beds might be influenced by

factors other than IL-6.

Pre-irradiation on tumor bed showed increased IL-17A in
tumor-draining lymph node

Our results showed that IL-6 and TGF-b expressions increased

in tumors implanted in pre-irradiated beds. TGF-b and IL-6 are

required to induce Th17 differentiation from naive T cells [18].

IL-17A, in particular, plays an important role in cancer

development and in inflammatory responses [6]; therefore, we

investigated IL-17A and Th17 cell populations. To investigate IL-

17A and Th17 cells in tumors, both tumor tissues were stained

with IL-17A antibody and co-stained with CD4 and Ror-ct

antibodies because Th17 cells are CD4- and Ror-ct-positive. We

found an increase in IL-17A in both tumors implanted in the pre-

irradiated beds, compared to controls (Figure 5A). Th17 cells also

increased in number in both tumors implanted in the pre-

irradiated beds, compared to controls (Figure 5B). To evaluate IL-

17A levels in T cells, CD4+ T cells were isolated from tumor-

draining lymph nodes in mice and were cultured for 4 days in the

presence of a-CD3 and a-CD28. IL-17A mRNA levels and

secreted-IL-17A into the media from CD4+ T cells increased in

the pre-irradiated group, compared to the control group

(Figure 5C and D). These data show that enhanced-tumor growth

is closely correlated with IL-17A in pre-irradiated tumor beds.

Th17 cell differentiation was enhanced by irradiation in
vitro

Next, to determine how irradiation to the tumor beds could

induce Th17 cells, we examined Th17 cell differentiation by

irradiation in vitro. First, we isolated dermal fibroblasts from mice

and these were irradiated with 5 Gy. An irradiation of 5 Gy

increased IL-6 and TGF-b levels in dermal fibroblasts (Figure S3).

Isolated-naı̈ve CD4+ T cells from spleen were cultured for 4 days

in conditioned medium derived from irradiated-dermal fibroblasts

or no irradiated-dermal fibroblasts. For Th17 polarizing in vitro,

Th17 polarizing factors except TGF-b were added to culture

media (Anti-IFN-c (2 mlg/ml), Anti-IL-4 (2 mlg/ml) and small

amount rmIL-6 (10 ng/ml) than commonly used rmIL-6 for Th17

polarization in vitro. As shown Figure 5E, the differentiation of

naı̈ve T cells towards Th17 cells was enhanced in the conditioned

medium derived from irradiated fibroblasts.

hepatocarcinoma cells (HCa-1 and MIH-2) were injected intramuscularly in the right thigh of the mice on day 1 and 3 after the implantation site had
been irradiated. Error bars denote 6 SEM. *p,0.05, pre 5Gy/D3 vs control (ANOVA). The tumors were resected for histologic examination when the
tumor volume reached 800 to 1200 mm3 and CD31 and p-stat3 were stained.
doi:10.1371/journal.pone.0106423.g001
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Figure 2. TGF-b expression. (A) TGF-b expression and (B) mRNA level in both tumors implanted into irradiated tumor beds or non-irradiated tumor
beds at day 3 after irradiation. (C) TGF-b expression and (D) TGF-b mRNA level of tumor beds with or without 5 Gy-irradiation. p,0.05 (*) and p,0.01
(**) (t-test).
doi:10.1371/journal.pone.0106423.g002
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Figure 3. TIL frequency and IL-6 expression in implanted tumors and irradiated beds. TILs were isolated from the tumor and stained with
CD4+ and CD8+ antibodies which was analyzed by FACS. (A) frequency of infiltrated CD4+ and CD8+ T cells and (B) Summary of TIL frequency in HCa-I
and MIH-2 tumors. (C) IL-6 expression in both tumors. Irradiated beds were analyzed at day 3 after 5 Gy irradiation. (D) Representative
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Tumor progression was inhibited by IL-17A neutralization
in implanted tumors in pre-irradiated beds

When tumor cells were inoculated into irradiated tumor beds,

the tumor growth rate and IL-17A expression drastically were

increased relative to the controls. In addition, recombinant hIL-

17A (rhIL-17A) treatment increased the proliferation of human

hepatocellular carcinoma, HepG2 cells in vitro (Figure S4).

Therefore, we further examined whether IL-17A neutralization

can rescue accelerated tumor growth in pre-irradiated beds. As

shown in figure 6A and C, neutralization of IL-17A suppressed the

accelerated tumor growth in pre-irradiated tumor beds. Moreover,

IL-17A decreased following IL-17A neutralization in both tumors

implanted in the pre-irradiated beds (Figure 6B and D). There-

fore, irradiating tumor beds might enhance the growth of

subsequently implanted tumors via IL-17A.

Discussion

The effect of a high, ablative-radiation dose to the tumor bed on

the growth of subsequently an implanted tumor has been

extensively investigated, and is known as the tumor bed effect

(TBE). The TBE was first described by Frankl and Kimball and

was named the TBE by Senstrom [19]. A high-dose of irradiation

to the tumor bed induced injury to the host vasculature and

connective tissue, resulting in impaired neovascularization in the

implanted tumor [10]. It has been reported that implanted tumor

growth was inhibited in high-dose (20 Gy) pre-irradiated beds,

while tumor metastasis increased through increased hypoxia-

associated factors [20]. Although the nature of TBE has long been

recognized, its mechanism is still uncertain.

In this study, we investigated the effect of low-dose pre-

irradiation (5 Gy) on the tumor bed where tumor cells were

subsequently implanted. In current practice hypofractionated RT,

a low-dose region usually present around the region exposed to a

high, lethal dose. Tumor of areas receiving low-doses of irradiation

may be affected to tumor growth by pre-irradiation. Fig 1A

showed that tumor growth was accelerated in areas that received

below 5 Gy. More frequently, 5 Gy-fraction hypofractionated RT

is used in a clinical setting [21,22], thus 5 Gy was used in this

study.

The growth of implanted tumors in 5 Gy pre-irradiated beds

was accelerated by IL-17A, compared to the controls. In HCa-I,

tumor growth in the pre-irradiated beds was faster in the pre-5

Gy/D1 and D3 groups than in the control group, and was

correlated with IL-17A production. However, MIH-2 showed

faster growth only in the pre-5 Gy/D3 group, and there was only a

slight difference in tumor growth between the control and pre-5

Gy/D1 groups. This might be attributable to a decrease in the

potency of IL-17A in the pre-5 Gy/D1 group of MIH-2 than that

in HCa-I.

In this study, tumor growth was suppressed by IL-17A

neutralization; however, growth was still slightly faster than that

in the non-irradiated control. This suggests that other factors in

addition to IL-17A might promote tumor growth in pre-irradiated

beds.

Several studies have shown that IL-6 inhibits radiation-induced

apoptosis and enhances cell survival via stat3 activation [23,24].

Fujikawa et al. reported that the IL-6-induced inflammatory

response can suppress immune-mediated anti-tumor effects [25].

In this study, IL-6 level in the tumor-draining lymph nodes of

irradiated group was slightly induced compared to control. Our

results also showed that a 5 Gy irradiation increased TGF-b.

TGF-b suppresses tumor growth during tumor initiation, but it

may in fact promote tumor progression and cancer cell

invasiveness in later stages [26]. Accordingly, irradiation-induced

IL-6 and TGF-b could act separately as a pro-tumor factor as well

as accelerated tumor growth through the induction of IL-17A in

this study. However, IL-17A was significantly increased in

immunofluorescence staining for IL-6, (E) western blotting for IL-6, (F) IL-6 mRNA level and (G) histology in 5 Gy irradiated beds. p,0.05 (*) and p,
0.01 (**) (t-test).
doi:10.1371/journal.pone.0106423.g003

Figure 4. IL-6 expression in the tumor-draining lymph node of tumor bearing mice. (A and B) IL-6 expression in the tumor draining lymph
node from HCa-I and MIH-2 bearing mice. p,0.05 (*) and p,0.01 (**) (t-test).
doi:10.1371/journal.pone.0106423.g004
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Figure 6. The effect of treatment with a-IL-17A neutralizing antibody on tumor growth. (A and C) Growth delay and (B and D) IL-17A
expression of HCa-I and MIH-2 tumors implanted in 5 Gy irradiated beds or non-irradiated beds by a-IL-17A treatment, respectively (n = 5 mice per
group). Error bars denote 6 SEM. *p,0.05, pre 5 Gy/D3/a-IL-17 vs pre 5 Gy/D3/IgG2a (ANOVA).
doi:10.1371/journal.pone.0106423.g006

Figure 5. IL-17A expression in the tumor-draining lymph node of tumor bearing mice and Th17 differentiation by irradiation in
vitro. (A) Expressions of IL-17A and (B) Th17 cells (CD4+ and Ror-ct double positive cells) in both tumors. (C) IL-17A mRNA level and protein
expression in the tumor draining lymph node of HCa-I bearing mice. (D) IL-17A mRNA level and protein expression in the tumor-draining lymph node
of MIH-2 bearing mice. (E) Th17 differentiation by irradiation in vitro. Murine fibroblasts were cultured for 3 days after irradiating cells with 5 Gy. Naı̈ve
CD4+ T cells were isolated from the spleen, which were then cultured for 4 days in conditioned medium derived from irradiated fibroblasts or non-
irradiated fibroblasts. Secreted IL-17A from Th17 cells was analyzed by ELISA. IL-17A mRNA level was evaluated using quantitative real time PCR. rmIL-
6 (10 ng/ml), a-IFN-c (2 mg/ml), and a-IL-4 (2 mg/ml) were added to the culture media. p,0.05 (*) and p,0.01 (**) (t-test).
doi:10.1371/journal.pone.0106423.g005
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draining lymph nodes of the irradiated group, compared to IL-6

and its expression exhibited a correlation with enhanced tumor

growth. Therefore, IL-17A might be a major factor for enhancing

tumor growth in low-dose pre-irradiated tumor beds.

IL-17A is mainly secreted by Th17 cells, which may influence

cancer progression. IL-17B, IL-17C, IL-17D, IL-17E/IL-25, and

IL-17F have all been identified in humans and cloned [27].

Among these, IL-17A has been detected in several human cancers.

IL-17A promotes hepatocellular carcinoma (HCC) metastasis via

matrix metalloproteinase (MMP) 2 and 9 [28]. In contrast,

another study showed that endogenous IL-17 reduces tumor

growth and metastasis [29]. Although, the role of IL-17 in cancer

has not been fully studied, the clinical evidence of IL-17A and

Th17 cells as pro-tumor factors in HCC have recently been

reported. It has shown that increased IL-17 production in T cells

from tumors or blood of HCC patients is correlated with both

micro-vessel density and poor prognosis, suggesting the potential

role of IL-17 as a pro-tumor factor [30,31]. It was also reported

that the inhibition of monocytes/macrophage-derived inflamma-

tion in hepatoma-bearing mice suppresses tumor-infiltrating Th17

cell numbers, resulting in a reduction of tumor growth [32]. Thus,

IL-17A seems to be a specific target in HCC. Indeed, this study

demonstrated that low-dose pre-irradiation of tumor beds

subsequently enhanced implanted-hepatoma growth in vivo,

which was suppressed by IL-17A neutralization. Therefore, we

suggest that IL-17A may be used as a novel therapeutic approach

to improve the outcome of patients with HCC receiving RT

through preventing recurrence in low-dose normal liver. However,

further studies are needed to determine whether blocking IL-17A

helps in preventing recurrence of both the primary irradiated

tumor and recurrence in low-dose normal livers.

In conclusion, the results of our study suggest that low-dose

irradiation of tumor beds can induce IL-17A production via IL-6

and TGF-b production, and promote the growth of subsequently

implanted tumors. IL-17A seems to be a key factor for enhancing

tumor growth in pre-irradiated tumor beds.

Supporting Information

Figure S1 Iso dose lines of the patient with Hepatocellular

carcinoma receiving 20 Gy single fractionation RT.

(TIF)

Figure S2 Expression of TGF-b by pre-irradiation of tumor bed

in tumor border and tumor. Approximately 16106 HCa-1 cells

were injected intramuscularly in the right thigh of the mice on day

3 after the implantation site had been irradiated with 5 Gy.

(TIF)

Figure S3 Murine fibroblasts were isolated from mice skin that

were irradiated with 5 Gy. (A) TGF-b and (B) IL-6 expression was

assessed by ELISA in irradiated-murine fibroblasts cultured media

3 day after irradiation, respectively. Data are representative of

three independent experiments.

(TIF)

Figure S4 Proliferation of HepG2 cells by rhIL-17. HepG2 cells

were treated with rhIL-17A of concentration from 0 to 100 ng/ml.

Data are representative of three independent experiments.

(TIF)
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