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Abstract

A new coarse-grained model of the E. coli cytoplasm is developed by describing the proteins of the cytoplasm as flexible
units consisting of one or more spheres that follow Brownian dynamics (BD), with hydrodynamic interactions (HI) accounted
for by a mean-field approach. Extensive BD simulations were performed to calculate the diffusion coefficients of three
different proteins in the cellular environment. The results are in close agreement with experimental or previously simulated
values, where available. Control simulations without HI showed that use of HI is essential to obtain accurate diffusion
coefficients. Anomalous diffusion inside the crowded cellular medium was investigated with Fractional Brownian motion
analysis, and found to be present in this model. By running a series of control simulations in which various forces were
removed systematically, it was found that repulsive interactions (volume exclusion) are the main cause for anomalous
diffusion, with a secondary contribution from HI.
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Introduction

As computer simulations of biomolecules advance, efforts are

underway to mimic the behavior of many macromolecules at the

same time. Modeling a cell using physics-based techniques is one

of the ambitious goals in understanding behavior of many

macromolecules. Among the different classes of models to describe

a cell, one class treats macromolecules as particles without any

volume and solves either a stochastic equation of motion or models

a cell as a reaction-diffusion system [1–5]. In the other class of

model, researchers have taken initial steps towards building three-

dimensional virtual cells with a molecular perspective although

often the resolution of the macromolecules is much coarser than

the molecular resolution. These important steps and complemen-

tary modeling with different resolution have the common goal of

investigating cellular processes at larger length scales and longer

time scales and predicting how a cell might respond to any number

of perturbations such as drugs, diet, mutations, etc. [6–13].

Here, we describe the cytoplasm of one of the most commonly

studied bacterial cells, E. coli, with a physics-based model. It is well

known that the cytoplasm of prokaryotes such as E. coli is highly

crowded with a large number of macromolecules including

protein, DNA and RNA, the concentrations of which are

estimated to be 200–320 mg/ml, 11–18 mg/ml and 75–

120 mg/ml, respectively [14,15]. Moreover, these macromole-

cules occupy 20–40% of total volume of the cell [15–17]. Hence,

the problem of modeling a cell is one of modeling a concentrated

solution of biomolecules. This high macromolecular concentration

induces large excluded volume effects that modify the macromo-

lecular properties inside the cytoplasmic environment [15,18–26].

Moreover, the variety of biomolecules present in a cell makes it a

highly heterogeneous system.

In the past few years, various experimental techniques have

been employed to study the behaviors of macromolecules in the

cellular environment. Experimental methods include single

particle tracking (SPT) which involves selective labeling of proteins

with fluorophores like green fluorescent protein (GFP) and

tracking their motion using suitable camera detectors [27]. Other

most widely used techniques to study mobility of macromolecules

inside the cytoplasm are fluorescence recovery after photobleach-

ing (FRAP) and fluorescence correlation spectroscopy (FCS)

[27,28]. These techniques, however, are limited in that it is

difficult to obtain the dynamics of many particles at the same time.

On the other hand, computer simulation, in principle, can

monitor the dynamics of all particles of a system simultaneously.

There have been several reports where simulations of concen-

trated solutions of proteins were performed [29–32]. Although

these are not meant to simulate a full cell, the basic physics, such as

excluded volume and hydrodynamic interactions (HI), remain

similar. Volume exclusion for a molecule refers to the unavail-
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ability of a portion of the space because of the presence of other

molecules. HI can be defined as follows: in a fluid, any fluctuating

particle induces a velocity field in the solvent, which affects the

motion of other particles present in the fluid. This interaction

among particles mediated by a fluid is termed HI. As far as

modeling of the interior of a cell from a molecular perspective is

concerned, only a few studies have been reported. The group of

Martin Field, in their pioneering work, modeled a collection of

proteins, t-RNAs and ribosomes with spheres [6]. They included

both short-ranged Lennard-Jones and long-ranged electrostatic

interactions in their model. They have considered both structural

properties like structure factors, pair-correlation functions and

dynamic properties like diffusion coefficient (D). In a seminal work,

the Elcock group modeled the bacterial cytoplasm using all atom

models for the 50 most abundant proteins of E. coli [7]. The

interactions between the proteins were treated with electrostatics

and a Lennard-Jones potential. In this initial study, the Elcock

group did not include HI between the proteins. Their initial model

was not able to reproduce the experimental D of GFP, presumably

because of neglect of HI; with modifications to the Van der Waals’

parameters, the model was able to reproduce the experimental D

of GFP.

Ando et al. [8] have carefully treated the HI using Stokesian

dynamics [33] in their modeling of E. coli. This model was

successful in reproducing the D of GFP in a simulated cellular

environment. It also determined various factors affecting the

diffusivity of proteins in a crowded cytoplasm, such as the size and

shape of proteins, and HI. The main limitation of this model is the

large computational cost of calculating the HI, as their

implementation involves a Cholesky decomposition of the

diffusion tensor matrix, which scales roughly as the cube of the

number of particles. Using the idea of hydrodynamic screening in

a subsequent work, Ando et al. [34] approximated the far-field

part of Stokes dynamics [33] by a diagonal matrix, thus screening

the long-range HI completely. This approximation reduces the

computational scaling to O(N), where N is the number of particles.

Wang et al [9] developed a coarse-grained model of E. coli
cytoplasm to investigate protein stability inside the crowded

environment of a bacterial cell, using a model containing the fifty

most abundant macromolecules that together account for 85% by

weight of the cytoplasm protein content. Trovato et al. [10]

presented a multiscale model to predict mobility of GFP within the

E. coli cytoplasm, combining a coarse-grained model of GFP in

which each sphere represents one residue with a mesoscale model

of cytoplasm. The model accurately predicted the effect of

macromolecular crowding on GFP diffusion, although the friction

coefficient of GFP had to be parameterized.

In this work, we consider the most abundant proteins of E. coli
in our cytoplasm model, describing each protein as a flexible unit

consisting of a collection of spheres. Another major departure from

the previous models is that we accounted for hydrodynamic effects

with a simple mean field approximation [35–39] based on a

dynamic scaling of D of the spheres by their local volume fraction.

Our use of a simple HI model allowed us to run multiple

independent trajectories to assess the statistical error of the

calculated observables. With our model we could accurately

estimate the D of GFP inside the cytoplasm of an E. coli cell and

also calculated D of two other proteins. We have also investigated

anomalous diffusion (AD), which has been observed in some

experiments [40–45], using Fractional Brownian Motion (FBM)

analysis. It was found that AD was present although deviation

from normal diffusion was small. The underlying physical reasons

for the AD in our model were identified by running a series of

control simulations in which the different interactions used to

describe the cytoplasm were modulated.

Materials and Methods

Cytoplasmic model
The cytoplasm has been built using the most abundant proteins

in E. coli by taking their structures either from the Protein Data

Bank or using homology modeling. The structures have been

coarse-grained using k-means clustering of the alpha carbon

atoms, where the number of clusters is determined by the

molecular weight of the protein (1 cluster for ,5 kD, 2 clusters

for 5–14 kD, 3 clusters for 14–23 kD, 4 clusters for 23–32 kD, and

5 clusters for .32 kD). Each cluster is then represented by a

sphere. The radii of the spheres are proportional to the number of

residues represented in the cluster, with scaling applied to ensure

that the total volume matches that of an all-atom model (taking

sphere overlap into account). The relative abundance of each

protein present in E. coli has been reported previously [46]. Based

on the relative abundance of these proteins, the 159 most

abundant proteins along with GFP were modeled in a cubic box

of length 406 Å. The number of copies of each protein is

calculated from their whole-cell abundance. Figure 1 shows this

cytoplasmic model of E. coli in a cubic box of length 406 Å.

Energy Model
As described in the preceding section, our model represents not

only the size of macromolecules but also, at a low level of

resolution, their shape, by using multiple spheres for all but the

smallest macromolecules. For the Brownian dynamics simulations,

the spheres need to be connected appropriately, and we chose to

do so using stiff harmonic potentials. Specifically, the energy

potential connecting the spheres together consists "stretching"

potentials and "bending" potentials as given below. The stretching

potential Es is given by

Es~
h

2

Xm

i~1

li{li,0ð Þ2 ð1Þ

In the above equation li is the i-th bond length in a protein, li,0 is

the equilibrium i-th bond length, h is the stretching force constant

(taken as 0.06 kcal/mol/ (Å2)) and m is the number of such

"bonds", which connect every pair of spheres. The bending

potential Eb is given by

Eb~
g

2

Xk

i~1

hi{hi,0ð Þ2 ð2Þ

In the above equation g is the bending rigidity constant (taken as

0.006 kcal/mol/ (radian2)), hiand hi,0 are the i-th bending angle

and equilibrium bending angle respectively and kis the total

number of angles in the system. The only inter-protein interaction

in the model (apart from HI) is a quadratic harmonic potential (Er)

that was used to disallow overlap of two proteins:

Er~krep(r{rth)2 if rƒrth

~0 if rwrth

ð3Þ

where ris the distance between two spheres of different proteins

and rthis defined to be the sum of the radii of the same. krep is a

parameter used to modulate the repulsive interaction, whose value

was taken as 0.1 kcal/mol/Å2 unless otherwise mentioned.

Physics-Based Modeling of E. coli Cytoplasm
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Brownian Dynamics
Brownian dynamics simulations for the cytoplasmic model are

performed in a periodic box. The simulation follows the Langevin

dynamics according to the following equation

m _vvi~{
XN

j~1

jij :vjzFiz
XN

j~1

aij :f j ð4Þ

where N is the total number of spheres in the system, 1ƒi,jƒN,

m is the mass of the i-th sphere, jij is the friction tensor related to

the coefficient aijby

jij~
1

kT

X

l

ailajl ð5Þ

kand Tare Boltzmann constant and temperature respectively. viis

the velocity of the i-th sphere and Fi is the sum of forces acting on

sphere i. The last term on the right hand side of eq. (4) is a random

fluctuating force exerted on particle i by the surrounding fluid. f j is

calculated from a Gaussian random number distribution with

SfjT~0 and Sfi(t)fj(t’)T~2dijd(t{t’) (dijand d(t{t’)are Kro-

necker and Dirac delta, respectively and fiis the scalar component

of f
i
).

When the momentum relaxation of the system is much faster

than the position relaxation, then following the Ermack-McCam-

mon approach [47], the Langevin equation can be transformed to

the following Brownian dynamics simulation protocol.

Xnz1~Xnz
Dt

kT
Dn:FnzRn ð6Þ

In the above equation Xnis the position of the centre of the spheres

at step n, Dn is the translational diffusion coefficient (which is, in

general, a tensor; however, in the present work it is taken as a

scalar), Fnis the force vector and Rn is the random displacement,

all are at step n. Rnis generated from a Gaussian distribution with

zero mean and variance SRnRmT~2DnDtdnm, where dnmis the

Kronecker delta and Rn is the scalar component of Rn.

Figure 1. Virtual cytoplasm model in a cubic box of length 406 Å. Each protein is represented by a collection of spheres representing the
volume and approximate shape of a particular macromolecule.
doi:10.1371/journal.pone.0106466.g001
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The translational diffusion coefficient D of each sphere is

calculated by rescaling the diffusion coefficient at infinite dilution

with the local volume fraction (Qi) occupied by the sphere [35–37].

The volume fraction is calculated in the following manner.

The local volume Vi is defined as the volume of a sphere having

radius Rcut, where Rcut is four times the radius of the sphere i. The

local volume fraction (Qi) for the sphere i is defined as the volume

of all spheres which lie within Rcut divided by the local volume Vi.

Qi~

viz
X

j

vjz
X

k

vk

Vi

ð7Þ

where vi is the volume of the ith sphere. vjand vk are the volumes

of spheres lying completely and partially inside the volume Vi,

respectively. Figure 2 shows the local volume for the sphere i. In

the figure, sphere j lies completely inside Vi, whereas sphere k lies

partially inside Vi.

The short time translational diffusion constant can be defined

following the work of Tokuyama et al. [38], where they

investigated the dynamics of concentrated hard-sphere suspension,

as

Di~
D0

1zH(Qi)½ � ð8Þ

where D0is the translational diffusion coefficient at infinite

dilution, Qiis the volume fraction for sphere i, H(Qi) is a scalar

function defined as

H(Qi)~
2b2

1{b
{

c

1z2c
{

bc(2zc)

(1zc)(1{bzc)
ð9Þ

where b = [(9/8) Qi]
1/2 and c = (11/16) Qi.

Simulation Details
Simulations were performed in a cubic box of length 406 Å with

periodic boundary conditions, which keeps the number density

inside the box constant. The system was simulated with a time step

of 0.01 ns. We generated five different trajectories of 1 ms in

length from different random starting configurations. Later, to

understand the effect of HI and repulsive interactions on the AD,

several simulations were run, in which the repulsive potential and/

or HI were turned off. Details of these simulations are given in the

next section. A movie showing a part of one trajectory is shown in

the Movie S1.

Results and Discussion

Although any quantity that is a function of sphere coordinates

can be calculated from the simulation trajectory, our main

emphasis in this work is diffusion. For this purpose, the diffusion

coefficient of a "virtual" GFP was calculated and compared to the

experimentally measured diffusion coefficient. GFP was modeled

as a collection of spheres as done for other proteins and only one

GFP was used in our simulation. We also looked for evidence of

AD, as it is known that the crowded environment inside a cell can

give rise to AD.

Figure 2. Model for the calculation of local volume fraction for the sphere i. In this model, Rcut is 4 times radius of central sphere i, and j and
k are spheres that lie completely inside and partially inside Rcut, respectively.
doi:10.1371/journal.pone.0106466.g002

Physics-Based Modeling of E. coli Cytoplasm

PLOS ONE | www.plosone.org 4 September 2014 | Volume 9 | Issue 9 | e106466



Comparison of calculated and experimental translational
diffusion coefficients

The position of each sphere was recorded at regular intervals of

10 ns. The mean square displacement (MSD) of the centre of mass

(COM) of a protein was calculated (shown in the right hand side of

eq. 10) and averaged over different time origins. From the MSD,

the diffusion coefficient (Dt) was calculated according to

6tD~SDr(t)-r(0)D2T ð10Þ

where t is the time difference, r(t) and r(0) are the COM position

vectors of the system at time t and 0 respectively. For normal

diffusive motion, the MSD should show a linear dependence on

time, as can be seen from equation (10). To obtain a clearer

picture of how MSD actually varied with time difference in our

simulation, a log-log plot of MSD versus time is shown in Figure 3.

Linear least squares regression was performed on varying regions

of the plot to determine the dependence of MSD with time. From

Figure 3, we see that at short time scales (approximately 10 ns,

t,1 ms) the MSD does not show linear scaling with time (MSD

! t0:9). Normal diffusion is observed in the time range from

1 ms,t,100 msas in this region MSD ! t1:0. Beyond that the

data was not reliable because of inadequate statistics (data not

shown).

For the calculation of D, a block averaging method is used. In

this study, each trajectory has been divided into two blocks, each

of length 400 ms (first 200 ms simulation data was discarded from

the analysis). We calculated the MSD for each block and plotted it

against the time difference. Linear least squares regression was

done in the region of the plot showing linear scaling with time

(MSD ! t). From the linear region in the log-log plot, the

intercept value yields the value of the diffusion coefficient, D.

The diffusion coefficient for GFP found in our study,

6.5160.47 mm2/s, was close to the reported experimental values

of 7.762.5 mm2/s [48] and 6.162.4 mm2/s in the cytoplasm of E.
coli [49]. The calculated value of the diffusion coefficient of GFP

in the cytoplasm is about eleven times lower than its value in dilute

solution, which is 87 mm2/s [50,51]. The reduction in the diffusion

coefficient inside the cytoplasmic environment can be mainly

attributed to the volume exclusion and HI [8].

We have also calculated the diffusion coefficients of two other

proteins, namely the chemotaxis protein CheY and malonyl CoA-

acyl carrier protein transacylase (FabD). The simulated value of

the diffusion coefficient of CheY (9.4261.12 mm2=s) is found to be

close to the value of 10.0 (61.3) mm2=sgiven by Lipkow et al. [52]

in their model of E. coli. For both CheY and FabD (whose D value

is 6.2660.66 mm2=s), as with GFP, the diffusion constant in the

simulated cytoplasm was roughly a factor of ten lower than that in

dilute solution. The molecular weight of FabD (,32 kD) is the

largest among the three proteins, and as would be expected, its

calculated diffusion coefficient is lower than that of other two

proteins. CheY has the lowest molecular weight (,14 kD) among

the three and has the highest value of D. Table 1 shows the values

of D from individual trajectories for the three proteins. Figure 4

shows the time-variation of D for GFP, Chey and FabD. At longer

time scales, the D values of CheY and FabD essentially converge

Figure 3. Scaling of the mean-squared displacement as a function of time.
doi:10.1371/journal.pone.0106466.g003
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and are time-independent. For GFP, D values show about 10%

fluctuation from its mean value of 6.51mm2=s.

One issue is how the D values depend on the choice of the

repulsive force constant. To check that we have run simulations

with the value of force constant as 1.0 kcal/mol/Å2. The D values

were found to reduce by about 6–10% (D values are 6.160.22,

8.860.64, and 5.660.62 mm2=s for GFP, CheY and FabD,

respectively) than the values obtained from simulations with force

constant of 0.1 kcal/mol/Å2. This is because higher repulsion

reduces the mobility of the proteins.

Role of Hydrodynamic Interactions
Hydrodynamic interactions (HI) are known to play a major role

in the diffusivity of proteins in crowded environments. To examine

the effect of HI on the calculated diffusion coefficient, control

simulations were performed without HI. Table 1 compares the

diffusion coefficients for the three proteins with and without HI. In

all cases, neglecting HI increases the observed diffusion coefficients

by a factor of 2–3. As expected, HI retards the motion of proteins

in the crowded environment.

Analysis of anomalous diffusion
There have been several investigations of anomalous diffusion

(AD) in crowded environments [40,41,44,53]. One mechanism for

AD is that over certain time scale, the successive steps a particle

takes are correlated, unlike in normal diffusion, where steps are

uncorrelated. There are several models such as obstructed

diffusion (OD), fractional Brownian motion (FBM), and continu-

ous time random walk (CTRW) to explain AD. For instance, in

the FBM, the probability distribution of the process is Gaussian

Figure 4. Diffusion coefficient values of the particles corresponding to GFP, CheY and FabD plotted against time.
doi:10.1371/journal.pone.0106466.g004

Table 1. Diffusion coefficient values for three proteins with and without considering hydrodynamic interactions (HI). SD
represents standard deviation.

Trajectory Diffusion coefficient (±SD) in units of mm2/s

GFP CheY FabD

With HI Without HI With HI Without HI With HI Without HI

1 6.32 (0.23) 16.26 (1.44) 9.39 (0.83) 25.20 (3.72) 5.96 (0.37) 13.76 (1.93)

2 6.55 (0.10) 16.30 (0.13) 9.45 (0.57) 22.84 (1.71) 6.16 (0.21) 14.70 (0.78)

3 6.78 (0.08) 16.08 (0.74) 8.94 (1.32) 23.58 (1.08) 6.48 (0.18) 14.88 (0.76)

4 6.44 (0.47) 9.71 (0.30) 6.32 (0.66)

5 6.46 (0.44) 9.60 (1.12) 6.39 (0.17)

doi:10.1371/journal.pone.0106466.t001
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but it is non-Markovian. On the other hand, in the CTRW model,

it is both non-Gaussian and non-Markovian. It is also reported in

the literature that the same data can be explained by different

models, suggesting that a definitive mechanistic explanation may

be elusive [54]. Although AD has widely been observed as a

nonlinear growth of MSD, often the properties of the associated

propagators are hard to find. Weiss et al. [54] have grouped the

propagators for subdiffusive motion into two categories based on a

stationary increment (i.e. the increment for a time slice depends

only on the time difference) or a non-stationary increment of steps.

A stationary increment gives rise to FBM while a non-stationary

increment gives rise to CTRW which, in contrast to FBM and

OD, shows weak ergodicity breaking. Weiss et al. utilized

fluorescence correlation spectroscopy (FCS) to determine the

propagator responsible for crowding-induced subdiffusion, and

found that subdiffusion in a crowded environment is most

consistent with a stochastic process with stationary increments,

characteristic of FBM [55].

In the current work, we have performed simulations where the

random force term is uncorrelated in time. However, even in that

case AD may occur due to the crowded nature of the system. The

crowding can be mapped implicitly to a simpler system using a

memory-dependent random force in the Langevin equation as

done by Weber et al [56]. We have investigated whether our
trajectories can be represented as a memory-dependent random force
acting on GFP and whether they follow FBM. The two main

conditions for FBM are that (a) the probability distribution of

displacement should be Gaussian and (b) there should be negative

value for the displacement auto-correlation function (shown below)

for AD [54]:

Ct(t)~S
vt(T)

Dvt(T)D
:

vt(tzT)

Dvt(tzT)D
T ð11Þ

where, vt(T)~r(tzT){r(T)is the increment vector of position r

between time T and Tztfor the particle under consideration. For

normal diffusion Ct(t)will tend to zero for t&t. However, for

FBM, this will lead to a negative value of Ct(t) [55].

We have found that the probability distribution of displacement

in our simulations is approximately Gaussian (shown in Figure S1)

and it indeed shows negative values of the correlation function.

The (small) deviation from Gaussian distribution can be from

several reasons including lack of enough statistics for this highly

concentrated system. The interpretation of the analysis discussed

later should be taken with this caveat. Moreover, no attempt was

made to investigate other models of diffusion in this work. We

have used well defined correlation function in FBM, which gives

signature of AD. This analysis is similar in spirit to the works of

Weiss et al., where FBM was used to find signature of AD from

their experimental trajectories [54].

We have calculated Ct(t)for the displacement of the GFP

protein for t = 100, 200, 500 and 1000 ns. To improve statistics,

we ran an additional 1 ms simulation where we have saved

coordinates every 1.0 ns. Figure 5 shows Ct(t) for various t. It is

clear that for t&t, Ct(t) is less than zero when t&t, characteristic

of AD, and gradually decays to zero as t increases, characteristic of

a Markovian random walk at later time intervals. The minimum

value of Ct(t) and the exponent alpha (MSD & ta) is related by

2a{1{1[57]. The exponent a is found to be approximately 0.90,

suggesting that the effect of AD is small. The onset of AD and its

gradual change to normal diffusion can also be seen from the time-

dependent diffusion coefficient (Figure 6). The D value remains

independent of time only after a certain time lag t1 (which

corresponds to ,1 ms); before that D decreases as the time lag

increases.

Effects of hydrodynamic and repulsive interactions and
mobile species on anomalous diffusion

To investigate the underlying physical basis for AD, we

performed additional simulations to observe the effects of

removing HI, removing the repulsive interactions, and eliminating

the mobility of the other protein species.

(1) Effect of HI: To understand the effect of HI, simulations

were run without considering HI. The autocorrelation

function shown in eq. (11) was calculated from this simulation

and compared to the case where HI was present. Figure 7

shows the plot of Ct(t)with t. It can be seen from the figure

that the minimum value of Ct(t) for the simulation without

HI is only slightly less than that of Ct(t)calculated from

simulations with HI. Although, the difference is small, it was

found to be present by comparing the results for four

trajectories in each case.

(2) Effect of excluded volume: As a control, we performed

two 1 ms simulations without HI in the presence and absence

of the repulsive term (simulations with HI and without

repulsive interaction was not stable due to very large volume

fractions during HI calculation). Ct(t)in figure 8 clearly shows

that when the repulsion between the proteins is absent, there

is no AD, as would be expected when excluded volume effects

are eliminated (each ’molecule’ effectively diffuses indepen-

dently). To investigate the sensitivity of the results to our

choice of parameters for the repulsive term, we increased the

force constant of the repulsive parameter from 0.1 to

1.0 kcal/mol/Å2 and performed two set of simulations for

each repulsive parameter with HI. Figure 9 shows that the

minimum value of Ct(t) is slightly lower for the higher

repulsive force constant, suggesting that higher repulsion

between proteins may increase the correlation between the

steps that each protein takes in the simulation. However, the

difference of Ct(t) is too small to make any definitive

conclusion.

(3) Effect of mobility of proteins on the anomalous
diffusion: We performed another set of simulations where all

proteins except for GFP were kept fixed. In this case, the

minimum value of Ct(t) attains a value lower than that

calculated from mobile crowders. Figure 10 shows that the

presence of fixed obstacles makes the diffusion more

anomalous as compared to the mobile crowders. From

previous reports [58], it was argued that immobile obstacles

are required for AD and that diffusion is approximately

"normal" in the presence of mobile obstacles. This is in accord

with our findings.

Previous studies suggested that a plausible cause of AD inside

the cytoplasm was the heterogeneity of the cytoplasmic environ-

ment and the various interactions among the macromolecules,

such as excluded volume effects and hydrodynamic interactions

[40,41]. Within our simplified model, which includes only HI and

excluded volume interactions between the molecules, we studied

how altering these forces affects the anomalous subdiffusivity

inside the simulated cellular environment. Our results indicate that

the excluded volume effect is one of the main causes of AD. As we

can reproduce the experimental diffusion coefficient of GFP in

realistic coarse-grained model of the bacterial cytoplasm, we

suggest that the excluded volume effect might be one of the main

causes of AD in E. coli.
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When we switched off the repulsive interactions in the absence

of HI, no AD was observed, suggesting that excluded volume

effects promote subdiffusion. On the other hand, hydrodynamic

interactions increase the diffusion exponent (albeit by a small

amount), thus decreasing the anomalous subdiffusion. As the

proteins are (almost) impenetrable and the treatment of HI was to

Figure 5. Correlation function of successive displacements (eq. 11) for different time lags (see text) ranging from 100 ns to 1000 ns.
doi:10.1371/journal.pone.0106466.g005

Figure 6. Anomalous subdiffusion occurring over short time regimes, tending to normal Brownian motion at larger time
differences. Diffusion is subdiffusive anomalous for t,3 on the log scale. After this time, the diffusion is approximately "normal" Brownian motion.
doi:10.1371/journal.pone.0106466.g006
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Figure 7. Correlation function of successive displacements (eq. 11) for simulation with and without hydrodynamic interactions.
doi:10.1371/journal.pone.0106466.g007

Figure 8. Correlation function of successive displacements (eq. 11) with and without repulsive interactions (both are without
hydrodynamic interactions).
doi:10.1371/journal.pone.0106466.g008
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Figure 9. Correlation function of successive displacements (eq. 11) for two different repulsive force constants (both are with
hydrodynamic interactions). Inset shows the same figure for a smaller range of y-axis.
doi:10.1371/journal.pone.0106466.g009

Figure 10. Correlation function of successive displacements (eq. 11) showing the effect of stationary and mobile crowders.
doi:10.1371/journal.pone.0106466.g010
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mimic an incompressible fluid, HI is repulsive for particles

approaching each other and attractive for particles moving away

from each other [8]. For simulations with excluded volume, when

particles move apart due to repulsion, they are "attracted" to each

other due to HI. Note that no electrostatic interactions were

considered in the current work. Although it is likely that long-

range electrostatic interactions will be screened by ions present in

the cytoplasm, these interactions would still affect interactions

between nearby proteins, which may in turn affect transport

properties discussed in this work. However, the effect of

electrostatics is likely to be minor in determining diffusion

coefficient, since our computed results are close to experimental

ones even without electrostatics. We reiterate that the analysis of

AD is done based on the approximate connection between

simulated trajectories and FBM.

Conclusions

In this work, we developed a simple model of the E. coli
cytoplasm and studied the diffusion of different proteins in the

model cytoplasm. With the only inter-molecular interactions being

repulsive interactions and hydrodynamic interactions, our model

can calculate diffusion coefficients for GFP that agree well with

experiments. Additionally, we used FBM to investigate the AD we

observed, and found that that repulsive interaction between

proteins is the largest contributor to AD in our model. It is likely

that this model can be further employed to study various biological

phenomena, such as binding of transcription factors to DNA, the

role of scaffolds in regulatory processes, spatial heterogeneity in E.
coli, and the localization of proteins in a heterogeneous cellular

environment.

Supporting Information

Figure S1 (a) shows the probability distribution of displacement

of GFP in 10 ns from our simulations. This is approximately

Gaussian. (b) shows the probability distribution of displacement of

GFP in 100 ns from our simulations. This is also approximately

Gaussian.

(PDF)

Movie S1 In this movie, a short part of the Brownian
dynamics trajectory of the cytoplasm with GFP (shown
in green) is shown.
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